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Introduction

This thesis is concerned with the numerical analysis of time-dependent linear Maxwell’s equations.
We follow the method of lines ansatz where we first discretize Maxwell’s equations in space yielding a
(large) system of ODEs which are subsequently solved using a time integration method.

For the spatial discretization we use discontinuous Galerkin (dG) finite element methods which has
become of great interest in recent years, see the textbooks [8, 17]. The popularity of dG methods relies
in several advantages compared to finite differences (FD) or standard finite element (FE) methods.
The main benefits with respect to FD methods are that dG methods can handle irregular domains
and admit high-order accuracy as well as adaptivity. In view of FE methods the superior aspects
of dG methods are that they can handle more easily non-conforming meshes, the mass matrix is
block-diagonal and they are accessible for high parallelization. Furthermore, dG methods are well-
suited for solving Maxwell’s equations in composite media, i. e. media with piecewise constant material
coefficients.

The dG discretization of Maxwell’s equations results in a semi-discrete problem which corresponds
to a system of ODEs and which yet has to be integrated in time. We therefore work with explicit Runge-
Kutta (RK) methods with one, two or three stages. Convergence results for dG methods combined
with two- and three-stage RK methods have been proven in 2010 by Burman, Ern and Fernández, see
[2]. The time integration analysis in this thesis strongly relies on this paper but we propose a modified
notation and generalize some aspects. It is characteristic for explicit time-integration methods that
the step size has to be restricted due to stability requirements (CFL condition). One can overcome
this problem by considering implicit or exponential time integrators and we refer the reader to [16] for
this methods. However, this methods require to solve large systems of linear equations or to evaluate
matrix exponentials for large matrices, which complicates the implementation. In contrary, explicit time
integrators can exploit the block-diagonal structure of the mass-matrix and thereby lead to fully explicit
schemes.

Outline of the Thesis

We organize this thesis as follows. In Chapter 1 we introduce Maxwell’s equation and give the physical
interpration of the appearing quantities. Then, we turn to linear Maxwell’s equations in an inhomoge-
neous, isotropic medium. We conclude the chapter by providing a mathematical framework to proof
well-posedness of Maxwell’s equations.

Subsequently, we discretize Maxwell’s equations in space. Therefore, we introduce in Chapter 2
the discrete setting dG methods are based upon. In Chapter 3 we derive the dG discretization of
Maxwell’s equations. The stability analysis of the dG discretization will enable us to prove convergence
of order k, where k denotes the polynomial degree used in the dG method. A further analysis of a so
called stabilized dG discretization will then allow us to improve the convergence order to k + 1/2.

Chapter 4 is dedicated to full discretizations of Maxwell’s equations stemming from discretizing the
semi-discrete problem provided by the dG spatial discretization with explicit RK methods. Thereby, we
start by introducing (explicit) RK methods. Our further analysis is based on energy techniques and we
first deduce energy identities associated with the RK approximations. This will allow us to prove the
stability of the full discretization and then lead us to proof convergence of order k in space and s in
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time, when s denotes the number of stages of the RK scheme. Finally, we prove convergence of order
k + 1/2 in space and s in time for stabilized dG methods.

In the end, Chapter 5 provides some implementational aspects of dG discretizations and then
concludes the thesis by illustrating the gained results by numerical experiments.



Chapter 1

Maxwell’s Equations

In this chapter we give an introduction into Maxwell’s equations where we mainly follow [5, 12, 15, 16].
At first we state Maxwell’s equations in their general differential form. Subsequently, we consider
the particular case of linear Maxwell’s equations in an inhomogeneous, isotropic material which is
surrounded by a perfect conductor.

Thereafter, we introduce a mathematical framework in which Maxwell’s equations can be embed-
ded. We show that in this context Maxwell’s equations can be stated as an abstract evolution equation.
Finally, we ensure the well-posedness of this evolution equation with the theory of C0-groups, in par-
ticular with Stone’s theorem. This guarantees the existence of a unique solution of the linear Maxwell’s
equations.

1.1 The Partial Differential Equations

We introduce the vector fields D,E ,B,H ∶ R+ × Ω → R3 on a set Ω ⊂ R3, where D represents the
electric displacement field, E the electric field, H the magnetic induction and B the magnectic field
intensity. Then, Maxwell’s equations can be stated as

∂tB +∇ × E = 0, (1.1a)

∂tD −∇ ×H = −J , (1.1b)

∇ ⋅D = ρ, (1.1c)

∇ ⋅ B = 0, (1.1d)

for given electric current density J ∶ R+ ×Ω→ R3 and electric charge density ρ ∶ R+ ×Ω→ R.
The first equation is called Faraday’s law of induction and describes the effect of a time-varying

magnetic field on the electric field. The second equation is Ampère’s law and states the effect of the
(external and internal) current on the magnetic field. The last two equations are Gauss’s electric law
and Gauss’s magnetic law, respectively. The former describes the sources of the electric displacement
whereas the latter states that there are no magnetic currents. For a deeper insight in the physics of
Maxwell’s equations we refer to [11].

A result that follows immediately from above equations is conservation of charge, i. e., there holds

∂tρ +∇ ⋅J = 0. (1.2)

Indeed, we see this by differentiating (1.1c) with respect to (w. r. t.) t and plugging it into (1.1b). The
result then follows by the identity ∇ ⋅ (∇× ⋅) = 0.

An additional result concerns the time evolution of Maxwell’s equations. Let us therefore consider
the last two equations, often called the div-equations owing to the derivatives they contain. Differenti-
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4 CHAPTER 1. MAXWELL’S EQUATIONS

ating w. r. t. t yields

∂t(∇ ⋅D − ρ) = ∇ ⋅ (∇×H −J ) − ∂tρ = 0,

∂t∇ ⋅ B = −∇ ⋅ (∇× E) = 0,

where we have used the first two equations (the curl-equations) (1.1a)-(1.1b), the conservation of
charge (1.2) and the identity ∇ ⋅ (∇× ⋅) = 0. Thus, if the div-equations are satisfied for some initial time
they will be fulfilled for every time. This essentially means that in order to analyze the time evolution of
Maxwell’s equations it is sufficient to consider the two curl-equations (1.1a)-(1.1b).

1.2 The Constitutive Equations

As we have seen, Maxwell’s equations consist of six independet scalar equations for twelve scalar
unknowns and are thus not consistent. This is overcome by introducing the so-called constitutive
equations which couple the fields by

D = D(E ,H), B = B(E ,H).

For example, we have in vacuum
D = ε0E , B = µ0H,

where ε0 is the permittivity of free space and µ0 the permeability of free space. These constants are
related to the speed of light in vacuum, here called c0, by

c0 =
1

√
ε0µ0

.

In material the situation can be more complicated. For example in inhomogeneous and anisotropic
media we can model the dependencies of the fields by linear constitutive equations of the form

D = εE , B = µH,

with matrix-valued functions ε ∶ R3 → R3×3 and µ ∶ R3 → R3×3 called the permittivity tensor and
permeability tensor, respectively. For the rest of the thesis we deal with isotropic media, where the
permittivity and the permeability are directionally independent. In this case the constitutive equations
simplify to

D = ε0εrE , B = µ0µrH, (1.3)

where εr, µr ∶ R3 → R+ are scalar functions called the relative permittivity and the relative permeability
of the medium. We set ε = ε0εr and µ = µ0µr and refer to them as the permittivity and the permeability
of the medium.

Furthermore, the current density J can depend on the material and on the fields. For conducting
media this can be modeled by Ohm’s law :

J = σE +Je. (1.4)

Here σ ∶ R3 → R is the conductivity and Je ∶ R3 → R3 is the external current density.

1.3 Linear Maxwell’s Equations

So far, we have introduced Maxwell’s equations in an inhomogeneous, isotropic material. In order to
study the time evoluton of Maxwell’s equations in a bounded domain Ω, we have to introduce suitable
boundary conditions on ∂Ω.
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Boundary conditions We consider the case where the material is surrounded by a perfect conduc-
tor. In [5] it is shown that this yields the boundary conditions

n × E = 0, n ⋅ (µH) = 0, (1.5)

where n denotes the outward unit normal to ∂Ω.

Linear Maxwell’s equations Incorporating the constitutive equations and the boundary conditions
into Maxwell’s equations results in the following evolution problem: Given the current density J , the
charge density ρ, and the initial values E0, H0, we search for the electric and magnetic field E ,H ∶
R+ ×Ω→ R3, such that

µ∂tH +∇ × E = 0 in R+ ×Ω, (1.6a)

ε∂tE −∇ ×H = −J in R+ ×Ω, (1.6b)

∇ ⋅ (εE) = ρ, in R+ ×Ω, (1.6c)

∇ ⋅ (µH) = 0, in R+ ×Ω, (1.6d)

n × E = 0 on R+ × ∂Ω, (1.6e)

n ⋅ (µH) = 0 on R+ × ∂Ω, (1.6f)

E(t = 0) = E0 in Ω, (1.6g)

H(t = 0) =H0 in Ω. (1.6h)

Reduced linear Maxwell’s equations We already carried out that the div-equations (1.6c)-(1.6d)
can be dropped when analyzing the time-evolution. Later we will see that the same holds true for the
second boundary condition (1.6f), i. e. it is automatically satisfied if it is satisfied for some initial time.
Thus, it is suffcient to consider following reduced problem: We search for E ,H ∶ R+ × Ω → R3, such
that

µ∂tH +∇ × E = 0 in R+ ×Ω, (1.7a)

ε∂tE −∇ ×H = −J in R+ ×Ω, (1.7b)

n × E = 0 on R+ × ∂Ω, (1.7c)

E(t = 0) = E0 in Ω, (1.7d)

H(t = 0) =H0 in Ω. (1.7e)

We conclude this section with a special case of Maxwell’s equation which admits to reduce the three
dimensional system (1.7) to a two dimensional problem. This is of particular interest, since our later
numerical experiments are carried out for this case.

1.3.1 Reduction to Two Dimensions

In [15] it is pointed out that if the underlying physical system is homogeneous in z-direction Maxwell’s
equations (1.7) decouple into two sets of three equations.

TE polarization The first set reads

ε∂tEx − ∂yHz = −Jx in R+ ×Ω, (1.8a)

ε∂tEy + ∂xHz = −Jy in R+ ×Ω, (1.8b)

µ∂tHz + ∂xEy − ∂yEx = 0 in R+ ×Ω, (1.8c)

nxEy − nyEx = 0 in R+ × ∂Ω, (1.8d)

and describes the so-called transverse-electric (TE) polarization. In this case the electric field lies in
the plane of propagation.
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TM polarization In contrary, the second set, called transverse-magnetic (TM) polarization,

µ∂tHx + ∂yEz = 0 in R+ ×Ω, (1.9a)

µ∂tHy − ∂xEz = 0 in R+ ×Ω, (1.9b)

ε∂tEz + ∂yHx − ∂xHy = −Jz in R+ ×Ω, (1.9c)

Ez = 0 in R+ × ∂Ω, (1.9d)

desbribes an electric field perpendicular to the plane of of propagation.

1.4 Mathematical Aspects of Maxwell’s Equations

The later discretization is tailored to approximate Maxwell’s equations in an L2-sense and thus the aim
of this section is to formulate Maxwell’s equations (1.7) as a well-posed mathematical problem in an
L2 setting. This gives rise to the question of the meaning of the curl-operator ∇× in (1.7a)-(1.7b) since
L2-functions do not necessarily posses (weak) derivatives. Furthermore, we have to give a meaning to
the boundary condition (1.7c). Thus, we will at first introduce the concept of the so called graph space,
where the curl of a function is defined in a variational way. A further restriction of the graph space will
then allow us to incorporate the boundary condition.

Throughout this thesis we consider only bounded domains Ω which posses a Lipschitz-continuous
boundary ∂Ω. Then, the outward unit normal n is defined almost everywhere (a. e.) on Ω. Further-
more, we suppose that the coefficients ε and µ, are in L∞(Ω) and that they are uniformly positive,
meaning that there is a constant δ > 0 such that

ε, µ ≥ δ > 0. (1.10)

1.4.1 The State Space

We begin by introducing the basic space.

Definition 1.1 (The state space V ). We define the state space V as

V ∶= L2(Ω)3 ×L2(Ω)3. (1.11)

We equip it with the inner product: For [H1,E1]T , [H2,E2]T ∈ V ,

([ H1

E1
] , [ H2

E2
])

V

∶= ∫
Ω

µH1 ⋅H2 + εE1 ⋅E2, (1.12)

and with the associated norm: For [H,E]T ∈ V ,

∥[ H
E

]∥
V

= ([ H
E

] , [ H
E

])
1/2

V

. (1.13)

Owing to the positivity assumption (1.10) the V -inner product is equivalent to the standard L2-inner
product and thus (V, (⋅, ⋅)V ) is a Hilbert space. The usage of the V -inner product instead of the
standard L2-inner product is motivated by its physical meaning. In fact, its induced norm represents
the electromagnetic energy.
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1.4.2 The Graph Space

Now let us give a meaning to the curl operator ∇× in (1.7a)-(1.7b). We cannot use the standard curl
operator since it is only defined for continuous differentiable functions and clearly functions in V do
not have to satisfy this. Recalling that we are working in an L2-setting we see that for a function
[H,E]T ∈ V the formal condition ∇ ×H , ∇ ×E ∈ L2(Ω)3 is sufficient to guarantee that (1.7a)-(1.7b)
are well-defined. So let us define what the statement ∇ × F ∈ L2(Ω)3 means here. Let therefore
C∞

0 (Ω)3 denote the space of infinitely differentiable functions with compact support in Ω.

Definition 1.2 (The variational curl). We say that a function F ∈ L2(Ω)3 posses a variational curl in
L2(Ω)3 if there exists a function G ∈ L2(Ω)3 such that

∫
Ω

G ⋅ ϕ = ∫
Ω

F ⋅ (∇× ϕ) ∀ϕ ∈ C∞
0 (Ω)3. (1.14)

We write ∇× F = G.

Since the space C∞
0 (Ω)3 is dense in L2(Ω)3 [19, Lemma V.1.10] the variational curl is unique (if it

exists).

Remark 1.3 This definition is a generalization of an integration by parts formula. Indeed, for a weakly
differentiable function F̃ ∈H1(Ω)3, there holds

∫
Ω

(∇× F̃ ) ⋅ ϕ = ∫
Ω

F̃ ⋅ (∇× ϕ), ∀ϕ ∈ C∞
0 (Ω)3.

◇

We collect functions admitting a variational curl in the following space.

Definition 1.4 (The graph space H(curl,Ω)). The graph space of the curl-operator is defined as

H(curl,Ω) ∶= {F ∈ L2(Ω)3 ∣∇× F ∈ L2(Ω)3}, (1.15)

with the natural inner product: For F , G ∈H(curl,Ω),

(F,G)H(curl,Ω) ∶= (F,G)L2(Ω)3 + (∇× F,∇×G)L2(Ω)3 , (1.16)

and the associoated graph norm ∥F ∥H(curl,Ω) ∶= (F,F )1/2
H(curl,Ω)

.

Proposition 1.5 The graph space H(curl,Ω) is a Hilbert space.

Proof: Let (Fn) be a Cauchy sequence inH(curl,Ω). Then, (Fn) and (∇×Fn) are Cauchy sequences
in L2(Ω)3 and thus convergent. Let F and G denote their respective limits in L2(Ω)3. Then, for all
ϕ ∈ C∞

0 (Ω) and all n ∈ N we have by the definition of H(curl,Ω),

∫
Ω

(∇× Fn) ⋅ ϕ = ∫
Ω

Fn ⋅ (∇× ϕ).

Taking the limit n→∞ yields

∫
Ω

G ⋅ ϕ = ∫
Ω

F ⋅ (∇× ϕ).

Thus, we conclude from (1.14) that F ∈H(curl,Ω) and G = ∇× F . ◻

The following result will be important.

Theorem 1.6 ([14, Theorem 3.26]). The space H(curl,Ω) is the closure of C∞(Ω)3 w. r. t. the graph
norm ∥ ⋅ ∥H(curl,Ω).
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1.4.3 Boundary Conditions in the Graph Space

Next, we incorporate the boundary condition (1.7c) in the graph space H(curl,Ω). Motivated by The-
orem 1.6 we establisch the desired property as follows:

Definition 1.7 (The space H0(curl,Ω)). We define the space H0(curl,Ω) as the closure of C∞
0 (Ω)3

w. r. t. the graph norm ∥ ⋅ ∥H(curl,Ω).

We easily see that H0(curl,Ω) is a closed subspace of the Hilbert space H(curl,Ω) and thus a Hilbert
space itself. The next two lemmas clearify the properties of functions in H0(curl,Ω).

Lemma 1.8 ([12, Lemma 4.17]). The space {∇v ∣ v ∈H1
0(Ω)} is a closed subspace of H0(curl,Ω).

This lemma essentially states that functions belonging to H0(curl,Ω) do not need to have a vanishing
normal component on the boundary ∂Ω. For example take Ω = [−1,1]2 and v = (x2 − 1)(y2 − 1).
Then, clearly it holds v ∈H1

0(Ω) and Lemma 1.8 applies yielding ∇v ∈H0(curl,Ω). However, we have
on the boundary

∇v ⋅ n = { ±2x(y2 − 1), for (x, y) ∈ {±1} × [−1,1],
±2y(x2 − 1), for (x, y) ∈ [−1,1] × {±1},

which obviously does not vanish. In contrary, observe that the tangential component of ∇v vanishes
since

∇v × n = { ±2y(x2 − 1), for (x, y) ∈ {±1} × [−1,1],
±2x(y2 − 1), for (x, y) ∈ [−1,1] × {±1}.

Indeed, this holds true for all function belonging to H0(curl,Ω), namely, their tangential component
has to vanish. The proof can be found in [14, Theorem 3.29] and requires the introduction of the space
H−1/2(∂Ω)3, which we ommit here. We rather cite following two lemmas illustrating this result.

Lemma 1.9 ([12, Lemma 4.18]). The space {F ∈ C1(Ω)3 ∣n × F = 0 on ∂Ω} is a subspace of
H0(curl,Ω).

Lemma 1.10 ([14, Lemma 3.27]). Let F ∈H(curl,Ω) be such that for every ϕ ∈ C∞(Ω)3 it holds

(∇× F,ϕ)L2(Ω)3 = (F,∇× ϕ)L2(Ω)3 . (1.17)

Then, F ∈H0(curl,Ω).

Remark 1.11 Let us point out the statement of Lemma 1.10 for functions with more regularity, say
F̃ ∈H1(Ω)3. Integration by parts gives

∫
Ω

(∇× F̃ ) ⋅ ϕ = ∫
Ω

F̃ ⋅ (∇× ϕ) + ∫
∂Ω

(n × F̃ ) ⋅ ϕ, ∀ϕ ∈ C∞(Ω)3.

Owing to (1.17), we have

∫
∂Ω

(n × F̃ ) ⋅ ϕ = 0 ∀ϕ ∈ C∞(Ω)3.

Since C∞(Ω)3 is dense in L2(Ω)3, see [9], this is equivalent to

n × F̃ = 0 a. e. on ∂Ω.

◇

We conclude this section with a generalization of Green’s theorem to functions in H(curl,Ω).

Lemma 1.12 (Green’s theorem, [14, Lemma 3.27]). Let H ∈ H(curl,Ω) and E ∈ H0(curl,Ω). Then,
it holds

(H,∇×E)L2(Ω)3 = (∇×H,E)L2(Ω)3 . (1.18)
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1.4.4 Well-Posedness

The results from the previous section allow us to collect the curl terms in (1.7a), (1.7b) as well as the
associated boundary condition (1.7c) in an operator.

Definition 1.13 (Maxwell operator). We define the Maxwell operator A as

A ∶ D(A)→ V, [ H
E

]↦ [ µ−1∇×E
−ε−1∇×H ] , (1.19)

where the domain of A is given as

D(A) ∶=H(curl,Ω) ×H0(curl,Ω). (1.20)

We endow D(A) with the graph norm: For [H,E]T ∈ D(A),

∥[ H
E

]∥
2

A

∶= ∥[ H
E

]∥
2

V

+ ∥A [ H
E

]∥
2

V

. (1.21)

Clearly, there holds

∥[ H
E

]∥
2

A

= ∥[ µ
1/2H

ε1/2E
]∥

2

L2(Ω)6

+ ∥[ µ
−1/2∇×E
ε−1/2∇×H ]∥

2

L2(Ω)6

.

Recalling that the coefficients µ and ε are assumend to be bounded and to be uniformly positive, see
(1.10), we deduce the equivalence of the norms ∥ ⋅ ∥A and ∥ ⋅ ∥H(curl,Ω)×H(curl,Ω). Furthermore, we can
conclude that (D(A), ∥ ⋅ ∥A) is a Hilbert space and consequently that A is a closed operator.

Homogeneous evolution equation We first consider the homogeneous case of Maxwell’s equations
(1.7), where the electric current and the electric charge density are zero, J = ρ = 0. Then, we can
rewrite(1.7) in a more compact form, namely as the abstract evolution equation: For a given initial value
u0 = [H0,E0]T ∈ D(A) we search for u = [H,E]T ∈ C1(R+;V ) ∩C(R+;D(A)) such that

∂tu +Au = 0, t ≥ 0, (1.22a)

u(0) = u0. (1.22b)

Our aim is to show well-posedness of (1.22) via Stone’s theorem A.1. Therefore, we show that its
premises are satisfied, i. e. the domain D(A) is dense in V and the operator A is skew-adjoint. For
the first assumption we notice that C∞(Ω)3 × C∞

0 (Ω)3 is a subset of D(A) (see Theorem 1.6 and
Definition 1.7). Then, the assumption readily follows by the density of both C∞(Ω)3 and C∞

0 (Ω)3 in
L2(Ω)3 w. r. t. to the L2-norm and the equivalence of the V -norm and the L2-norm. Thus, it remains
to show skew-adjointness of A.

Proposition 1.14 (Skew-adjointness of A). The Maxwell operator A is skew-adjoint w. r. t. to the
V -inner product.

Proof: We follow the proof in [16, Proposition 2.1]. We have to show that the domain of A and the
domain of its adjoint A⋆ coincide, D(A) = D(A⋆), and that A is skew-symmetric, i. e. for all v1, v2 ∈
D(A) it holds

(Av1, v2)V = −(v1,Av2)V .
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Let us begin by proving that A is skew-symmetric. For v1 = [H1,E1]T , v2 = [H2,E2]T ∈ D(A) there
holds

(Av1, v2)V =([ µ−1∇×E1

−ε−1∇×H1
] , [ H2

E2
])

V

=([ ∇×E1

−∇ ×H1
] , [ H2

E2
])

L2(Ω)6

=(∇×E1,H2)L2(Ω)3 − (∇×H1,E2)L2(Ω)3

=(E1,∇×H2)L2(Ω)3 − (H1,∇×E2)L2(Ω)3

= − ([ H1

E1
] , [ µ−1∇×E2

−ε−1∇×H2
])

V

= −(v1,Av2)V .

Here we used Green’s theorem (1.12) in the fourth line.
We continue by proving the coincidence of the domains of A and A⋆. The domain of the adjoint A⋆ is
given by

D(A⋆) = {v2 ∈ V ∣∃v3 ∈ V s.t.∀v1 ∈ D(A) ∶ (Av1, v2)V = (v1, v3)V }.
We show that both domains contain each other, D(A) ⊂ D(A⋆) and D(A⋆) ⊂ D(A). The first
inclusion immediately follows with the computations above: Let v2 ∈ D(A) and set v3 = −Av2. Then,
for all v1 ∈ D(A) there holds

(Av1, v2)V = (v1, v3),
and thus D(A) ⊂ D(A⋆). Conversely let v2 = [H2,E2]T ∈ D(A⋆). Then, by the definition of D(A⋆),
there is v3 = [H3,E3]T ∈ V such that for all v1 = [H1,E1]T ∈ D(A) it holds,

(Av1, v2)V = (v1, v3)V ,

or equivalently,

(∇×E1,H2)L2(Ω)3 − (∇×H1,E2)L2(Ω)3 = (µH1,H3)L2(Ω)3 + (εE1,E3)L2(Ω)3 . (1.23)

We choose H1 = 0,
(∇×E1,H2)L2(Ω)3 = (εE1,E3)L2(Ω)3 .

Since this holds for all E1 ∈H0(curl,Ω) it holds also for all E1 ∈ C∞
0 (Ω)3. Thus, we have

∫
Ω

(∇×E1) ⋅H2 = ∫
Ω

εE1 ⋅E3 ∀E1 ∈ C∞
0 (Ω)3.

Recalling the definition of the variational curl (1.14) we conclude that ∇ × H2 = εE3 ∈ L2(Ω)3 and
therefore H2 ∈H(curl,Ω).
Similar, by choosing E1 = 0 in (1.23), we get

−(∇×H1,E2)L2(Ω)3 = (µH1,H3)L2(Ω)3 ,

and by the same arguments as above E2 ∈H(curl,Ω) with ∇×E2 = −µH3 ∈ L2(Ω)3 and

∫
Ω

(∇×H1) ⋅E2 = ∫
Ω

H1 ⋅ (∇×E2) ∀H1 ∈H(curl,Ω).

Using Theorem 1.6 we conclude that this equation also holds for all functions H1 ∈ C∞(Ω)3,

∫
Ω

(∇×H1) ⋅E2 = ∫
Ω

H1 ⋅ (∇×E2) ∀H1 ∈ C∞(Ω)3.

Lemma 1.10 then yields E2 ∈ H0(curl,Ω). Thus, we have shown v2 = [H2,E2]T ∈ D(A) and conse-
quently the inclusion D(A⋆) ⊂ D(A). ◻
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We can draw an important consequence directly from this proposition.

Corollary 1.15 For all v ∈ D(A) we have (Av, v)V = 0.

Now we can prove the well-posedness of the evolution equation (1.22).

Theorem 1.16 (Well-posedness). The operator −A generates a C0-group of unitary operators

T ∶ R→ L(V,V ), t↦ e−tA. (1.24)

Consequently, for every initial value u0 ∈ D(A) the homogeneous evolution equation (1.22) posses a
unique solution u ∈ C1(R+;V ) ∩C(R+;D(A)) given by

u(t) = T (t)u0. (1.25)

Furthermore, the electromagnetic energy is conserved,

∥u(t)∥V = ∥u0∥V ∀t ≥ 0. (1.26)

Proof: In [18, Theorem 2.2] it is proven that the homogeneous evolution equation (1.22) is well-posed
if and only if the operator −A generates a C0-semigroup, say T (⋅). In this case the solution of (1.22)
is given by u = T (⋅)u0, for every initial value u0 ∈ D(A). Using Proposition 1.14 and Stone’s theo-
rem A.1 we conclude that −A even generates a C0-group of unitary operators. Conservation of the
electromagnetic energy is an immediate consequence of the unitary property of the C0-group. ◻

Incorporation of the div-equations Until now, we have proven the well-posedness of the abstract
evolution equation (1.22) which corresponds to the reduced system of Maxwell’s equations (1.7) without
electric current and electric charge, J = ρ = 0. Clearly, in this situation conservation of charge (1.2)
holds true and we commented that the div-equations and the boundary condition forH are satisfied in
this case given they hold true at an intial time. Now, we shortly illustrate how this can be mathematically
formalized. First, we need the concept of the variatonal divergence. Motivated by the ideas concerning
the variational curl we define

H(div,Ω) ∶= C∞(Ω)3, H0(div,Ω) ∶= C∞
0 (Ω)3, (1.27)

where the closure is taken w. r. t. the div-norm:

∥F ∥2
H(div,Ω) ∶= ∥F ∥2

L2(Ω)3 + ∥∇ ⋅ F ∥2
L2(Ω)3 .

Both spaces admit a variational divergence [14, Theorem 3.22]: For F ∈H(div,Ω) (or F ∈H0(div,Ω))
there is a unique g ∈ L2(Ω) with

∫
Ω

F ⋅ ∇ϕ = −∫
Ω

gϕ ∀ϕ ∈ C∞
0 (Ω), (1.28)

and we define ∇ ⋅ F ∶= g. Furthermore, it is proven in [14, Theorem 3.25] that the space H0(div,Ω)
contains functions with vanishing normal component (compare with H0(curl,Ω), which contains func-
tions with vanishing tangential component).
Now we derive the subspace V0 ⊂ V as

V0 ∶= {[H,E]T ∈ V ∣µH ∈H0(div,Ω), εE ∈H(div,Ω),∇ ⋅ (µH) = ∇ ⋅ (εE) = 0} (1.29)

and the operator A0 on the domain D(A0) ∶= D(A) ∩ V0 as

A0 ∶= A∣D(A0). (1.30)



12 CHAPTER 1. MAXWELL’S EQUATIONS

This allows us to state the whole Maxwell system (1.6) as the abstract evolution problem: Given the
initial value û0 = [Ĥ0, Ê0]T ∈ D(A0) we search for û = [Ĥ, Ê]T ∈ C1(R+;V ) ∩ C(R+;D(A0)) such
that

∂tû +A0û = 0, t ≥ 0, (1.31a)

û(0) = û0. (1.31b)

Then, we have the following well-posedness result.

Theorem 1.17 (Well-posedness, [10, Proposition 3.5]). The operator −A0 generates a C0-group of
unitary operators

T0 ∶ R→ L(V0, V0), t↦ e−tA0 . (1.32)

Thus, for every û0 ∈ D(A0) the homogeneous evolution equation (1.31) has a unique solution û ∈
C1(R+;V0) ∩C(R+;D(A0)) given as

û(t) = T0(t)û0. (1.33)

Furthermore, conservation of the electromagnetic energy holds true

∥û(t)∥V = ∥û0∥V ∀t ≥ 0. (1.34)

This theorem states that if the solution u of the homogeneous evolution problem (1.22) satisfies the
div-equations and the boundary condition forH at time t = 0, i. e. the initial value u0 belongs toD(A0),
then it accords with the solution û of (1.31). This means u automatically satisfies both the div-equations
and the boundary condition for H for every time t > 0.

Inhomogeneous case Finally, we consider the inhomogeneous problem. Therefore, we define the
source terms g = ĝ = [0,−εJ ]T . Then, we have for the reduced system (1.7) the following abstract evo-
lution problem: Given u0 = [H0,E0]T ∈ D(A) we search for u = [H,E]T ∈ C1(R+;V )∩C(R+;D(A))
such that

∂tu +Au = g, t ≥ 0, (1.35a)

u(0) = u0. (1.35b)

For the full system (1.6) the evolution problem reads as: For given û0 = [Ĥ0, Ê0]T ∈ D(A0) we search
for û = [Ĥ, Ê]T ∈ C1(R+;V0) ∩C(R+;D(A0)) such that

∂tû +A0û = ĝ, t ≥ 0, (1.36a)

û(0) = û0. (1.36b)

Using the variation of constant technique we can prove the well-posedness of these problems.

Theorem 1.18 (Variation of Constant, [18, Theorem 2.9]).

i) Assume that the initial value satisfes u0 ∈ D(A). Furthermore, assume that the source term
satisfies g ∈ C1(R+;V ) or g ∈ C(R+;D(A)). Then, the inhomogeneous evolution problem
(1.35) has a unique soultion u ∈ C1(R+;V ) ∩C(R+;D(A)) given by

u(t) = T (t)u0 +
t

∫
0

T (t − s)g(s)ds. (1.37)
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ii) Assume that the initial value satisfes û0 ∈ D(A0). In addition, assume that the source term
satisfies ĝ ∈ C1(R+;V0) or ĝ ∈ C(R+;D(A0)). Then, the inhomogeneous evolution problem
(1.36) has a unique soultion û ∈ C1(R+;V ) ∩C(R+;D(A0)) given by

û(t) = T0(t)û0 +
t

∫
0

T0(t − s)ĝ(s)ds. (1.38)

We end this chapter by proving the stability of the solutions u and û in the sense that they can be
bounded in terms of the data, i. e. in terms of the initial values u0, û0 and the source terms g, ĝ.

Theorem 1.19 (Stability). Under the assumption of the previous Theorem 1.18 it holds

∥u(t)∥V ≤ ∥u0∥V +
t

∫
0

∥g(s)∥V ds, (1.39)

and

∥û(t)∥V ≤ ∥û0∥V +
t

∫
0

∥ĝ(s)∥V ds, (1.40)

Proof: This follows from (1.37) and (1.38) by using the triangle inequality and the unitary property of T
and T0. ◻
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Chapter 2

Spatial Discretization I: The Discrete
Setting

In this section we present the ingredients needed to constrcut a spatial discretization of Maxwell’s
equations by dG methods. Like FE methods the idea of dG methods is to construct finite dimensional
function spaces in which we search for an approximate solution. The construction of this function
spaces consists of two steps: First we discretize the domain Ω using a mesh and then we construct
the approximation space as the space of all functions which are polynomials on each mesh element.
This leads to the concept of broken polynomial spaces. Furthermore, we introduce the broken version
ofH(curl,Ω) which is of particular interest for the analysis of Maxwell’s equations. This chapter mainly
relies on the textbook [17].

2.1 Meshes

2.1.1 Basic Concepts

We make following assumption on the domain Ω.

Assumption 2.1 (Domain Ω). The domain Ω is a polyhedron in Rd.

The advantage of this assumption is that polyhedra can be exactly covered by meshes built of polyhe-
dral elements. Furthermore, it allows us to define the unit outward normal a. e.

Definition 2.2 (Boundary and outward unit normal). We denote the boundary of Ω by ∂Ω and the unit
outward normal by n.

We start introducing meshes with the simple case of simplicial meshes.

Definition 2.3 (Simplex). Let {x0, . . . , xd} be a set of d + 1 points in Rd such that the vectors {x1 −
x0, . . . , xd −x0} are linearly independent. Then, the interior of the convex hull of {x0, . . . , xd} is called
a non-degenerate simplex of Rd, and the points {x0, . . . , xd} its vertices.

In dimension 1, a non-degenerate simplex is an open interval, in dimension 2 a triangle and in dimen-
sion 3 a tetrahedron.

Definition 2.4 (Simplicial mesh). A finite set T = {K} is called a simplicial mesh of the domain Ω if:

i) Every K ∈ T is a non-degenerate simplex,

ii) the set T forms a partition of Ω, i. e.

Ω = ⋃
K∈T

K,

15
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and for every K1,K2 ∈ T , K1 ≠K2, it holds

K1 ∩K2 = ∅.

Each K ∈ T is called a mesh element.

When working with finite elements simplicial meshes are a quite convenient choice. An advantage of
dG methods is that they allow working with general meshes more easily.

Definition 2.5 (General mesh). A general mesh T of the domain Ω is a finite collection of polyhedra
T = {K} satisfying condition ii) of the previous Definition 2.4. Each element K ∈ T is called a mesh
element.

Obviously, a simplicial mesh is a particular case of a general mesh.

Definition 2.6 (Element diameter, meshsize). Let T be a general mesh of the domain Ω. We denote
with hK the diameter of a mesh element K ∈ T . Furthermore, we define the meshsize h as the
largerst diameter in the mesh

h ∶= max
K∈T

hK .

In what follows we will refer to a mesh T with meshsize h with Th.

Definition 2.7 (Element outward normal). Let Th be a mesh of the domain Ω and K ∈ Th. We define
nK a. e. on ∂K as the unit outward normal to K.

2.1.2 Mesh Faces, Averages and Jumps

Now we introduce the concept of mesh faces, averages and jumps, which will be frequently used in the
design and analysis of dG methods.

Definition 2.8 (Mesh faces). Let Th be a mesh of the domain Ω. We say that a closed subset F of Ω is
a mesh face if F has positive (d−1)-measure and either one of the two following conditions is satisfied:

i) There are distinct mesh elements K1,K2 ∈ Th such that F = ∂K1 ∩∂K2; in this case, we call F
an interface.

ii) There is a mesh element K ∈ Th such that F = ∂K ∩ ∂Ω; in this case, we call F a boundary
face.

We collect interfaces in the set F ih and boundary faces in the set Fbh. Henceforth, we set

Fh ∶= F ih ∪Fbh.

Furthermore, for any mesh element K ∈ Th we collect the mesh faces composing the boundary of K
in the set

FK ∶= {F ∈ Fh ∣F ⊂ ∂K}.
Finally, we denote the maximum number of mesh faces composing the boundary of mesh elements by

N∂ ∶= max
K∈Th

card(FK).

Figure 2.1 illustrates four interfaces and one boundary face of a mesh element belonging to a general
mesh.

We continue with the definition of face normals. Therefore, we introduce the following notation
which we will keep from now on: For every mesh element K ∈ Th and every corresponding interface
F ∈ FK ∩F ih we denote the neighboring mesh element w. r. t. F with KF , see Figure 2.2.
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∂Ω

K

Figure 2.1: Example of interfaces (red) and boundary face (green)

Definition 2.9 (Face normals). For all F ∈ Fh we define the unit normal nF to F as

i) the unit normal nK to F pointing from K to KF if F ∈ F ih, see Figure 2.2; the orientation of nF
is arbitrary depending on the choice of K, but kept fixed in what follows.

ii) The outward unit normal n to Ω if F ∈ Fbh.

Next, we turn to averages and jumps across interfaces of piecewise smooth functions. Let us therefore
introduce the following notation

vK ∶= v∣K , vKF
∶= v∣KF

.

Definition 2.10 (Interface averages and jumps). Let v be a scalar-valued function and assume that for
every mesh elementK ∈ Th its restricition v∣K is smooth enough to admit a trace a. e. on the boundary
∂K. Then, for all F ∈ F ih the function v admits a possible two-valued trace and we define

i) the average of v on F as

{{v}}F ∶= 1

2
((vK)∣F + (vKF

)∣F ),

ii) the jump of v on F as
JvKF ∶= (vKF

)∣F − (vK)∣F .

When v is vector-valued, the above average and jump operators act componentwise on v.

2.1.3 Broken Polynomial Spaces

By now we have constructed a mesh of the domain Ω and so we can turn to the second step, namely
to the construction of finite function spaces. In our case this spaces consist of piecewise polynomials.

The polynomial space Pkd

Let k ≥ 0 be an integer and α = (α1, . . . , αd) ∈ Nd0 be a multi-index with

∣α∣l1 =
d

∑
i=1

αi ≤ k.
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K KF

F

nF

Figure 2.2: Basic notation

Further let x = (x1, . . . , xd) be a vector in Rd and let us use the convention

xα ∶=
d

∏
i=1

xαi
i .

Then, the function pα defined as
pα ∶ Rd → R, x↦ γαx

α,

where γα ∈ R is a coefficient, is a polynomial of d variables of total degree at most k. Consequently,
the set

Pkd ∶=
⎧⎪⎪⎨⎪⎪⎩
p ∶ Rd → R ∣∃(γα) ⊂ R s.t. p(x) = ∑

∣α∣l1≤k

γαx
α
⎫⎪⎪⎬⎪⎪⎭

is the space of all polynomials of d variables with degree at most k. Its dimension is

dim(Pkd) = ( k + d
k

) = (k + d)!
k!d!

.

The broken polynomial space Pkd(Th)

Let K ∈ Th be a mesh element. Then, we define Pkd(K) as

Pkd(K) ∶= {p∣K ∶K → R ∣p ∈ Pkd} .

The broken polynomial space Pkd(Th) on the mesh Th now consists of functions which are polynomials
on each mesh element, i. e.

Pkd(Th) ∶= {v ∈ L2(Ω) ∣∀K ∈ Th ∶ v∣K ∈ Pkd(K)} . (2.1)

It follows that
dim(Pkd(Th)) = card(Th) × dim(Pkd).

2.1.4 Broken Sobolev Spaces

After having introduced polynomial spaces and their broken versions, we now consider broken versions
of Sobolev spaces Hm(Ω) and of the graph space H(curl,Ω) as well as broken versions of the
gradient and the curl operator.
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The broken Sobolev space Hm(Th)

Let m ≥ 0 be an integer. We define the broken Sobolev space as

Hm(Th) ∶= {v ∈ L2(Ω) ∣∀K ∈ Th ∶ v∣K ∈Hm(K)} , (2.2)

and endow it with the norm: For v ∈Hm(Th),

∥v∥2
Hm(Th)

∶=
m

∑
n=0

∣v∣2Hn(Th)
, ∣v∣Hn(Th)

∶= ∑
K∈Th

∣v∣2Hn(K).

Using the continuous trace inequality [17, Chapter 1] we see that for all functions v ∈ H1(Th) and for
all mesh elements K ∈ Th the trace v∣∂K on the boundary of the element is well-defined and it holds

∥v∥L2(∂K) ≤ C∥v∥1/2

L2(K)
∥v∥1/2

H1(K)
.

It is natural to define a broken gradient operator acting on the broken Sobolev space H1(Th). Clearly,
this operator then also acts on the broken polynomial spaces.

Definition 2.11 (Broken gradient). The broken gradient ∇h ∶ H1(Th) → L2(Ω)d is defined such that,
for all v ∈H1(Th),

(∇hv)∣K ∶= ∇(v∣K), ∀K ∈ Th. (2.3)

It is important to distinguish the usual Sobolev spaces from their broken versions and we now charac-
terize this in more detail. Clearly, the usual Sobolev spaces are subspaces of their broken versions, i.
e. for every integer m ≥ 0, we have

Hm(Ω) ⊂Hm(Th).
Furthermore, it is proven in [17, Lemma 1.22] that for functions in H1(Ω) the (variational) gradient
coincides with the broken gradient: For all v ∈H1(Ω),

∇v = ∇hv.

But, in general the reverse does not hold true. The crucial difference is that the broken Sobolev spaces
contain functions having nonzero jumps at interfaces whereas functions in the usual Sobolev spaces
must have zero jumps across any interface. The exact statement reads as follows.

Lemma 2.12 (Charaterization ofH1(Ω), [17, Lemma 1.23]). A function v ∈H1(Th) belongs toH1(Ω)
if and only if

JvKF = 0 ∀F ∈ F ih. (2.4)

The broken graph space H(curl,Th)

Analogously to the definition of the broken Sobolev spaces Hm(Th) we introduce the broken version
of the graph space H(curl,Ω) as

H(curl,Th) ∶= {v ∈ L2(Ω)3 ∣∀K ∈ Th ∶ v ∈H(curl,K)} . (2.5)

Naturally, we also introduce a broken version of the curl operator.

Definition 2.13 (Broken curl). The broken curl ∇h× ∶ H(curl,Th) → L2(Ω)3 is defined such that, for
all v ∈H(curl,Th),

(∇h × v)∣K ∶= ∇× (v∣K) ∀K ∈ Th. (2.6)

The relation between H(curl,Ω) and its broken version H(curl,Th) is featured by a similiar result as
for the previously considered Sobolev spaces and their broken counterparts.

Lemma 2.14 (Broken curl on H(curl,Ω)). There holds H(curl,Ω) ⊂ H(curl,Th). Moreover, for all
v ∈H(curl,Ω),

∇h × v = ∇× v. (2.7)
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Proof: We adapt the proof of the inclusion H1(Ω) ⊂ H1(Th) given in [17, Lemma 1.22]. Let v ∈
H(curl,Ω) and K ∈ Th. Further let ϕ ∈ C∞

0 (K)3 and let Eϕ denote its extension by zero to Ω.
Clearly, we have Eϕ ∈ C∞

0 (Ω)3. Then, it holds

∫
K
v∣K ⋅ (∇× ϕ) = ∫

Ω
v ⋅ (∇×Eϕ) = ∫

Ω
(∇× v) ⋅Eϕ = ∫

K
(∇× v)∣K ⋅ ϕ,

where the second equality holds true by the definition of H(curl,Ω) (1.14) and the fact that Eϕ is in
C∞

0 (Ω)3. The same definition, now applied on K, yields that v∣K is an element of H(curl,K) and that
it holds

∇× (v∣K) = (∇× v)∣K .
Since the element K was arbitrary this holds true for all K ∈ Th. Recalling Definition 2.13 of the broken
curl it follows

(∇h × v)∣K = (∇× v)∣K ∀K ∈ Th,
which is the stated claim. ◻

In the later work we will often consider the space H(curl,Ω) ∩H1(Th)3 and it turns out to be crucial
that its functions only admit zero tangential jumps across interfaces.

Lemma 2.15 (Characterization of H(curl,Ω)). A function v ∈ H1(Th)3 belongs to H(curl,Ω) if and
only if

nF × JvKF = 0 ∀F ∈ F ih. (2.8)

Proof: We follow the proof given in [16, Lemma 3.4]. Let v ∈ H1(Th)3. We start by proving that
condition (2.8) is sufficient. Thus, assume that it holds nF × JvKF = 0 for all F ∈ F ih. Then, for any
ϕ ∈ C∞

0 (Ω)3, it holds

∫
Ω
(∇h × v) ⋅ ϕ = ∑

K∈Th

∫
K
(∇× v∣K) ⋅ ϕ = ∑

K∈Th

(∫
K
v ⋅ (∇× ϕ) + ∫

∂K
(nK × v) ⋅ ϕ) . (2.9)

Here we used that H1(Th)3 is a subspace of H(curl,Th) and thus the broken curl is well-defined.
Furthermore, we used that for every mesh element K the function v is in H1(K)3 and thus partial
integration is applicable. Now let us consider the sum over the boundaries ∂K in the upper equation.
Owing to the convention about face normals (see Definition 2.9) and since ϕ vanishes on the boundary
faces, it holds

∑
K∈Th

∫
∂K

(nK × v) ⋅ ϕ = ∑
F ∈Fi

h

(∫
F
(nK × vK) ⋅ ϕ + ∫

F
(nKF

× vKF
) ⋅ ϕ)

+ ∑
F ∈Fb

h

∫
F
(n × v) ⋅ ϕ

= − ∑
F ∈Fi

h

∫
F
(nF × JvKF ) ⋅ ϕ. (2.10)

Since we assumed that the tangential jumps of v vanish we have

∫
Ω
(∇h × v) ⋅ ϕ = ∑

K∈Th

∫
K
v ⋅ (∇× ϕ) = ∫

Ω
v ⋅ (∇× ϕ).

As this holds true for all ϕ ∈ C∞
0 (Ω)3 we can conlcude with (1.14) that v ∈ H(curl,Ω) and that

∇× v = ∇h × v. Thus, we have shown sufficiency.
Now let us prove that v ∈ H(curl,Ω) is a necessary condition for (2.8) to hold. So let v ∈ H1(Th)3 ∩
H(curl,Ω). Then, using equations (2.9) and (2.10), we infer for all ϕ ∈ C∞

0 (Ω)3

∫
Ω
(∇h × v) ⋅ ϕ = ∫

Ω
v ⋅ (∇× ϕ) − ∑

F ∈Fi
h

∫
F
(nF × JvKF ) ⋅ ϕ. (2.11)
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On the other hand, we see by Lemma 2.14 and Definition 1.2, that for all ϕ ∈ C∞
0 (Ω)3 there holds

∫
Ω
(∇h × v) ⋅ ϕ = ∫

Ω
(∇× v) ⋅ ϕ = ∫

Ω
v ⋅ (∇× ϕ). (2.12)

Combining (2.11) and (2.12) yields for all ϕ ∈ C∞
0 (Ω)3

∑
F ∈Fi

h

∫
F
(nF × JvKF ) ⋅ ϕ = 0.

Hence, (2.8) follows by choosing the support of ϕ intersecting a single interface and since ϕ is arbitrary.
◻

2.2 Admissible Mesh Sequences

The last section in this chapter is dedicated to the concept of admissible mesh sequences. This is of
special interest since we would like to prove convergence of dG methods, which means that the error
between the approximate solution and the exact solution tends to zero as the meshsize goes to zero.
So let us consider the mesh sequence

TH ∶= (Th)h∈H,

where H denotes a countable subset R+ having 0 as only accumulation point. In the following we
consider so called shape- and contact-regular mesh sequences, see [17, Definition 1.38], which posses
the properties we need for the convergence analysis. We only state these properties and refer to [17,
Section 1.4.1] for a detailed insight into this topic.

2.2.1 Geometric Properties

We just need one geometric property. Recall that we have defined FK as the set of faces compos-
ing the boundary of an element K and N∂ as the maximum number of mesh faces composing the
boundary of elements in Th, see Section 2.1.2. Then, for shape- and contact-regular meshes, we can
characterize the relation between these quantities and the meshsize h by following lemma.

Lemma 2.16 (Bound on card(FK) and N∂ , [17, Lemma 1.41]). Let TH be a shape- and contact-
regular mesh sequence. Then, for all h ∈ H and all K ∈ Th, card(FK) and N∂ are uniformly bounded
in h.

2.2.2 Inverse and Trace Inequality

We proceed by stating two inequalities for the broken polynomial spaces Pkd(Th) on a shape- and
contact-regular mesh. This inequalities turn out to be very useful for analyzing dG methods. The
inverse inequality provides an upper bound on the gradient of discrete functions.

Lemma 2.17 (Inverse inequality, [17, Lemma 1.44]). Let TH be a shape- and contact-regular mesh
sequence. Then, for all h ∈H, all K ∈ Th and all vh ∈ Pkd(Th),

∥∇vh∥L2(K)d ≤ Cinvh
−1
K ∥vh∥L2(K). (2.13)

The constant Cinv only depends on d, k and the shape- and contact-regularity parameters.

The second inequality is a discrete trace inequality that delivers an upper bound on the face values of
discrete functions.
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Lemma 2.18 (Discrete trace inequality, [17, Lemma 1.46]). Let TH be a shape- and contact-regular
mesh sequence. Then, for all h ∈H, all K ∈ Th, all F ∈ FK and all vh ∈ Pkd(Th),

∥vh∥L2(F ) ≤ Ctrh
−1/2
K ∥vh∥L2(K). (2.14)

The constant Ctr only depends on d, k and the shape- and contact-regularity parameters.

Remark 2.19 (k-dependency). The constant Cinv scales as k2 (on triangles), whereas the constant
Ctr scales as

√
k(k + d), see [17, Remark 1.48]. ◇

Lemma 2.20 (Continuous trace inequality, [17, Lemma 1.49]) Let TH be a shape- and contact-regular
mesh sequence. Then, for all h ∈H, all K ∈ Th, all F ∈ FK and all v ∈H1(Th),

∥v∥2
L2(F ) ≤ Ccti(2∥∇v∥L2(K)d + dh−1

K ∥v∥L2(K))∥v∥L2(K), (2.15)

where the constant Ccti depends on d and the shape- and contact-regularity parameters.

2.2.3 Polynomial Approximation

In dG methods we search the approximate solution in the piecewise polynomial space Pkd(Th). Thus, it
is important to ensure that the mesh sequence is constructed such that optimal polynomial approxima-
tion hold true. In order to include this consideration we require that the mesh sequence admits optimal
polynomial approximation in the sense of the next definition. Again we refer to [17, Section 1.4.4] for
details.

Definition 2.21 (Optimal polynomial approximation). The mesh sequence TH has optimal polynomial
approximation properties if, for all h ∈ H, all K ∈ Th, and all polynomial degree k, there is a linear
interpolation operator IkK ∶ L2(K) → Pkd(K) such that, for all s ∈ {0, . . . , k + 1} and all v ∈ Hs(K),
there holds

∣v − IkKv∣Hm(K) ≤ Capph
s−m
K ∣v∣Hs(K) ∀m ∈ {0, . . . , s}, (2.16)

where the constant Capp is independent of both K and h.

Now we have introduced all ingredients and it remains to built an admissible mesh sequence.

Assumption 2.22 (Admissible mesh sequence). We assume that the mesh-sequence TH is admissi-
ble, i. e. that it is shape- and contact-regular and has optimal polynomial approximation properties in
the sense of Definition 2.21.

In the later error analysis we will often use the L2-orthogonal projection onto the broken polynomial
space Pkd(Th) defined as, πL

2

h ∶ L2(Ω)→ Pkd(Th) such that for all v ∈ L2(Ω),

(πL2

h v,ϕh)L2(Ω) = (v,ϕh)L2(Ω) ∀ϕh ∈ Pkd(Th). (2.17)

Admissible mesh sequences provide optimality of the L2-projetion in the following sense.

Lemma 2.23 (Optimality of L2-orthogonal projection). Let TH be an admissible mesh sequence.
Then, for all s ∈ {0, . . . , k + 1} and all v ∈Hs(K), there holds

∣v − πL2

h v∣Hm(K) ≤ C ′
apph

s−m
K ∣v∣Hs(K) ∀m ∈ {0, . . . , s}. (2.18)

The constant C ′
app is independent of both K and h.
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Proof: We follow the proof in [17, Lemma 1.58]. Let v ∈ Hs(K). We first consider the case m = 0.
Clearly, the projection and the interpolation of v are functions in Pkd(Ω), i. e. πL

2

h v, IkKv ∈ Pkd(Ω).
Owing to the definition of the projection (2.17) this yields

0 =(v − πL2

h v,IkKv − πL
2

h v)L2(K) = (v − πL2

h v,IkKv − v + v − πL
2

h v)L2(K)

=(v − πL2

h v,IkKv − v)L2(K) + ∥v − πL2

h v∥L2(K).

Applying the Cauchy-Schwarz inequality we get

∥v − πL2

h v∥L2(K) ≤ ∥v − IkKv∥L2(K) ≤ Capph
s
K ∣v∣Hs(K), (2.19)

where the second inequality is due to (2.16). This concludes the case m = 0 and we proceed with
m ≥ 1. We use m times the inverse inequality (2.13), the triangle inequality and (2.19) to infer

∣v − πL2

h v∣Hm(K) ≤∣v − IkKv∣Hm(K) + ∣IkKv − πL
2

h v∣Hm(K)

≤∣v − IkKv∣Hm(K) +Ch−mK ∥IkKv − πL
2

h v∥L2(K)

=∣v − IkKv∣Hm(K) +Ch−mK ∥IkKv − v + v − πL
2

h v∥L2(K)

≤∣v − IkKv∣Hm(K) + 2Ch−mK ∥v − IkKv∥<L2(K).

Now the result follows with (2.16). ◻

A direct consequence of (2.18) and the continuous trace inequality from Lemma 2.20 is the following
bound for polynomial approximations on mesh faces.

Lemma 2.24 (Polynomial approximation on mesh faces). Under the assumption of Lemma 2.23 with
s ≥ 1 it holds for all h ∈H, all K ∈ Th, and all F ∈ FK ,

∥v − πL2

h v∥L2(F ) ≤ C ′′
apph

s−1/2
K ∣v∣Hs(K), (2.20)

with constant C ′′
app independent of both K and h.
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Chapter 3

Spatial Discretization II: Discretization of
Maxwell’s Equations

In Chapter 2 we have introduced the main ingredients of a dG discretization. In this chapter we dis-
cretize Maxwell’s equations in space by proceeding in following steps:

First we consider the case of homogeneous media where the coefficients ε and µ are constant.
This enables us to rewrite Maxwell’s equations in the normalized form as used for example in [2].
We first consider homogeneous media since it allows us to nicely illustrate the construction of the dG
discretization. We begin by deriving a basic, so called centered fluxes scheme. The concept of local
residuals, see e.g. [3], then motivates the idea of adding a stabilization to the centered fluxes scheme
yielding an improved method called an upwind fluxes scheme.

Then, we carry over the developped ideas to the more general case of composite media consisting
of different materials. This case allows piecewise constant coefficients ε and µ and therefore we
need to adapt the derived schemes. We do this with the concept of local impedance and conductivity
reflecting the physics of such media. This provides us with the centered fluxes scheme. The stabilized
upwind fluxes scheme is again obtained via the analysis of local residuals. Another way of deriving this
dG discretizations can be found in the textbook [8], where the upwind fluxes scheme is constructed via
Riemann solvers.

Finally, we prove stability of both dG discretizations and show that the discretization error is featured
by the same stability result. This allows us to prove the convergence of order hk. We end the chapter
by improving the convergence result to hk+1/2 for upwind fluxes relying on different arguments than the
stability result.

3.1 Homogeneous Medium

We assume for this section that the coefficients ε and µ are positive constants. Let us begin by shortly
revisiting the considerations from Chapter 1. There we have introduced the state space V and the
graph space D(A) as

V = L2(Ω)3 ×L2(Ω)3, D(A) =H(curl,Ω) ×H0(curl,Ω),

and stated Maxwell’s equations as the following evolution problem (see (1.35)): Given an initial value
u0 = [H0,E0]T ∈ D(A) we search for u = [H,E]T ∈ C1(0, T ;V ) ∩C(0, T ;D(A)) with u(0) = u0 and
such that

∂tH + µ−1∇× E =0 in (0, T ) ×Ω, (3.1a)

∂tE − ε−1∇×H = − ε−1J in (0, T ) ×Ω. (3.1b)

Note that from now on we restrict our considerations to bounded time intervals.

25
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3.1.1 Normalized Form

Since the coefficients ε and µ are constant we can rewrite (3.1) as

∂tH̃ + c0∇× Ẽ =0 in (0, T ) ×Ω, (3.2a)

∂tẼ − c0∇× H̃ = − J̃ in (0, T ) ×Ω, (3.2b)

where c0 ∶= (εµ)−1/2 is the speed of light in the medium and we set

H̃ ∶= µ1/2H, Ẽ ∶= ε1/2E , J̃ ∶= ε−1/2J .

In this formulation all appearing quantities are normalized to the same physical unit. The space dis-
cretization is based on the following equivalent formulation of (3.2): Given ũ0 = [H̃0, Ẽ0]T ∈ D(A) we
seek for ũ = [H̃, Ẽ]T ∈ C1(0, T ;V ) ∩C(0, T ;D(A)) such that for all test functions in the state space
ϕ = [φ,ψ]T ∈ V it holds

(∂tH̃, φ)L2(Ω)3 + c0(∇× Ẽ , φ)L2(Ω)3

+ (∂tẼ , ψ)L2(Ω)3 − c0(∇× H̃, ψ)L2(Ω)3 = (−J̃ , ψ)L2(Ω)3 . (3.3)

We collect the appearing inner products in two bilinear forms depending on the kind of derivative they
involve.

Definition 3.1 (Continuous bilinear forms). We define the bilinear forms m̃, ã ∶ D(A) × V → R as
follows: For v = [H,E]T and ϕ = [φ,ψ]T ,

m̃(v,ϕ) ∶=(H,φ)L2(Ω)3 + (E,ψ)L2(Ω)3 ,

ã(v,ϕ) ∶=c0(∇×E,φ)L2(Ω)3 − c0(∇×H,ψ)L2(Ω)3 .

With this notation we can write (3.3) shortly as: We search for ũ ∈ C1(0, T ;V ) ∩C(0, T ;D(A)) such
that

m̃(∂tũ, ϕ) + ã(ũ, ϕ) = (g̃, ϕ)L2(Ω)6 ∀ϕ ∈ V, (3.4)

where we set g̃ ∶= [0,−J̃ ]T . The dG discretization consists in replacing the continuous bilinear forms
by discretized ones. This allows us to approximate the continuous problem (3.4) in a finite dimensional
space making it accessible for solving on computers. The first bilinear form, m̃, can be easily handled
since it involves only derivatives w. r. t. to the time variable t. So our focus lies nearly solely on the
discretization of the bilinear form ã.

3.1.2 Discrete Bilinear Forms

The dG discretization works with discontinuous, elementwise smooth functions and we will frequently
have to consider averages and jumps over interfaces of such functions. Since functions in the graph
space D(A) do not necessarily admit an L2-trace we shall require slightly more regularity from the
exact solution.

Assumption 3.2 (Regularity of exact solution and space V⋆). We assume that the exact solution
ũ = [H,E]T of (3.4) satisfies

ũ ∈ V⋆ ∶= D(A) ∩ (H1(Th)3 ×H1(Th)3). (3.5)

Let us shortly explain the consequences of this assumption: Recalling Remark 1.11 we see that the
Ẽ-field vanishes on boundary faces, i. e.

n × Ẽ = 0 ∀F ∈ Fbh. (3.6)
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Furthermore, we see with Lemma 2.15 that the exact solution does only admit zero tangential jumps
on interfaces,

nF × JH̃KF = nF × JẼKF = 0 ∀F ∈ F ih. (3.7)

We continue by introducing two more spaces needed to construct the discrete bilinear forms. We want
to construct the discrete solution in the broken polynomial space Pk3(Th)3 × Pk3(Th)3 defined in (2.1),
assuming that Th belongs to an admissible mesh sequence. Consequently, we define the discrete
solution space as

Vh ∶= Pk3(Th)3 × Pk3(Th)3.

Note that the discrete solution space is not contained in the continuous solution space, Vh /⊂ V⋆ (see
e.g. Lemma 2.15), which characterizes dG methods as non-conforming methods. Therefore, we
additionally consider the space

V⋆h ∶= V⋆ + Vh,

which contains both the exact and the discrete solutions. In particular, V⋆h also contains the error
function of the discretization, which is just the difference of the exact and the discrete solution. Ensuring
that the error function can be plugged into the first argument of the discrete bilinear forms is crucial for
the later convergence analysis.

The bilinear form m̃h

The discrete version of the bilinear form m̃ is obtained by defining m̃h ∶ V⋆h × Vh → R such that for
v = [H,E]T and ϕh = [φh, ψh]T ,

m̃h(v,ϕh) ∶= (H,φh)L2(Ω)3 + (E,ψh)L2(Ω)3 . (3.8)

The basic bilinear form ãcf
h

The ansatz to construct a discrete version of ã consists in just replacing the curl operator by its broken
version. So let a(0)h ∶ V⋆h × Vh → R such that for v = [H,E]T and ϕh = [φh, ψh]T ,

ã
(0)
h (v,ϕh) ∶= c0(∇h ×E,φh)L2(Ω)3 − c0(∇h ×H,ψh)L2(Ω)3 .

Obviously, the question wether we have chosen a meaningful discrete version of ã arises. We can
approach this question by checking if ã(0)h satisfies two basic features. The first one is consistency, i. e.
if the discrete bilinear form coincides with the continuous bilinear form when we plug the exact solution
ũ into the first argument and an arbitrary function from the discrete space Vh in the second argument,

ã
(0)
h (ũ, ϕh) = ã(ũ, ϕh) ∀ϕh ∈ Vh.

Owing to Lemma 2.14 this property is satisfied. Secondly, we know by Proposition 1.14 that the
continuous bilinear form is skew-adjoint on V⋆,

ã(v1, v2) = −ã(v2, v1) ∀v1, v2 ∈ V⋆,

and consequently it holds,

ã(v, v) = 0 ∀v ∈ V⋆. (3.9)

It is natural to demand this property also for the discrete bilinear form, but now on the discrete space
Vh. Indeed, it turns out that (3.9) is crucial for the later analysis. Thus, we investigate if ã(0)h satisfies
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this property. Let therefore vh = [Hh,Eh]T ∈ Vh. Integrating by parts in the first term of ã(0)h we deduce

ã
(0)
h (vh, vh) =c0(∇h ×Eh,Hh)L2(Ω)3 − c0(∇h ×Hh,Eh)L2(Ω)3

=c0 ∑
K∈Th

[(∇×EK ,HK)L2(K)3 − (∇×HK ,EK)L2(K)3]

=c0 ∑
K∈Th

[(EK ,∇×HK)L2(K)3 − (∇×HK ,EK)L2(K)3]

+ c0 ∑
K∈Th

∑
F ∈FK

(nK ×EK ,HK)L2(F )3

=c0 ∑
K∈Th

∑
F ∈FK

(nK ×EK ,HK)L2(F )3 . (3.10)

Here we have dropped the index h in writing EK and HK instead of Eh,K = (Eh)∣K and Hh,K =
(Hh)∣K to simplify the notation. We will stick to this notation whenever no confusion can arise. We
clearly see that ã(0)h (vh, vh) ≠ 0 and thus we have to change the ansatz. The easiest way to initiate
the requested property is to substract the distracting term if we can ensure that consistency retains.
From (3.10) this is not seen and thus we rewrite it. Recall that we defined for a mesh element K with
interface F the element KF as the neighboring mesh element w. r. t. F and nF as the normal pointing
from K to KF , see Figure 2.2. Using this notation we can write

∑
K∈Th

∑
F ∈FK

(nK ×EK ,HK)L2(F )3 = ∑
F ∈Fi

h

[(nF ×EK ,HK)L2(F )3 − (nF ×EKF
,HKF

)L2(F )3]

+ ∑
F ∈Fb

h

(n ×Eh,Hh)L2(F )3 .

The two summands in the first sum can further be rewritten as

(nF ×EK ,HK)L2(F )3 =
1

2
[(nF ×EK ,HK +HKF

)L2(F )3 + (nF ×EK ,HK −HKF
)L2(F )3] ,

and

−(nF ×EKF
,HKF

)L2(F )3 = −
1

2
[(nF ×EKF

,HK +HKF
)L2(F )3 + (nF ×EKF

,HKF
−HK)L2(F )3] .

Adding this two equations yields

(nF ×EK ,HK)L2(F )3−(nF ×EKF
,HKF

)L2(F )3

= − (nF × JEhKF ,{{Hh}}F )L2(F )3 − (nF × {{Eh}}F , JHhKF )L2(F )3 .

Using the vector identity (n × e) ⋅ h = −(n × h) ⋅ e in the second term we finally obtain

∑
K∈Th

∑
F ∈FK

(nK ×EK ,HK)L2(F )3 = ∑
F ∈Fi

h

[−(nF × JEhKF ,{{Hh}}F )L2(F )3 + (nF × JHhKF ,{{Eh}}F )L2(F )3]

+ ∑
F ∈Fb

h

(n ×Eh,Hh)L2(F )3 . (3.11)

Recalling properties (3.6), (3.7) stemming from Assumption 3.2, we see that for the exact solution
(3.11) vanishes,

∑
K∈Th

∑
F ∈FK

(nK × ẼK , H̃K)L2(F )3 = 0.

Consequently, we have the following definition.
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Definition 3.3 (Centered fluxes bilinear form). We define the discrete centered fluxes bilinear form
ãcf
h ∶ V⋆h × Vh → R as follows: For v = [H,E]T and ϕh = [φh, ψh]T ,

ãcf
h (v,ϕh) ∶=c0(∇h ×E,φh)L2(Ω)3 − c0(∇h ×H,ψh)L2(Ω)3

+ c0 ∑
F ∈Fi

h

[(nF × JEKF ,{{φh}}F )L2(F )3 − (nF × JHKF ,{{ψh}}F )L2(F )3]

+ c0 ∑
F ∈Fb

h

[−(n ×E,φh)L2(F )3] . (3.12)

We will see later where the name ’centered fluxes’ stems from. Now, we can state the discretization of
(3.4): We search for ũh = [H̃h, Ẽh]T ∈ C1(0, T ;Vh) such that

m̃h(∂tũh, ϕh) + ãcf
h (ũh, ϕh) = (g̃, ϕh)L2(Ω)6 ∀ϕh ∈ Vh. (3.13)

The next lemma collects properties of ãcf
h .

Lemma 3.4 (Consistency and skew-adjointness). The discrete bilinear form ãcf
h satisfies the following

properties:

i) Consistency, i. e. for the exact solution ũ ∈ V⋆ it holds

ãcf
h (ũ, ϕh) = ã(ũ, ϕh) ∀ϕh ∈ Vh. (3.14)

Indeed, this holds true for every v ∈ V⋆.

ii) Skew-adjointness on Vh, i. e.

ãcf
h (vh, v̂h) = −ãcf

h (v̂h, vh) ∀vh, v̂h ∈ Vh. (3.15)

We see that despite having constructed ãcf
h only to satisfy ãcf

h (vh, vh) = 0, we get a stronger property,
namely the skew-adjointness property.

Proof: i) By construction.
ii) Let vh = [Hh,Eh]T , v̂h = [Ĥh, Êh]T ∈ Vh. We integrate by parts the curl terms in (3.12)

(∇h ×Eh, Ĥh)L2(Ω)3−(∇h ×Hh, Êh)L2(Ω)3

=(Eh,∇h × Ĥh)L2(Ω)3 − (Hh,∇h × Êh)L2(Ω)3

+ ∑
K∈Th

∑
F ∈FK

[(nK ×EK , ĤK)L2(F )3 − (nK ×HK , ÊK)L2(F )3] .

Using (3.11) we can write the last sum as

∑
F ∈Fi

h

[−(nF × JEhKF ,{{Ĥh}}F )L2(F )3 + (nF × JĤhKF ,{{Eh}}F )L2(F )3]

+ ∑
F ∈Fi

h

[(nF × JHhKF ,{{Êh}}F )L2(F )3 − (nF × JÊhKF ,{{Hh}}F )L2(F )3]

+ ∑
K∈Fb

h

[(n ×Eh, Ĥh)L2(F )3 − (n ×Hh, Êh)L2(F )3] .

Employing this in (3.12) then yields

ãcf
h (vh, v̂h) =c0(Eh,∇h × Ĥh)L2(Ω)3 − c0(Hh,∇h × Êh)L2(Ω)3

+ c0 ∑
F ∈Fi

h

[(nF × JĤhKF ,{{Eh}}F )L2(F )3 − (nF × JÊhKF ,{{Hh}}F )L2(F )3]

+ c0 ∑
K∈Fb

h

[−(n ×Hh, Êh)L2(F )3] .

= − ãcf
h (v̂h, vh) (3.16)

◻
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Fluxes

Starting from (3.16) we have the following equivalent representation of ãcf
h where we use the convention

nF × JψhKF = −n × ψh for boundary faces F ∈ Fbh.

Lemma 3.5 (Flux form) The discrete bilinear form ãcf
h can be equivalently written as: For v = [H,E]T ∈

V⋆h and ϕh = [φh, ψh]T ∈ Vh,

ãcf
h (v,ϕh) =c0(E,∇h × φh)L2(Ω)3 − c0(H,∇h × ψh)L2(Ω)3

+ c0 ∑
F ∈Fh

[(f̃ cf
φ (H,E), nF × JφhKF )L2(F )3 − (f̃ cf

ψ (H,E), nF × JψhKF )L2(F )3] , (3.17)

with centered fluxes f̃ cf
φ , f̃ cf

ψ defined as

f̃ cf
φ (H,E) ∶= { {{E}}F , F ∈ F ih,

0, F ∈ Fbh,
f̃ cf
ψ (H,E) ∶= { {{H}}F , F ∈ F ih,

H, F ∈ Fbh.

Owing to the discontinuous ansatz the first two terms in (3.17) do not admit a transfer of information
between the mesh elements. This task is accomplished by the flux functions. We see that in the current
case we couple two neighboring elements by their meanvalue on the shared interface. This explains
the name ’centered fluxes’ for this scheme. The advantage of the flux notation is that we gain the
freedom of choosing different fluxes in order to obtain an enhanced discretization. An indicator of the
quality of the discretization is the residual of the discrete solution.

Local residuals

Recalling that the continuous problem (3.2) is set in the space V⋆ and that we are working with a
non-comforming method with Vh /⊂ V⋆, we realize that we cannot define a global residual. However, if
we consider the continuous problem on a single mesh-element K this incompatibility vanishes since
the discrete solution is locally smooth, namely in Vh(K) ∶= Pk3(K)3 × Pk3(K)3. This motivates the
introduction of local residuals.

Definition 3.6 (Local residuals). Let ũh = [H̃h, Ẽh]T ∈ Vh be the discrete solution obtained from (3.13).
Furthermore, let K ∈ Th be a mesh element. We define the local residual r̃K = [r̃HK , r̃EK] ∈ Vh(K) on
the mesh element K as

r̃HK ∶=∂tH̃h,K + c0∇× Ẽh,K , (3.18a)

r̃EK ∶=∂tẼh,K − c0∇× H̃h,K + J̃K . (3.18b)

Using the characteristic function χK on the mesh element K, defined by

χK(x) ∶= { 1 if x ∈K,
0 if x ∉K,

we can connect the local residual to the continuous bilinear forms m̃ and ã: For all ϕh = [φh, ψh]T ∈ Vh
it holds

(r̃K , χKϕh)L2(K)6 =(∂tH̃h, χKφh)L2(K)3 + c0(∇× Ẽh, χKφh)L2(K)3

+ (∂tẼh, χKψh)L2(K)3 − c0(∇× H̃h, χKψh)L2(K)3

+ (J̃ , χKψh)L2(K)3

=m̃(∂tũh, χKϕh) + ã(ũh, χKϕh) − (g̃, χKϕh)L2(Ω)6 . (3.19)

This representation enables us to draw a link between the local residual and the discrete problem (3.13)
and reveal that the local residual is closely connected to the tangential jumps of the discrete solution.
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Lemma 3.7 (Local residuals and tangential jumps). For the local residual r̃K = [r̃HK , r̃EK] ∈ Vh(K)
there holds

r̃HK = − 1

2
c0 ∑
F ∈Fi

K

nF × JẼhKF + c0 ∑
F ∈Fb

K

n × Ẽh,

r̃EK =1

2
c0 ∑
F ∈Fi

K

nF × JH̃hKF ,

where F iK ∶= FK ∩F ih and FbK ∶= FK ∩Fbh.

Proof: Since the broken curl coincides with the usual curl on every mesh element K we have for all
ϕh = [φh, ψh]T ∈ Vh,

ãcf
h (ũh, χKϕh) =c0(∇× Ẽh, χKφh)L2(K)3 − c0(∇× H̃h, χKψh)L2(K)3

+ 1

2
c0 ∑
F ∈Fi

K

[(nF × JẼhKF , φK)L2(F )3 − (nF × JH̃hKF , ψK)L2(F )3]

+ c0 ∑
F ∈Fb

K

[−(n × Ẽh, φK)L2(F )3] .

The first two terms are just ã(ũh, χKϕh). Now we can conlcude from (3.19), (3.13) and m̃h = m̃ that
for all ϕh ∈ Vh it holds

(r̃K , χKϕh)L2(K)6 = −
1

2
c0 ∑
F ∈Fi

K

[(nF × JẼhKF , φK)L2(F )3 − (nF × JH̃hKF , ψK)L2(F )3]

+ c0 ∑
F ∈Fb

K

(n × Ẽh, φK)L2(F )3 .

The assertion follows by choosing consecutively ϕh = [φh,0]T and ϕh = [0, ψh]T . ◻

Due to Lemma 3.7 small tangential jumps imply that the residuals are small, too, and therefore indicate
a good approximate solution. In the next section we construct a discrete bilinear form with this property.

The upwind bilinear form ãupw
h

Motivated by the considerations above we want to improve the discrete bilinear form ãcf
h by penalizing

tangential jumps over interfaces. This can be achieved be replacing the centered fluxes f̃ cf
φ , f̃ cf

ψ in
(3.17) by the so called upwind fluxes,

f̃upw
φ (H,E) ∶={ {{E}}F + 1

2nF × JHKF , F ∈ F ih,
0, F ∈ Fbh,

f̃upw
ψ (H,E) ∶={ {{H}}F − 1

2nF × JEKF , F ∈ F ih,
H + n ×E, F ∈ Fbh.

Note that the upwind fluxes are just the centered fluxes plus some stabilization term, f̃upw
φ = f̃ cf

φ + f̃ s
φ,

f̃upw
ψ = f̃ cf

ψ +f̃ s
ψ. In [1] it is pointend out that this viewpoint, i. e. considering upwind fluxes as stabilization

of the centered fluxes, is beneficial. In this spirit we directly define the improved form as sum of the
centered fluxes bilinearform and a stabiliziation bilinearform.
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Definition 3.8 (Upwind fluxes bilinear form). We define the discrete upwind bilinear form ãupw
h ∶ V⋆h ×

Vh → R by: For v = [H,E]T and ϕh = [φh, ψh]T ,

ãupw
h (v,ϕ) ∶= ãcf

h (v,ϕ) + s̃h(v,ϕh), (3.20)

where the stabiliziation bilinear form s̃h ∶ V⋆h × Vh → R is given as,

s̃h(v,ϕh) ∶=c0 ∑
F ∈Fi

h

[1

2
(nF × JHKF , nF × JφhKF )L2(F )3 +

1

2
(nF × JEKF , nF × JψhKF )L2(F )3]

+ c0 ∑
F ∈Fb

h

(n ×E,ψh)L2(F )3 . (3.21)

The next lemma uncovers the properties of ãupw
h .

Lemma 3.9 (Consistency and dissipation). The upwind bilinear form ãupw
h satisfies the following prop-

erties:

i) Consistency, i. e. for the exact solution ũ ∈ V⋆ there holds

ãupw
h (ũ, ϕh) = ã(ũ, ϕh) ∀ϕh ∈ Vh. (3.22)

In fact, this property holds true for all v ∈ V⋆.

ii) Dissipation, i. e. for the bilinear form −ãupw
h it holds

− ãupw
h (vh, vh) = −s̃h(vh, vh) ≤ 0 ∀vh ∈ Vh. (3.23)

We see that consistency is kept while skew-adjointness is replaced by the dissipative property (3.23).
Indeed, this property turns out to be crucial for the better convergence of the upwind fluxes discretiza-
tion.

Proof: i) Consistency of ãcf
h implies that for all ϕh ∈ Vh there holds

ãupw
h (ũ, ϕh) =ãcf

h (ũ, ϕh) + s̃h(ũ, ϕh) = ã(ũ, ϕh) + s̃h(ũ, ϕh).

Applying (3.6) and (3.7) to the stabilization form reveals

s̃h(ũ, ϕh) = 0 ∀ϕh ∈ Vh,

and thus we infer (3.22). The same arguments are valid for all functions v ∈ V⋆.
ii) Let vh = [Hh,Eh]T ∈ Vh. Then, using the skew-adjointness of ãcf

h , we have

ãupw
h (vh, vh) =s̃h(vh, vh) =

1

2
c0 ∑
F ∈Fi

h

[∥nF × JHhK∥2
L2(F )3 + ∥nF × JEhKF ∥2

L2(F )3]

+ c0 ∑
F ∈Fb

h

∥n ×Eh∥2
L2(F )3 ≥ 0.

◻

This ends the construction of the discrete bilinear forms. Next, we will show how this ideas can be
carried over to the case of non-constant coefficients ε and µ.
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3.2 Inhomogeneous Medium

In this section we consider inhomogeneous media, in particular we consider the case of composite
media, i. e. the material coefficients ε and µ are piecewise constant. We make the assumption that
the mesh is matched to the coefficients in the sense that on every mesh element the coefficients are
constant

ε∣K , µ∣K ≡ const ∀K ∈ Th.
Clearly, we cannot use the normalized Maxwell’s equations (3.2) anymore but have to work with the
standard equations

∂tH + µ−1∇× E =0 in (0, T ) ×Ω, (3.24a)

∂tE − ε−1∇×H = − ε−1J in (0, T ) ×Ω. (3.24b)

Analogously to the homogeneous case the starting point of the discretization is the equivalent formu-
lation of (3.24) with bilinear forms.

Definition 3.10 (Continuous bilinear forms). We define the bilinear forms m, a ∶ D(A) × V → R as
follows: For v = [H,E]T and ϕ = [φ,ψ]T ,

m(v,ϕ) ∶=(µH,φ)L2(Ω)3 + (εE,ψ)L2(Ω)3 ,

a(v,ϕ) ∶=(∇×E,φ)L2(Ω)3 − (∇×H,ψ)L2(Ω)3 .

Note that in this section we work with the V -inner product and consequently the bilinear forms stem
from taking the V -inner product from (3.24) with test functions ϕ ∈ V . We emphasize that the bilinear-
forms ã and a coincide except for the (constant) factor c0 and thus the calculations carried out for ãcf

h

can be used in the construction of the discretization of a.
Furthermore, we can equivalently state Maxwell’s equations (3.24) with the bilinear forms as: We

search for u = [H,E]T ∈ C1(0, T ;V ) ∩C(0, T ;D(A)) such that

m(∂tu,ϕ) + a(u,ϕ) = (g,ϕ)V ∀ϕ ∈ V, (3.25)

where the source term is g = [0,−εJ ]T .

3.2.1 Discrete Bilinear Forms

Let Assumption 3.2 hold for the exact solution u of (3.25). We can yet define the discrete bilinear form
mh ∶ V⋆h × Vh → R: For v = [H,E]T and ϕh = [φh, ψh]T ,

mh(v,ϕh) ∶= (µH,φh)L2(Ω)3 + (εE,ψh)L2(Ω)3 . (3.26)

Centered fluxes

As explained above we can use the calculations proven for the case of homogeneous media. In
particular, we can use the flux form derived in Lemma 3.5 by just dropping the factor c0. We use this
form as starting point for the construction of the centered flux bilinear form: For v = [H,E]T ∈ V⋆h and
ϕh = [φh, ψh]T ∈ Vh we define

acf
h (v,ϕh) ∶=(E,∇h × φh)L2(Ω)3 − (H,∇h × ψh)L2(Ω)3

+ ∑
F ∈Fh

[(f cf
φ (H,E), nF × JφhKF )L2(F )3 − (f cf

ψ (H,E), nF × JψhKF )L2(F )3] . (3.27)

Recall that in the case of homogeneous media we chose the fluxes on the interface F as the average
of the two-valued trace of the functions H and E stemming from the two neighboring mesh elements
K and KF composing this inferface. In the current case of composite media we want to reflect the
fact that every mesh element can posses different material coefficients ε and µ by using weighted
averages.
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Definition 3.11 (Weighted averages). Let ωK and ωKF
be positive weights associated with the element

K and KF , respectively. Let v be a piecewise smooth function on K ∪KF which admits a trace on F .
Then, we define the weighted average w. r. t. to ω = {ωK , ωKF

} as

{{v}}ωF ∶= ωKvK + ωKF
vKF

ωK + ωKF

.

Further, we define the adjoint average as

{{v}}ωF ∶= ωKF
vK + ωKvKF

ωK + ωKF

.

Now let us make the following ansatz for the flux functions

f cf
φ (H,E) ∶= { {{E}}αF , F ∈ F ih,

0, F ∈ Fbh,
f cf
ψ (H,E) ∶= { {{H}}βF , F ∈ F ih,

H, F ∈ Fbh,
(3.28)

where the weights α = {αK , αKF
} and β = {βK , βKF

} are to be determined. Recalling the construc-
tion of the discrete bilinear form ãcf

h in the former section we check if our ansatz satisfies the two basic
features, consistency and acf

h (vh, vh) = 0 for all vh ∈ Vh. We begin with consistency. Therefore, we
integrate by parts the two curl terms in (3.27), which yields

acf
h (v,ϕh) =(∇h ×E,φh)L2(Ω)3 − (∇h ×H,ψh)L2(Ω)3

+ ∑
F ∈Fi

h

[({{E}}αF , nF × JφhKF )L2(F )3 − ({{H}}βF , nF × JψhKF )L2(F )3]

+ ∑
F ∈Fb

h

(H,n × ψh)L2(Ω)3

+ ∑
K∈Th

∑
F ∈FK

[(EK , nK × φK)L2(F )3 − (HK , nK × ψK)L2(F )3] . (3.29)

The last sum can be written as

∑
F ∈Fi

h

[(EK , nF × φK)L2(F )3 − (EKF
, nF × φKF

)L2(F )3]

− ∑
F ∈Fi

h

[(HK , nF × ψK)L2(F )3 − (HKF
, nF × ψKF

)L2(F )3]

+ ∑
F ∈Fb

h

[(E,n × φh)L2(F )3 − (H,n × ψh)L2(F )3] .

Inserting this equality into (3.29) yields

acf
h (v,ϕh) =(∇h ×E,φh)L2(Ω)3 − (∇h ×H,ψh)L2(Ω)3

+ ∑
F ∈Fi

h

[({{E}}αF −EKF
, nF × φKF

)L2(F )3 − ({{E}}αF −EK , nF × φK)L2(F )3]

− ∑
F ∈Fi

h

[({{H}}βF −HKF
, nF × ψKF

)L2(F )3 − ({{H}}βF −HK , nF × ψK)L2(F )3]

+ ∑
F ∈Fb

h

(E,n × φh)L2(Ω)3

For the two summands in the first sum we have

({{E}}αF−EKF
, nF × φKF

)L2(F )3 − ({{E}}αF −EK , nF × φK)L2(F )3

=(αK(EK −EKF
)

αK + αKF

, nF × φKF
)
L2(F )3

− (αKF
(EKF

−EK)
αK + αKF

, nF × φK)
L2(F )3

,
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and for the two summands in the second sum

({{H}}βF−HKF
, nF × ψKF

)L2(F )3 − ({{H}}βF −HK , nF × ψK)L2(F )3

=(βK(HK −HKF
)

βK + βKF

, nF × ψKF
)
L2(F )3

− (βKF
(HKF

−HK)
βK + βKF

, nF × ψK)
L2(F )3

.

Using the adjoint weights we can write this as

({{E}}αF −EKF
, nF × φKF

)L2(F )3 − ({{E}}αF −EK , nF × φK)L2(F )3 = −(JEKF , nF × {{φh}}αF )L2(F )3 ,

and

({{H}}βF −HKF
, nF × ψKF

)L2(F )3 − ({{H}}βF −HK , nF × ψK)L2(F )3 = −(JHKF , nF × {{ψh}}βF )L2(F )3 .

Alltogether, we have

acf
h (v,ϕh) =(∇h ×E,φh)L2(Ω)3 − (∇h ×H,ψh)L2(Ω)3

+ ∑
F ∈Fi

h

[(nF × JEKF ,{{φh}}αF )L2(F )3 − (nF × JHKF ,{{ψh}}βF )L2(F )3]

+ ∑
F ∈Fb

h

[−(n ×E,φh)L2(F )3] , (3.30)

whence consistency follows by (3.6) and (3.7) without any constraint on the weights α, β. Next, we
analyze if acf

h satisfies acf
h (vh, vh) = 0 for all vh ∈ Vh. Integrating by parts only in the first term in (3.27)

and performing the same computations as above yields

acf
h (vh, vh) = ∑

F ∈Fi
h

[(nF × JEhKF ,{{Hh}}αF )L2(F )3 − ({{Hh}}βF , nF × JEhKF )L2(F )3] .

In order to ensure that this sum vanishes we have to demand the conditions

αK
αK + αKF

= βKF

βK + βKF

,
αKF

αK + αKF

= βK
βK + βKF

(3.31)

on the weights. An adequate choice introduced in [8] satisfying the upper conditions, is to take the
local conductance and the local impedance, respectively,

αK = ( εK
µK

)
1/2

= cKεK , βK = (µK
εK

)
1/2

= cKµK , (3.32)

where cK = (εKµK)−1/2 is the local speed of light. With this choice we can construct the centered
fluxes bilinear form.

Definition 3.12 (Centered fluxes bilinear form). We define the discrete centered fluxes bilinear form
acf
h ∶ V⋆h × Vh → R as follows: For v = [H,E]T and ϕh = [φh, ψh]T ,

acf
h (v,ϕh) ∶=(∇h ×E,φh)L2(Ω)3 − (∇h ×H,ψh)L2(Ω)3

+ ∑
F ∈Fi

h

[(nF × JEKF ,{{φh}}cεF )L2(F )3 − (nF × JHKF ,{{ψh}}cµF )L2(F )3]

+ ∑
F ∈Fb

h

[−(n ×E,φh)L2(F )3] . (3.33)

Revisiting the construction of the centered fluxes bilinear form, we see that we can equivalently state it
in the following form.
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Lemma 3.13 (Integration by parts form of acf
h ). For v = [H,E]T ∈ V⋆h and ϕh = [φh, ψh]T ∈ Vh there

holds

acf
h (v,ϕ) =(E,∇h × φh)L2(Ω)3 − (H,∇h × ψh)L2(Ω)3

+ ∑
F ∈Fi

h

[({{E}}cεF , nF × JφhKF )L2(F )3 − ({{H}}cµF , nF × JψhKF )L2(F )3]

+ ∑
F ∈Fb

h

(H,n × ψh)L2(Ω)3 . (3.34)

Proof: This follows by construction, see equations (3.27), (3.28) with the choice of the weights (3.32).
◻

Let us collect the properties of acf
h . Again, despite of constructing acf

h only to satisfy acf
h (vh, vh) = 0 for

all vh ∈ Vh we have that acf
h is even skew-adjoint.

Lemma 3.14 (Consistency and skew-adjointness). The centered fluxes bilinear form satisfies the fol-
lowing properties:

i) Consistency, i. e. for the exact solution u ∈ V⋆ it holds

acf
h (u,ϕh) = a(u,ϕh) ∀ϕh ∈ Vh. (3.35)

In fact, this property holds true for all v ∈ V⋆.

ii) Skew-adjointness on Vh, i. e.

acf
h (vh, v̂h) = −acf

h (v̂h, vh) ∀vh, v̂h ∈ Vh. (3.36)

Proof: i) By construction.
ii) We insert vh = [Hh,Eh]T , v̂h = [Ĥh, Êh]T ∈ Vh in the partial integration form (3.34),

acf
h (vh, v̂h) =(Eh,∇h × Ĥh)L2(Ω)3 − (Hh,∇h × Êh)L2(Ω)3

+ ∑
F ∈Fi

h

[({{Eh}}cεF , nF × JĤhKF )L2(F )3 − ({{Hh}}cµF , nF × JÊhKF )L2(F )3]

+ ∑
F ∈Fb

h

(Hh, n × Êh)L2(Ω)3 .

Using the condition for the weights (3.31), we see

{{Eh}}cεF = {{Eh}}cµF , {{Hh}}cµF = {{Hh}}cεF ,

and thus

acf
h (vh, v̂h) = − (∇h × Êh,Hh)L2(Ω)3 + (∇h × Ĥh,Eh)L2(Ω)3

− ∑
F ∈Fi

h

[(nF × JÊhKF ,{{Hh}}cεF )L2(F )3 − (nF × JĤhKF ,{{Eh}}cµF )L2(F )3]

− ∑
F ∈Fb

h

[−(n × Êh,Hh)L2(Ω)3]

= − acf
h (v̂h, vh).

◻

This lemma ensures that we have constructed a meaningful discrete bilinearform acf
h and thus we can

discretize (3.25) as follows: We search for uh ∈ C1(0, T ;Vh) such that

mh(∂tuh, ϕh) + acf
h (uh, ϕh) = (g,ϕh)V ∀ϕh ∈ Vh. (3.37)

We proceed by computing the local residuals of the approximate solution of this discretization.
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Local residuals

First we adapt the definition from the previous section.

Definition 3.15 (Local residual). Let uh = [Hh,Eh]T ∈ Vh be the solution of the discrete problem
(3.37) and let K ∈ Th be a mesh element. We define the local residual rK = [rHK , rEK]T ∈ Vh(K) on
the element K as

rHK ∶=∂tHh,K + µ−1
K ∇× Eh,K , (3.38a)

rEK ∶=∂tEh,K − ε−1
K ∇×Hh,K + ε−1

K JK . (3.38b)

Now let us connect the local residual to the continuous problem (3.25). For ϕh = [φh, ψh]T ∈ Vh there
holds

(rK , χKϕh)V (K) =(µ∂tHh, χKφh)L2(K)3 + (∇× Eh, χKφh)L2(K)3

+ (ε∂tEh, χKψh)L2(K)3 − (∇×Hh, χKψh)L2(K)3 + (J , χKψh)L2(K)3

=m(uh, χKϕh) + a(uh, χKϕh) − (g,χKϕh)V . (3.39)

Again, we can prove the link between local residuals and tangential jumps.

Lemma 3.16 (Local residual and tangential jumps). For the local residual rK = [rHK , rEK]T ∈ Vh(K)
there holds

rHK = − cK ∑
F ∈Fi

K

[ 1

2{{cµ}}F
nF × JEhKF ] + cK ∑

F ∈Fb
K

[ 1

cµ
n × Eh] ,

rEK =cK ∑
F ∈Fi

K

[ 1

2{{cε}}F
nF × JHhKF ] .

Proof: Let ϕh = [φh, ψh]T ∈ Vh. Inserting uh and χKϕh into acf
h yields

acf
h (uh, χKϕh) =(∇× Eh, χKφh)L2(K)3 − (∇×Hh, χKψh)L2(K)3

+ ∑
F ∈Fi

K

⎡⎢⎢⎢⎢⎣
(nF × JEhKF ,

cKF
εKF

2{{cε}}F
φK)

L2(F )3

− (nF × JHhKF ,
cKF

µKF

2{{cµ}}F
ψK)

L2(F )3

⎤⎥⎥⎥⎥⎦
+ ∑
F ∈Fb

K

[−(n × Eh, φh)L2(F )3] .

The first two terms are equal to a(uh, χKϕh). Using (3.39) and (3.37) we get

(rK , χKϕh)V (K) = − ∑
F ∈Fi

K

⎡⎢⎢⎢⎢⎣
(nF × JEhKF ,

cKF
εKF

2{{cε}}F
φK)

L2(F )3

− (nF × JHhKF ,
cKF

µKF

2{{cµ}}F
ψK)

L2(F )3

⎤⎥⎥⎥⎥⎦
− ∑
F ∈Fb

K

[−(n × Eh, φh)L2(F )3] . (3.40)

Using the condition (3.31) on the weights yields
cKF

εKF

2{{cε}}F
= cKµK

2{{cµ}}F
,

cKF
µKF

2{{cµ}}F
= cKεK

2{{cε}}F
.

Thus, we can write

(rHK , µKχKφh)L2(K)3 + (rEK , εKχKψh)L2(K)3

= − cK ∑
F ∈Fi

h

( 1

2{{cµ}}F
nF × JEhKF , µKφK)

L2(F )3

+ cK ∑
F ∈Fb

K

( 1

µc
n × Eh, µKφK)

L2(F )3

− cK ∑
F ∈Fi

h

( 1

2{{cε}}F
nF × JHhKF , εKψK)

L2(F )3
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Choosing consecutively ϕh = [φh,0]T and ϕh = [0, ψh]T yields the assertion. ◻

Upwind fluxes

Following the idea of reducing the local residuals we modify the centered fluxes f cf
φ , f cfψ and obtain the

following upwind fluxes

fupw
φ (H,E) ∶=

⎧⎪⎪⎨⎪⎪⎩

{{E}}cεF + 1
2{{cε}}F

nF × JHKF , F ∈ F ih,

0, F ∈ Fbh,

fupw
ψ (H,E) ∶=

⎧⎪⎪⎨⎪⎪⎩

{{H}}cµF − 1
2{{cµ}}F

nF × JEKF , F ∈ F ih,

H + 1
cµn ×E, F ∈ Fbh.

Definition 3.17 (Upwind bilinear form and stabilization bilinear form). We define the discrete upwind
bilinear form aupw

h ∶ V⋆h × Vh → R as follows: For v = [H,E]T and ϕh = [φh, ψh]T ,

aupw
h (v,ϕh) ∶= acf

h (v,ϕh) + sh(v,ϕh), (3.41)

where the stabilization bilinear form sh ∶ V⋆h × Vh → R is given as

sh(v,ϕh) ∶= ∑
F ∈Fi

h

[ 1

2{{cε}}F
(nF × JHKF , nF × JφhKF )L2(F )3]

+ ∑
F ∈Fi

h

[ 1

2{{cµ}}F
(nF × JEKF , nF × JψhKF )L2(F )3]

+ ∑
F ∈Fb

h

[ 1

cµ
(n ×E,n × ψh)L2(F )3] . (3.42)

The discretization of (3.25) by the upwind bilinear form then reads: We search for uh ∈ C1(0, T ;Vh)
such that

mh(∂tuh, ϕh) + aupw
h (uh, ϕh) = (g,ϕh)V ∀ϕh ∈ Vh. (3.43)

For the further analysis the stabilization bilinear form is important. Clearly, it is symmetric on Vh × Vh
and can be extended to a sysmmetric bilinear form on V⋆h × V⋆h. Furthermore, we can easily see that
it is positive semi-definite on V⋆h: For v = [H,E]T ∈ V⋆h it holds

sh(vh, vh) = ∑
F ∈Fi

h

[ 1

2{{cε}}F
∥nF × JHKF ∥2

L2(F )3 +
1

2{{cµ}}F
∥nF × JEKF ∥2

L2(F )3]

+ ∑
F ∈Fb

h

[ 1

cµ
∥n ×E∥2

L2(F )3] ≥ 0.

Consequently, we can use sh to build a seminorm.

Definition 3.18 (S-seminorm). We define the S-seminorm on V⋆h by

∣v∣S ∶= (sh(v, v))1/2 ∀v ∈ V⋆h. (3.44)

Clearly, this is not a norm, e.g. from (3.6) and (3.7) we see that for all functions v ∈ V⋆ there holds

∣v∣S = 0. (3.45)

We finish this section by stating two lemmas immediately arising from the construction of aupw
h .
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Lemma 3.19 (Integration by parts form of aupw
h ). For v = [H,E]T ∈ V⋆h and ϕh = [φh, ψh]T ∈ Vh

there holds

aupw
h (v,ϕh) =(E,∇h × φh)L2(Ω)3 − (H,∇h × ψh)L2(Ω)3

+ ∑
F ∈Fi

h

({{E}}cεF + 1

2{{cε}}F
nF × JHKF , nF × JφhKF)

L2(F )3

+ ∑
F ∈Fi

h

(−{{H}}cµF + 1

2{{cµ}}F
nF × JEKF , nF × JψhKF)

L2(F )3

+ ∑
F ∈Fb

h

(H + 1

cµ
n ×E,n × ψh)

L2(F )3
.

Proof: This follows immediately with the integration by parts form of acf
h , see Lemma 3.13. ◻

Lemma 3.20 (Consistency and dissipation). The upwind bilinear form satisfies following properties:

i) Consistency, i. e. for the exact solution u ∈ V⋆ there holds

aupw
h (u,ϕh) = a(u,ϕh) ∀ϕh ∈ Vh. (3.46)

This property stays true for all v ∈ V⋆.

ii) Dissipation, i. e. the bilinear form −aupw
h satisfies

− aupw
h (vh, vh) = −∣vh∣2S ≤ 0 ∀vh ∈ Vh. (3.47)

Proof: i) This is a consequence of the consistency of the centered flux bilinear form, see Lemma 3.14,
and the fact that the S-seminorm vanishes for all functions in V⋆, see (3.45).
ii) This follows directly from the skew-adjointness of acf

h , see Lemma 3.14. ◻

The first step in proving the convergence of the constructed discretizations is to show the boundedness
of the derived discrete bilinear forms.

3.3 Boundedness of Discrete Bilinearforms

We begin by an additional assumption on the mesh sequence.

Assumption 3.21 (Quasi-uniform mesh sequence). We assume that the mesh sequence TH is quasi-
uniform, meaning that there is a constant Cqu such that for all h ∈H there holds

max
K∈Th

hK ≤ Cqu min
K∈Th

hK .

Furthermore, we introduce some abbreviations. We set ε∞, µ∞ and c∞ to be the maximal values of
the coefficients ε, µ and c, i. e.

ε∞ ∶= max
K∈Th

εK , µ∞ ∶= max
K∈Th

µK , c∞ ∶= max
K∈Th

cK .

For a weight ω = {ωK , ωKF
} we set

{ω}F ∶= ωK + ωKF
= 2{{ω}}F .

In addition, for a function v = [H,E]T we use the convention

∇× v = [ ∇×H
∇×E ] ,

and analogously for ∇h ×v, {{v}}F and JvKF . Our first result is the boundedness of the centered fluxes
bilinear form.
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Theorem 3.22 (Boundedness of acf
h ). For the centered fluxes bilinear form we have for all v ∈ V⋆h and

for all ϕh ∈ Vh,

∣acf
h (v,ϕh)∣ ≤ (c∞∥∇h × v∥V +Cbndc

1/2
∞ h−1/2∣v∣S) ∥ϕh∥V , (3.48)

with Cbnd = (
√

2N
1/2
∂ + 1)CtrC

−1/2
qu independet of h.

Proof: Let v = [H,E]T ∈ V⋆h and ϕh = [φh, ψh]T ∈ Vh. The proof proceeds in three steps. First, we
bound the two curl terms appearing in acf

h (v,ϕh). We have

(∇h ×E,φh)L2(Ω)3 − (∇h ×H,ψh)L2(Ω)3

= ∑
K∈Th

([ ∇×E
∇×H ] , [ φh

−ψh
])

L2(K)6

= ∑
K∈Th

ε
−1/2
K µ

−1/2
K

⎛
⎝
⎡⎢⎢⎢⎣
ε

1/2
K ∇×E
µ

1/2
K ∇×H

⎤⎥⎥⎥⎦
,
⎡⎢⎢⎢⎣
µ

1/2
K φh

−ε1/2
K ψh

⎤⎥⎥⎥⎦
⎞
⎠
L2(K)6

≤ ∑
K∈Th

cK

XXXXXXXXXXX

⎡⎢⎢⎢⎣
ε

1/2
K ∇×E
µ

1/2
K ∇×H

⎤⎥⎥⎥⎦

XXXXXXXXXXXL2(K)6

XXXXXXXXXXX

⎡⎢⎢⎢⎣
µ

1/2
K φh

−ε1/2
K ψh

⎤⎥⎥⎥⎦

XXXXXXXXXXXL2(K)6

= ∑
K∈Th

cK∥∇× v∥V (K)∥ϕh∥V (K),

where the inequality is obtained by the Cauchy-Schwarz inequality. Applying the Cauchy-Schwarz
inequality for sequences, see (A.2), it follows

∑
K∈Th

cK∥∇× v∥V (K)∥ϕh∥V (K) ≤c∞
⎛
⎝ ∑K∈Th

∥∇× v∥2
V (K)

⎞
⎠

1/2
⎛
⎝ ∑K∈Th

∥ϕh∥2
V (K)

⎞
⎠

1/2

=c∞∥∇h × v∥V ∥ϕh∥V .

Next we bound the sum over the interfaces in acf
h (v,ϕh), i. e. the terms

∑
F ∈Fi

h

[(nF × JEKF ,{{φh}}cεF )L2(F )3 − (nF × JHKF ,{{ψh}}cµF )L2(F )3] .

Recall that owing to condition (3.31) on the weights it holds

{{φh}}cεF = {{φh}}cµF = 1

{cµ}F
(cKµKφK + cKF

µKF
φKF

),

and

{{ψh}}cµF = {{ψh}}cεF = 1

{cε}F
(cKεKψK + cKF

εKF
ψKF

).

Thus, a single summand can be written as

(nF × JEKF ,{{φh}}cµF )L2(F )3 − (nF × JHKF ,{{ψh}}cεF )L2(F )3

=
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

1

{cµ}
1/2
F

nF × JEKF
1

{cε}
1/2
F

nF × JHKF

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1

{cµ}
1/2
F

(cKµKφK + cKF
µKF

φKF
)

1

{cε}
1/2
F

(cKεKψK + cKF
εKF

ψKF
)

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
L2(F )6

.
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Let us denote this summand with SF . The Cauchy-Schwarz inequality reveals

∑
F ∈Fi

h

SF ≤
⎛
⎜⎜
⎝
∑
F ∈Fi

h

XXXXXXXXXXXXXX

⎡⎢⎢⎢⎢⎢⎣

1

{cµ}
1/2
F

nF × JEKF
1

{cε}
1/2
F

nF × JHKF

⎤⎥⎥⎥⎥⎥⎦

XXXXXXXXXXXXXX

2

L2(F )6

⎞
⎟⎟
⎠

1/2

×

⎛
⎜⎜
⎝
∑
F ∈Fi

h

XXXXXXXXXXXXXX

⎡⎢⎢⎢⎢⎢⎣

1

{cµ}
1/2
F

(cKµKφK + cKF
µKF

φKF
)

1

{cε}
1/2
F

(cKεKψK + cKF
εKF

ψKF
)

⎤⎥⎥⎥⎥⎥⎦

XXXXXXXXXXXXXX

2

L2(F )6

⎞
⎟⎟
⎠

1/2

.

The first factor on the RHS is equal to

⎛
⎜
⎝
∑
F ∈Fi

h

[ 1

{cµ}F
∥nF × JEKF ∥2

L2(F )3 +
1

{cε}F
∥nF × JHKF ∥2

L2(F )3]
⎞
⎟
⎠

1/2

,

which clearly can be bounded by ∣v∣S . For the second factor we first notice that

cKµK

{cµ}1/2
F

≤(cKµK)1/2,
cKF

µKF

{cµ}1/2
F

≤ (cKF
µKF

)1/2,

cKεK

{cε}1/2
F

≤(cKεK)1/2,
cKF

εKF

{cε}1/2
F

≤ (cKF
εKF

)1/2.

Then, using the triangle inequality and Young’s inequality, we infer that the second factor can be esti-
mated by

⎛
⎜⎜
⎝
∑
F ∈Fi

h

XXXXXXXXXXXXXX

⎡⎢⎢⎢⎢⎢⎣

1

{cµ}
1/2
F

(cKµKφK + cKF
µKF

φKF
)

1

{cε}
1/2
F

(cKεKψK + cKF
εKF

ψKF
)

⎤⎥⎥⎥⎥⎥⎦

XXXXXXXXXXXXXX

2

L2(F )6

⎞
⎟⎟
⎠

1/2

≤
⎛
⎜
⎝
∑
F ∈Fi

h

⎡⎢⎢⎢⎢⎢⎣
2cK

XXXXXXXXXXX

⎡⎢⎢⎢⎣
µ

1/2
K φK

ε
1/2
K ψK

⎤⎥⎥⎥⎦

XXXXXXXXXXX

2

L2(F )6

+ 2cKF

XXXXXXXXXXXX

⎡⎢⎢⎢⎢⎣

µ
1/2
KF
φKF

ε
1/2
KF
ψKF

⎤⎥⎥⎥⎥⎦

XXXXXXXXXXXX

2

L2(F )6

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠

1/2

. (3.49)

Since µK and εK are constant on the mesh element K the discrete trace inequality (2.14) retains the
same for the V -norm. So, we continue by applying it to (3.49), which yields the following upper bound

√
2Ctrc

1/2
∞

⎛
⎜
⎝
∑
F ∈Fi

h

⎡⎢⎢⎢⎢⎢⎣
h−1
K

XXXXXXXXXXX

⎡⎢⎢⎢⎣
µ

1/2
K φK

ε
1/2
K ψK

⎤⎥⎥⎥⎦

XXXXXXXXXXX

2

L2(K)6

+ h−1
KF

XXXXXXXXXXXX

⎡⎢⎢⎢⎢⎣

µ
1/2
KF
φKF

ε
1/2
KF
ψKF

⎤⎥⎥⎥⎥⎦

XXXXXXXXXXXX

2

L2(K)6

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠

1/2

=
√

2Ctrc
1/2
∞

⎛
⎜
⎝
∑
F ∈Fi

h

[h−1
K ∥ϕK∥2

V (K) + h
−1
KF

∥ϕKF
∥2
V (KF )]

⎞
⎟
⎠

1/2

. (3.50)

By Assumption 3.21 we infer that there holds for all K ∈ Th,

h−1
K ≤ C−1

quh
−1.

Thus, we can further estimate (3.50) by

√
2CtrC

−1/2
qu c1/2

∞ h−1/2
⎛
⎜
⎝
∑
F ∈Fi

h

[∥ϕK∥2
V (K) + ∥ϕKF

∥2
V (KF )]

⎞
⎟
⎠

1/2

≤
√

2CtrC
−1/2
qu c1/2

∞ h−1/2 ⎛
⎝ ∑K∈Th

card(FK)∥ϕK∥2
V (K)

⎞
⎠

1/2

. (3.51)
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Recall that we have defined N∂ as the maximal number of faces composing a mesh element and that
N∂ is uniformly bounded w. r. t. the meshsize h, see Lemma 2.16. Thus, we have the following upper
bound for (3.51)

√
2CtrC

−1/2
qu N

1/2
∂ c1/2

∞ h−1/2 ⎛
⎝ ∑K∈Th

∥ϕK∥2
V (K)

⎞
⎠

1/2

=
√

2CtrC
−1/2
qu N

1/2
∂ c1/2

∞ h−1/2∥ϕh∥V .

Alltogether, we have shown the following bound for the sum over the interfaces

∑
F ∈Fi

h

[(nF × JEKF ,{{φh}}cεF )L2(F )3 − (nF × JHKF ,{{ψh}}cµF )L2(F )3] ≤ C̃h−1/2∣v∣S∥ϕh∥V , (3.52)

with C̃ =
√

2CtrC
−1/2
qu c

1/2
∞ N

1/2
∂ .

Finally, we bound the last term in acf
h (v,ϕh), i. e. the sum over the boundary faces. With the same

arguments as for the interfaces we deduce

∑
F ∈Fb

h

(n ×E,φh)L2(F )3 ≤ ∑
F ∈Fb

h

[( 1

(cµ)1/2
∥n ×E∥L2(F )3) (c1/2∥µ1/2φh∥L2(F )3)]

≤
⎛
⎜
⎝
∑
F ∈Fb

h

1

cµ
∥n ×E∥2

L2(F )3

⎞
⎟
⎠

1/2
⎛
⎜
⎝
∑
F ∈Fb

h

c∥µ1/2φh∥2
L2(F )3

⎞
⎟
⎠

1/2

≤∣v∣S
⎛
⎜
⎝
∑
F ∈Fb

h

c∥µ1/2φh∥2
L2(F )3

⎞
⎟
⎠

1/2

≤CtrC
−1/2
qu c1/2

∞ h−1/2∣v∣S
⎛
⎝ ∑K∈Th

∥µ1/2φh∥2
L2(K)3

⎞
⎠

1/2

≤CtrC
−1/2
qu c1/2

∞ h−1/2∣v∣S∥ϕh∥V , (3.53)

and the proof is finisched. ◻

Next we show a similar result for the stabilization bilinear form.

Theorem 3.23 (Boundedness of sh). Let v ∈ V⋆h and ϕh ∈ Vh. Then, for the stabilization bilinear form
there holds

∣sh(v,ϕh)∣ ≤ Cbndc
1/2
∞ h−1/2∣v∣S∥ϕh∥V , (3.54)

where the constant is Cbnd = (
√

2N
1/2
∂ + 1)CtrC

−1/2
qu .

Proof: It holds

sh(v,ϕh) = ∑
F ∈Fi

h

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

1

{cµ}
1/2
F

nF × JEKF
1

{cε}
1/2
F

nF × JHKF

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1

{cµ}
1/2
F

nF × JψhKF
1

{cε}
1/2
F

nF × JφhKF

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
L2(F )6

+ ∑
F ∈Fb

h

( 1

(cµ)1/2
n ×E, 1

(cµ)1/2
n × ψh)

L2(F )3

≤
⎛
⎜⎜
⎝
∑
F ∈Fi

h

XXXXXXXXXXXXXX

⎡⎢⎢⎢⎢⎢⎣

1

{cµ}
1/2
F

nF × JEKF
1

{cε}
1/2
F

nF × JHKF

⎤⎥⎥⎥⎥⎥⎦

XXXXXXXXXXXXXX

2

L2(F )6

⎞
⎟⎟
⎠

1/2
⎛
⎜⎜
⎝
∑
F ∈Fi

h

XXXXXXXXXXXXXX

⎡⎢⎢⎢⎢⎢⎣

1

{cµ}
1/2
F

nF × JψhKF
1

{cε}
1/2
F

nF × JφhKF

⎤⎥⎥⎥⎥⎥⎦

XXXXXXXXXXXXXX

2

L2(F )6

⎞
⎟⎟
⎠

1/2

+
⎛
⎜
⎝
∑
F ∈Fb

h

∥ 1

(cµ)1/2
n ×E∥

2

L2(F )3

⎞
⎟
⎠

1/2
⎛
⎜
⎝
∑
F ∈Fb

h

XXXXXXXXXXXX

1

{cµ}1/2
F

nF × ψh
XXXXXXXXXXXX

2

L2(F )3

⎞
⎟
⎠

1/2

,
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where we used the Cauchy-Schwarz inequality. We see that the respective first factors can be esti-
mated by ∣v∣S and further using ∣nF ∣ = 1 we get

sh(v,ϕh) ≤∣v∣S
⎛
⎜⎜
⎝
∑
F ∈Fi

h

XXXXXXXXXXXXXX

⎡⎢⎢⎢⎢⎢⎣

1

{cµ}
1/2
F

JψhKF
1

{cε}
1/2
F

JφhKF

⎤⎥⎥⎥⎥⎥⎦

XXXXXXXXXXXXXX

2

L2(F )6

⎞
⎟⎟
⎠

1/2

+ ∣v∣S
⎛
⎜
⎝
∑
F ∈Fb

h

XXXXXXXXXXXX

1

{cµ}1/2
F

ψh

XXXXXXXXXXXX

2

L2(F )3

⎞
⎟
⎠

1/2

. (3.55)

Clearly, there holds

1

{cµ}F
≤ 1

cKµK
= cKεK ,

1

{cµ}F
≤ 1

cKF
µKF

= cKF
εKF

,

1

{cε}F
≤ 1

cKεK
= cKµK ,

1

{cε}F
≤ 1

cKF
εKF

= cKF
µKF

,

and (cµ)−1 = cε. Using this property in (3.55) together with Young’s inequality yields

sh(v,ϕh) ≤∣v∣S
⎛
⎜
⎝
∑
F ∈Fi

h

⎡⎢⎢⎢⎢⎢⎣
2cK

XXXXXXXXXXX

⎡⎢⎢⎢⎣
ε

1/2
K ψK

µ
1/2
K φK

⎤⎥⎥⎥⎦

XXXXXXXXXXX

2

L2(F )6

+ 2cKF

XXXXXXXXXXXX

⎡⎢⎢⎢⎢⎣

ε
1/2
KF
ψKF

µ
1/2
KF
φKF

⎤⎥⎥⎥⎥⎦

XXXXXXXXXXXX

2

L2(F )6

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠

1/2

+ ∣v∣S
⎛
⎜
⎝
∑
F ∈Fb

h

c ∥ε1/2ψh∥
2

L2(F )3

⎞
⎟
⎠

1/2

.

Using the same arguments as in the deduction from (3.49) to (3.53) in the previous proof we infer

sh(v,ϕh) ≤ (
√

2N
1/2
∂ + 1)CtrC

−1/2
qu c1/2

∞ h−1/2∣v∣S∥ϕh∥V

◻

We can easily draw the following corollary.

Corollary 3.24 (Bound for S-seminorm). For all v ∈ V⋆h there holds the following estimate

∣v∣S ≤ CSh
−1/2∥v∥V , (3.56)

with CS = Cbndc
1/2
∞ .

Proof: Let v ∈ V⋆h and let v⋆ ∈ V⋆, vh ∈ Vh such that v = v⋆ + vh. In (3.45) we have shown that it holds
∣v⋆∣S = 0. Furthermore, using Theorem 3.23, we infer

∣vh∣2S = sh(vh, vh) ≤ Cbndc∞h
−1/2∣vh∣S∥vh∥V ,

whence by dividing through ∣vh∣S we see

∣vh∣S ≤ Cbndc∞h
−1/2∥vh∥V .

The assertion then follows by the triangle inequality. ◻

Theorems 3.22 and 3.23 immediately ensure the boundedness of the upwind bilinear form.

Theorem 3.25 (Boundedness of aupw
h ). For all v ∈ V⋆h and for all ϕh ∈ Vh there holds

∣aupw
h (v,ϕh)∣ ≤ (c∞∥∇h × v∥V + 2Cbndc

1/2
∞ h−1/2∣v∣S)∥ϕh∥V . (3.57)

This concludes the section on the boundedness of the discrete bilinear forms. The next step is to derive
an operator based approach.
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3.4 Discrete Operators

We begin this section by recalling that we have formulated Maxwell’s equations as the abstract evolution
problem (see (1.35)): Search for u ∈ C1(0, T ; ∈ V⋆) ∩C(0, T ;D(A)) such that u(0) = u0 and

∂tu +Au = g.

For the convergence analysis it is beneficial to write the centered fluxes and the upwind fluxes dis-
cretizations (3.37), (3.43) also in an operator based notation.

Definition 3.26 (Discrete operators). We define the operators Acf
h , Aupw

h , Sh ∶ V⋆h → Vh by

(Acf
h v,ϕh)V ∶=acf

h (v,ϕh) ∀ϕh ∈ Vh,
(Aupw

h v,ϕh)V ∶=aupw
h (v,ϕh) ∀ϕh ∈ Vh,

(Shv,ϕh)V ∶=sh(v,ϕh) ∀ϕh ∈ Vh.

Obviously, there holds Aupw
h = Acf

h + Sh. Furthermore, we introduce the projection onto Vh w. r. t. to
the V -inner product.

Definition 3.27 (V -projection). We define the V -projection onto Vh as πVh ∶ V → Vh such that

(πVh v,ϕh)V = (v,ϕh)V ∀ϕh ∈ Vh. (3.58)

We work throughout the following sections with the V -inner product and thus ommit the index V and
always assume that πh denotes the V -projection πVh . Note that we have for all v ∈ V

∥πhv∥V = sup
ϕh∈Vh

∥ϕh∥V =1

(πhv,ϕh)V = sup
ϕh∈Vh

∥ϕh∥V =1

(v,ϕh)V ≤ sup
ϕh∈Vh

∥ϕh∥V =1

∥v∥V ∥ϕh∥V = ∥v∥V . (3.59)

Naturally, the consistency and boundedness results gained in the previous section transfer from the
discrete bilinear forms to the discrete operators.

Proposition 3.28 (Properties of discrete operators). The discrete operators Acf
h , Aupw

h and Sh satisfy
the following properties:

i) Consistency, i. e. for the exact solution u ∈ V⋆ of (1.35) it holds

Acf
h u = πhAu, Aupw

h u = πhAu. (3.60)

Indeed, equation (3.60) holds true for all functions v ∈ V⋆. In addition, the stabilization operator
Sh satisfies Shv = 0 for all v ∈ V⋆.

ii) Boundedness, i. e. for all v ∈ V⋆h it holds

∥Acf
h v∥V ≤c∞∥∇h × v∥V +CSh

−1/2∣v∣S , (3.61)

∥Aupw
h v∥V ≤c∞∥∇h × v∥V +C ′

Sh
−1/2∣v∣S , (3.62)

∥Shv∥V ≤CSh
−1/2∣v∣S , (3.63)

with CS = Cbndc
1/2
∞ and C ′

S = 2Cbndc
1/2
∞ .

iii) Skew-adjointness of the operator Acf
h on Vh, i. e. for all vh, v̂h ∈ Vh it holds

(Acf
h vh, v̂h)V = −(Acf

h v̂h, vh)V . (3.64)

iv) Dissipativity of the operator −Aupw
h on Vh, i. e. for all vh ∈ Vh it holds

(−Aupw
h vh, vh)V = −∣vh∣2S ≤ 0. (3.65)
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Proof: i) We have proven in Lemmata 3.14 and 3.20 that there holds

(Acf
h u,ϕh)V = acf

h (u,ϕh) = a(u,ϕh) = (Au,ϕh)V ∀ϕh ∈ Vh,

and
(Aupw

h u,ϕh)V = aupw
h (u,ϕh) = a(u,ϕh) = (Au,ϕh)V ∀ϕh ∈ Vh.

Hence, (3.60) follows with (3.58). The same arguments apply for all v ∈ V⋆. The assertion Shv = 0 for
all v ∈ V⋆ is seen with (3.6) and (3.7).
ii) For v ∈ V⋆h it holds

∥Acf
h v∥V = sup

ϕh∈Vh
∥ϕh∥V =1

∣(Acf
h v,ϕh)V ∣ = sup

ϕh∈Vh
∥ϕh∥V =1

∣acf
h (v,ϕh)∣

≤ sup
ϕh∈Vh

∥ϕh∥V =1

[(c∞∥∇h × v∥V +Cbndc
−1/2
∞ h−1/2∣v∣S)∥ϕh∥V ]

=c∞∥∇h × v∥V +CSh
−1/2∣v∣S ,

where we used the boundedness of acf
h , see (3.48). The boundedness for Aupw

h and Sh are proven
analogously.
iii) The skew-adjointness of Acf

h follows directly by Lemma 3.14.
iv) The dissipative property of −Aupw

h is seen by Lemma 3.20. ◻

The discretizations in operator form read: We search for ucf
h , uupw

h ∈ C1(0, T ;Vh) such that there holds

∂tu
cf
h +Acf

h u
cf
h = πhg, (3.66)

and
∂tu

upw
h +Aupw

h uupw
h = πhg. (3.67)

We use the projection of u0 as initial value, i. e. we require ucf
h (0) = uupw

h (0) = πhu0.

3.5 Stability

The following theorem reveals that the discrete schemes (3.66) and (3.67) are stable in the same sense
as the continuous problem, see Theorem 1.19.

Theorem 3.29 (Stability of discrete schemes). Let ucf
h ∈ Vh be the solution of (3.66) and uupw

h ∈ Vh be
the solution of (3.67). Then, for all t ∈ [0, T ] the following stability results hold:

i) In the homogeneous case, i. e. for g ≡ 0, we have

∥ucf
h (t)∥V = ∥πhu0∥V , (3.68)

and

∥uupw
h (t)∥2

V + 2

t

∫
0

∣uupw
h (s)∣2S ds = ∥πhu0∥2

V . (3.69)

ii) In the inhomogeneous case, we have

∥ucf
h (t)∥2

V ≤ C0

⎛
⎜
⎝
∥u0∥2

V + T
t

∫
0

∥g(s)∥2
V ds

⎞
⎟
⎠
, (3.70)

and

∥uupw
h (t)∥2

V + 2

t

∫
0

∣uupw
h (s)∣S ds ≤ C0

⎛
⎜
⎝
∥u0∥2

V + T
t

∫
0

∥g(s)∥2
V ds

⎞
⎟
⎠
, (3.71)

with C0 ∶= e.
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Let us state an important remark before proving this theorem.

Remark 3.30 (Energy conservation versus dissipation). Recall that the V -norm can be associ-
ated with the energy of the Maxwell system and that the continuous solution is conservative, i. e.
∥u(t)∥V = ∥u0∥V for all t ≥ 0. We conclude from (3.68) that the centered fluxes discretization pre-
serves this property whereas the upwind fluxes discretization decreases the energy, see (3.69), and
thus is dissipative. Indeed, revisiting the definition of the S-seminorm, we see that the amount of dis-
sipation is related to the norm of the tangential jumps of the solution. We have already commented
that this quantity is related to the quality of the discrete solution. Thus, we expect that a high-order
solutions, i. e. solutions obtained with high polynomial degree k and small meshsize h, admit less
dissipation than low-order solutions. Furthermore, we will see that the appearance of the S-seminorm
on the LHS of (3.71) allows us to prove a better convergence result rather than in the centered fluxes
case. ◇

Proof: We multiply (3.66) by ucf
h and (3.67) by uupw

h which yields

(∂tucf
h , u

cf
h )V + (Acf

h u
cf
h , u

cf
h )V = (πhg, ucf

h )V ,

and
(∂tuupw

h , uupw
h )V + (Aupw

h uupw
h , uupw

h )V = (πhg, uupw
h )V .

Using the identity (∂tv, v)V = 1
2
d
dt
∥v∥2

V together with the skew-adjointness of Acf
h in the first equation

and the dissipative property of −Aupw
h in the second equation yields

d

dt
∥ucf

h ∥2
V = 2(πhg, ucf

h )V , (3.72)

and
d

dt
∥uupw

h ∥2
V + 2∣uupw

h ∣2S = 2(πhg, uupw
h )V . (3.73)

i) Obviously, for g ≡ 0, assertions (3.68) and (3.69) follow by integrating (3.72) and (3.73) from 0 to t.
ii) In the inhomogeneous case we proceed by applying the weighted Young’s inequality A.3 with γ = T
to (3.72) yielding

d

dt
∥ucf

h (t)∥2
V ≤ T ∥g(t)∥2

V +
1

T
∥ucf

h (t)∥2
V ,

where we further used (3.59). Integrating from 0 to t gives the inequality

∥ucf
h (t)∥2

V ≤ ∥ucf
h (0)∥2

V + T
t

∫
0

∥g(s)∥2
V ds +

1

T

t

∫
0

∥u(s)∥2
V ds,

which is of a form to which the continuous Gronwall lemma A.4 applies. Thus, we infer

∥ucf
h (t)∥2

V ≤ et/T
⎛
⎜
⎝
∥ucf

h (0)∥2
V + T

t

∫
0

∥g(s)∥2
V ds

⎞
⎟
⎠
.

Clearly, there holds et/T ≤ e for t ∈ [0, T ] and by (3.59) we see ∥ucf
h (0)∥V ≤ ∥u0∥V . Hence, (3.70) is

proven. It remains to prove (3.71). Therefore, we apply the weighted Young’s inequality A.3 with γ = T
to (3.73) and integrate from 0 to T . This gives

∥uupw
h (t)∥2

V + 2

t

∫
0

∣uupw
h (s)∣2S ds ≤ ∥u0∥2

V + T
t

∫
0

∥g(s)∥2
V ds +

1

T

t

∫
0

∥uupw
h (s)∥2

V ds. (3.74)
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Furthermore, from the continuous Gronwall lemma A.4 we conclude

∥uupw
h (t)∥2

V ≤ et/T
⎛
⎜
⎝
∥u0∥2

V + T
t

∫
0

∥g(s)∥2
V ds

⎞
⎟
⎠
.

Plugging this into (3.74) yields

∥uupw
h (t)∥2

V + 2

t

∫
0

∣uupw
h (s)∣2S ds ≤∥u0∥2

V + T
t

∫
0

∥g(s)∥2
V ds

+ 1

T

t

∫
0

es/T
⎛
⎝
∥u0∥2

V + T
s

∫
0

∥g(r)∥2
V dr

⎞
⎠
ds. (3.75)

Since ∥g(r)∥2
V is non-negative and s ∈ (0, t) we can estimate the last integral by

1

T

t

∫
0

es/T
⎛
⎝
∥u0∥2

V + T
s

∫
0

∥g(r)∥2
V dr

⎞
⎠
ds ≤ 1

T

t

∫
0

es/T
⎛
⎜
⎝
∥u0∥2

V + T
t

∫
0

∥g(r)∥2
V ds

⎞
⎟
⎠
ds

= 1

T

⎛
⎜
⎝
∥u0∥2

V + T
t

∫
0

∥g(r)∥2
V dr

⎞
⎟
⎠
Tes/T ∣

t

s=0

= (et/T − 1)
⎛
⎜
⎝
∥u0∥2

V + T
t

∫
0

∥g(r)∥2
V dr

⎞
⎟
⎠
.

Inserting this into (3.75) proves the assertion. ◻

3.6 Convergence

In the following we use the notation

V⋆,k+1 ∶= D(A) ∩Hk+1(Th)6.

We begin the convergence analysis by investigating the types of errors appearing in the discretizations
(3.66) and (3.67).

3.6.1 Error Analysis

Definition 3.31 (Error types). Let u ∈ V⋆ denote the exact solution of (1.35) and ucf
h , uupw

h ∈ Vh denote
the discrete solutions of (3.66) and (3.67), respectively. We define the spatial discretization errors

ecf(t) ∶= u(t) − ucf
h (t), eupw(t) ∶= u(t) − uupw

h (t).

Furthermore, we split the errors into two parts

ecf(t) = eπ(t) − ecf
h (t), eupw(t) = eπ(t) − eupw

h (t),

where eπ(t) is the projection error
eπ(t) ∶= u(t) − πhu(t),

and ecf
h (t), eupw

h (t) are given as

ecf
h (t) ∶= ucf

h (t) − πhu(t), eupw
h (t) ∶= uupw

h (t) − πhu(t).
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We recall that by Definition 3.27 of the V -projection there holds

(eπ(t), ϕh)V = 0 ∀ϕh ∈ Vh. (3.76)

The projection error eπ arises from replacing the continuous space V⋆ by the finite space Vh. Indeed,
πhu is the best-approximation to u in Vh, and thus the projection error eπ is the minimal error we can
obtain. The splitting of the error provides two advantages. First, from Section 2.2.3 we already have
bounds for the projection error. They are stated in the following Lemma 3.32. Secondly, the errors ecf

h

and eupw
h measure the error between the discrete solutions ucf

h , uupw
h and the best-approximation πhu.

All three terms are elements of Vh and consequently the errors are in Vh, too. This allows us to state
discrete error equations in Vh which are given in Lemma 3.33.

Lemma 3.32 (Bounds for the projection error). Let v ∈ Hk+1(Th)6. Then, the projection error is
bounded by

∥v − πhv∥V ≤ Cπhk+1∣v∣Hk+1(Th)
6 ,

and its broken curl by
∥∇h × (v − πhv)∥V ≤ Cπhk∣v∣Hk+1(Th)

6 .

The constant is given by Cπ ∶= C ′
app max{µ1/2

∞ , ε
1/2
∞ } and is independent of the meshsize h.

Proof: Let v = [H,E]T ∈Hk+1(Th)6 and set ξπ = v − πhv, i. e.

ξπ = [ ξ
H
π

ξEπ
] = [ H − πhH

E − πhE
] .

Then, there holds

∥ξπ∥V = ∥[ µ
1/2ξHπ
ε1/2ξEπ

]∥
L2(Ω)6

≤ max{µ1/2
∞ , ε1/2

∞ }∥ξπ∥L2(Ω)6 .

Applying Lemma 2.23 on each mesh element K yields

∥ξπ∥V ≤ C ′
app max{µ1/2

∞ , ε1/2
∞ }hk+1∣v∣Hk+1(Th)

6 .

Hence, the first assertion follows. For the second assertion note that ∥∇h × ξπ∥L2(Ω)6 ≤ ∣ξπ ∣H1(Th)
6

and thus
∥∇h × ξπ∥V ≤ max{µ1/2

∞ , ε1/2
∞ }∣ξπ ∣H1(Th)

6 .

Lemma 2.23 then yields the result. ◻

Clearly, if the exact solution satisfies u ∈ V⋆,k+1, Lemma 3.32 provides the bounds

∥eπ∥V ≤ Cπhk+1∣u∣Hk+1(Th)
6 , (3.77)

and
∥∇h × eπ∥V ≤ Cπhk∣u∣Hk+1(Th)

6 . (3.78)

Lemma 3.33 (Error equations). For the errors ecf
h and eupw

h there hold following discrete evolution
equations,

∂te
cf
h +Acf

h e
cf
h = Acf

h eπ, ecf
h (0) = 0, (3.79)

and
∂te

upw
h +Aupw

h eupw
h = Aupw

h eπ, eupw
h (0) = 0. (3.80)
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Proof: Projecting the continuous problem (1.35) onto Vh gives

∂tπhu + πhAu = πhg, πhu(0) = πhu0,

where we used that the projection operator is independet of the time t and therefore it holds ∂tπh =
πh∂t. Owing to the consistency of the operator Acf

h , see Proposition 3.28, this is equivalent to

∂tπhu +Acf
h u = πhg. (3.81)

For the discrete solution ucf
h there holds ucf

h (0) = πhu0 as well as

∂tu
cf
h +Acf

h u
cf
h = πhg. (3.82)

Clearly, there holds ecf
h (0) = 0 and by substracting (3.81) from (3.82) we see

∂te
cf
h −Acf

h e = 0.

Hence, (3.79) follows by the splitting of the error, i. e. by e = eπ − ecf
h . Assertion (3.80) is proven

analogously. ◻

Combining the error equation (3.79) with the stability result we can prove the convergence of the
centered fluxes discretization.

Theorem 3.34 (Convergence for centered fluxes). Let u ∈ C1(0, T ;V ) ∩C(0, T ;V⋆,k+1) be the exact
solution of (1.35) and ucf

h ∈ C1(0, T ;Vh) be the discrete solution of (3.66). Then, for the error there
holds

∥ecf(t)∥2
V ≤ CcfTh

2k

t

∫
0

∣u(s)∣2Hk+1(Th)
6 ds +C ′

cfh
2k+2∣u(t)∣2Hk+1(Th)

6 , (3.83)

with Ccf = 2C0C
2
π(c∞ +C2

S)2 and C ′
cf = 2C2

π both independent of h.

Proof: We apply the stability result for the centered flux scheme (3.70) to the error equation (3.79) and
obtain

∥ecf
h (t)∥2

V ≤ C0T

t

∫
0

∥Acf
h eπ(s)∥2

V ds.

The boundedness of the operator Acf
h (3.61) and the bound of the S-seminorm (3.56) yield

∥ecf
h (t)∥2

V ≤C0T

t

∫
0

(c∞∥∇h × eπ(s)∥V +CSh
−1/2∣eπ(s)∣S)2 ds

≤C0T

t

∫
0

(c∞∥∇h × eπ(s)∥V +C2
Sh

−1∥eπ(s)∥V )2 ds.

Next, we use the bounds on the projection errors (3.77) and (3.78) to infer

∥ecf
h (t)∥2

V ≤C0C
2
π(c∞ +C2

S)2h2kT

t

∫
0

∣u(s)∣2Hk+1(Th)
6 ds. (3.84)

Young’s inequality yields for the full error

∥ecf(t)∥2
V ≤ 2∥ecf

h (t)∥2
V + 2∥eπ(t)∥2

V ≤ 2∥ecf
h (t)∥2

V + 2C2
πh

2k+2∣u(t)∣2Hk+1(Th)
6 , (3.85)

where we used (3.77) in the second inequality. Combining (3.84) and (3.85) yields the assertion. ◻
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This theorem establishes convergence of the suboptimal order hk for the centered fluxes scheme.
Clearly, this result also holds true for the upwind case since the three ingredients, i. e. stability of
the scheme, an error equation in form of the evolution problem and the bounds for the projection
errors, apply analogously in this case. The crucial difference in the upwind case is that we can do
better. Therefore, we essentially need the following property. For completeness we state it also for the
centered fluxes operator but we will see that this does not improve the convergence result in this case.

Lemma 3.35 For the projection error there holds

∣(Acf
h eπ, ϕh)V ∣ ≤ C ′

πh
−1/2∣ϕh∣S∥eπ∥V ∀ϕh ∈ Vh, (3.86)

in the centered fluxes case and

∣(Aupw
h eπ, ϕh)V ∣ ≤ C ′′

πh
−1/2∣ϕh∣S∥eπ∥V ∀ϕh ∈ Vh (3.87)

in the upwind fluxes case. The constants are given as C ′
π = (

√
2N

1/2
∂ + 1)CtrC

−1/2
qu c

1/2
∞ and C ′′

π =
C ′
π +CS.

Proof: Let eπ = [eHπ , eEπ]T denote the projection error. We begin with the centered fluxes result. Using
the partial integration form (3.34) we have for all ϕh = [φh, ψh]T ∈ Vh,

(Acf
h eπ, ϕh)V =acf

h (eπ, ϕh)
=(eEπ,∇h × φh)L2(Ω)3 − (eHπ ,∇h × ψh)L2(Ω)3

+ ∑
F ∈Fi

h

[({{eEπ}}cεF , nF × JφhKF )L2(F )3 − ({{eHπ }}cµF , nF × JψhKF )L2(F )3]

+ ∑
F ∈Fb

h

(eHπ , n × ψh)L2(Ω)3 .

Since ∇h × φh, ∇h × ψh are elements of Vh the first to terms vanish due to (3.76). In order to bound
the remaining terms we can use the same computations as in the proof of Theorem 3.22. Indeed we
get by (3.31) and (3.52)

∑
F ∈Fi

h

[({{eEπ}}cεF , nF × JφhKF )L2(F )3 − ({{eHπ }}cµF , nF × JψhKF )L2(F )3]

= ∑
F ∈Fi

h

[(nF × JφhKF ,{{eEπ}}cεF )L2(F )3 − (nF × JψhKF ,{{eHπ }}cµF )L2(F )3]

≤ C̃h−1/2∣ϕh∣S∥eπ∥V ,

with C̃ =
√

2CtrC
−1/2
qu c

1/2
∞ N

1/2
∂ . Furthermore, by (3.53) we have

∑
F ∈Fb

h

(eHπ , n × ψh)L2(Ω)3 ≤ C̃ ′h−1/2∣ϕh∣S∥eπ∥V ,

where C̃ ′ = CtrC
−1/2
qu c

1/2
∞ . This proves (3.86). For the upwind case we use the symmetry of the

stabilization bilinear form on V⋆h together with the stability result (3.54) to infer

∣(Sheπ, ϕh)V ∣ = ∣sh(ϕh, eπ)∣ ≤ CSh
−1/2∣ϕh∣S∥eπ∥V .

Assertion (3.87) then follows from (3.86) and the just shown bound. ◻
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Theorem 3.36 (Convergence for upwind fluxes). Let u ∈ C1(0, T ;V ) ∩ C(0, T ;V⋆,k+1) be the exact
solution of (1.35) and uupw

h ∈ C1(0, T ;Vh) be the discrete solution of the upwind discretization (3.67).
Then, for the error there holds

∥eupw(t)∥2
V +

t

∫
0

∣uh(s)∣2S ds

≤ Cupwh
2k+1

t

∫
0

∣u(s)∣2Hk+1(Th)
6 ds +C ′

upwh
2k+2∣u(t)∣2Hk+1(Th)

6 ,

with constants Cupw ∶= 2((C ′′
π )2 +C2

S) and C ′
upw ∶= 2C2

π.

Proof: We begin by multiplying the upwind error equation (3.80) by eupw
h ,

d

dt
∥eupw
h (t)∥2

V + 2(Aupw
h eupw

h , eupw
h )V = 2(Aupw

h eπ, e
upw
h )V .

Employing the dissipative property (3.65) of the operator Aupw
h and integrating from 0 to t yields

∥eupw
h (t)∥2

V + 2

t

∫
0

∣eupw
h (s)∣2S ds = 2

t

∫
0

(Aupw
h eπ(s), eupw

h (s))V ds, (3.88)

since eupw
h (0) = 0. By applying (3.87) from the previous lemma we get

∥eupw
h (t)∥2

V + 2

t

∫
0

∣eupw
h (s)∣2S ds ≤ 2

t

∫
0

C ′′
πh

−1/2∣eupw
h (s)∣S∥eπ(s)∥V ds. (3.89)

Using Young’s inequality we can estimate the RHS by

2

t

∫
0

C ′′
πh

−1/2∣eupw
h (s)∣S∥eπ(s)∥V ds ≤

t

∫
0

[(C ′′
πh

−1/2∥eπ(s)∥V )2 + ∣eupw
h (s)∣2S] ds.

Inserting this into (3.89) and canceling the integral over ∣eupw
h (s)∣2S with its counterpart on the LHS we

get

∥eupw
h (t)∥2

V +
t

∫
0

∣eupw
h (s)∣2S ds ≤ (C ′′

π )2h−1

t

∫
0

∥eπ(s)∥2
V ds. (3.90)

In order to bound the full error recall that by (3.45) it holds ∣u∣S = 0. Thus, we have

∣uh∣S ≤ ∣u − uh∣S + ∣u∣S = ∣eupw∣S ≤ ∣eπ ∣S + ∣eupw
h ∣S .

Consequently, we see by Young’s inequality and the splitting of the error that there holds

∥eupw(t)∥2
V +

t

∫
0

∣uh(s)∣2S ds ≤ 2∥eπ(t)∥2
V + 2∥eupw

h (t)∥2
V + 2

t

∫
0

[∣eπ(s)∣2S + ∣eupw
h (s)∣2S] ds.

Inserting (3.90) yields

∥eupw(t)∥2
V +

t

∫
0

∣uh(s)∣2S ds ≤ 2∥eπ(t)∥2
V + 2

t

∫
0

[∣eπ(s)∣2S + (C ′′
π )2h−1∥eπ(s)∥2

V ] ds.
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Corollary 3.24 further provides ∣eπ(s)∣2S ≤ C2
Sh

−1∥eπ∥2
V whence we infer with Lemma 3.32

∥eupw(t)∥2
V +

t

∫
0

∣uh(s)∣2S ds ≤2C2
πh

2k+2∣u(t)∣2Hk+1(Th)
6

+ 2(C2
S + (C ′′

π )2)h2k+1

t

∫
0

∣u(s)∣2Hk+1(Th)
6 ds,

and the proof is finished. ◻

Remark 3.37 Revisiting the current proof we observe that we cannot transfer it to the centered fluxes
case. In particular, notice that the crucial deduction is from (3.88) to (3.90). Thereby, we needed two
results. The first is the estimate (Aupw

h eπ, e
upw
h )V ≤ Ch−1/2∣eupw

h ∣S∥eπ∥V which is provided by Lemma
3.35 and which holds also true for the centered fluxes operator. Secondly, we canceled the error
term ∣eupw

h ∣S on the RHS with its counterpart on the LHS which is provided by the dissipative property
of the upwind operator, (Aupw

h eupw
h , eupw

h )V = ∣eupw
h ∣2S . It is exactly the absence of this property which

disables this proof for the centered fluxes case. We could continue by estimating the term ∣ecf
h ∣S instead

of balancing it, but this would give the same (suboptimal) convergence rate as already provided by
Theorem 3.34. In fact, our later numeircal results show that we cannot do better than this convergence
rate. ◇



Chapter 4

Full Discretization

In Chapter 3 we have discretized Maxwell’s equations (1.35) in space using dG methods. This led to a
discrete evolution equation of the form

∂tuh(t) = −Ahuh(t) + gh(t), t ∈ (0, T ), (4.1a)

uh(0) = πhu0. (4.1b)

posed in the finite dimensional space Vh. Here Ah ∈ {Acf
h ,A

upw
h } is the discrete centered fluxes

operator or the discrete upwind fluxes operator, see Definition 3.26, and we set gh = πhg. We have
proven that the discrete scheme (4.1) is consistent and stable and furtheron that its solution uh(t)
converges to the exact solution u(t) as the meshsize tends to zero with convergence rate hk in the
centered fluxes case and with rate hk+1/2 in the upwind fluxes case.

In this chapter we discretize the semi-discrete problem (4.1) in time with explicit RK methods. We
point out that Burman, Ern and Fernández have proven in [2] the convergence for two- and three-stage
RK methods for first-order differential equations of Friedrich’s type and that this framework covers
Maxwell’s equations (1.35) and the associated dG semi-discretization (4.1). Our analysis is strongly
motivated by this paper with the difference that we start with the forward Euler method rather than
with two-stage RK methods. It is instructive to consider the forward Euler method, too, since the
used techniques and the gained results resemble those for two-stage RK methods. Furthermore, we
incorporate a stability analysis for the RK approximation of (4.1) for the case with no source term, i. e.
gh ≡ 0, and for the general case with source term.

This chapter is organised as follows: First we show that the discretized Maxwell operator Ah is be
bounded on the discrete space Vh by O(h−1). Then, we introduce (explicit) RK methods and after-
wards head towards proving the so called energy identities for the RK approximations. This identities
enable us to prove stability. Next, we show that the error satisfies the same recursion as the RK ap-
proximation and deduce the convergence of order hk + τ s by the stability result, where s is the stage
number of the RK method. Last, we improve this result to hk+1/2 + τ s for the upwind fluxes case. This
proof cannot be done relying on the stability results but we need to start from the energy identities.

4.1 Boundedness of Ah on Vh

The following result is crucial for the subsequent convergence analyis.

Theorem 4.1 (Boundedness of Ah on Vh). Let Ah ∈ {Acf
h ,A

upw
h }. Then, for all vh ∈ Vh there holds,

∥Ahvh∥V ≤ Chc∞h−1∥vh∥V , (4.2)

with the associated constant Ch ∈ {Ccf
h ,C

upw
h } given as Ccf

h = Cinv +C2
bnd and Cupw

h = Cinv + 2C2
bnd.

53
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Proof: In Proposition 3.28 and Corollary 3.24 we have shown that for all vh ∈ Vh there holds

∥Acf
h vh∥V ≤ c∞∥∇h × vh∥V +C2

Sh
−1∥vh∥V , (4.3)

and
∥Aupw

h vh∥V ≤ c∞∥∇h × vh∥V +C ′
SCSh

−1∥vh∥V . (4.4)

Recalling that we definedCS = Cbndc
1/2
∞ andC ′

S = 2Cbndc
1/2
∞ we see that the second terms in (4.3) and

(4.4) meet the bound (4.2). Consequently, it remains to estimate the curl term ∥∇h × vh∥V . According
to the definition of the broken curl and the V -norm we have for all vh = [Hh,Eh]T ∈ Vh,

∥∇h × vh∥2
V = ∑

K∈Th

∥∇× vh∥2
V (K) = ∑

K∈Th

XXXXXXXXXXX

⎡⎢⎢⎢⎣
µ

1/2
K ∇×Hh

ε
1/2
K ∇×Eh

⎤⎥⎥⎥⎦

XXXXXXXXXXX

2

L2(K)6

= ∑
K∈Th

[µK∥∇×Hh∥2
L2(K)3 + εK∥∇×Eh∥2

L2(K)3] . (4.5)

Furthermore, there holds

∥∇×Hh∥L2(K)3 ≤ ∣Hh∣H1(K)3 = ∥∇Hh∥L2(K)3×3 ≤ C2
invh

−2
K ∥Hh∥L2(K)3 ,

where we applied the inverse inequality (2.13) componentwise in the last estimate. Analogously, we
have

∥∇×Eh∥2
L2(K)3 ≤ C

2
invh

−2
K ∥Eh∥2

L2(K)3 .

Inserting this estimates in (4.5) gives

∥∇h × vh∥2
V ≤C2

inv ∑
K∈Th

h−2
K [µK∥Hh∥2

L2(K)3 + ε
2
K∥Eh∥2

L2(K)3]

=C2
inv ∑

K∈Th

h−2
K ∥vh∥2

V (K) ≤ C
2
invh

−2 ∑
K∈Th

∥vh∥2
V (K) = C

2
invh

−2∥vh∥2
V ,

where we used Assumption 3.21 in the last inequality. ◻

Now, we construct the time discretization of (4.1) with RK methods.

4.2 Runge-Kutta Methods

We begin by discretizing the time interval [0, T ] by a discrete set {tn}Nn=1 on which we want to ap-
proximate the semi-discrete solution unh ≈ uh(tn). For simplicity we assume that the points {tn} are
equidistant, i. e. tn+1 − tn = τ for all n = 1, . . . ,N . We call τ the step size and we assume that the
finaltime T is a multiple of the step size, i. e. there is an integer N ∈ N such that T = Nτ .

RK methods start with a given intial value u0
h = uh(0) and compute consecutively a sequence

of approximations {unh}n using the approximation from the previous step only to compute the current
approximation: unh ↷ un+1

h . This characterizes RK methods as single step methods.

4.2.1 Construction of Runge-Kutta Methods

Let us at first notice that we construct RK methods in this thesis for linear equations (4.1) only. However,
the construction stays exactly the same for a general equation y′(t) = g(t, y(t)), but we skip it since
we do not need this case.
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The construction of RK methods relies on the following integral representation of the solution of the
evolution equation (4.1)

uh(tn+1) = uh(tn) +
tn+1

∫
tn

(−Ahuh(s) + gh(s))ds.

The main idea is to approximate the integral by a quadrature rule. Usually, quadrature is performed in
the refernce interval [0,1] and thus we transform the integral from above to this interval,

uh(tn+1) = uh(tn) + τ
1

∫
0

(−Ahuh(tn + τs) + gh(tn + τs))ds.

Now let c1, . . . , cs ∈ [0,1] be the quadrature nodes and b1, . . . , bs the associated weights. Then, the
quadrature rule reads

τ

1

∫
0

(−Ahuh(tn + τs) + gh(tn + τs))ds ≈ τ
s

∑
i=1

bi [−Ahuh(tn + ciτ) + gh(tn + ciτ)] .

In order to construct a numerical method we have to approximate uh(tn + ciτ), too. Clearly, it holds

uh(tn + ciτ) = uh(tn) + τ
ci

∫
0

(−Ahuh(tn + τs) + gh(tn + τs))ds,

which leads to the idea of approximating uh(tn + ciτ) by a quadrature rule again. It is meaningful to
use the same quadrature nodes ci as above. Furthermore, we choose weights aij , i, j = 1, . . . , s, such
that the quadrature reads:

τ

ci

∫
0

(−Ahuh(tn + τs) + gh(tn + τs))ds ≈ τ
s

∑
j=1

aij [−Ahuh(tn + cjτ) + gh(tn + cjτ)] .

Denoting with unih the approximations to the inner stages uh(tn + ciτ) we can state a general RK
method compactly as,

unih =unh + τ
s

∑
j=1

aij [−Ahunjh + gnjh ] , i = 1, . . . , s, (4.6a)

un+1
h =unh + τ

s

∑
i=1

bi [−Ahunih + gnih ] , (4.6b)

where we used the notation gnih ∶= gh(tn + ciτ). The number s is called the stage number of the
method. Usually, the coefficients of a RK scheme are collected in a so-called Butcher tableau

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c1 a11 . . . a1s

⋮ ⋮ ⋮
cs as1 . . . ass

b1 . . . bs

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

We make the following assumption on the coefficients aij , bi and ci.

Assumption 4.2 (Simplifying assumptions). We assume that the coefficients of the RK method satisfy
the following conditions:

s

∑
i=1

bi = 1,
i−1

∑
j=1

aij = ci. (4.7)

This assumption ensures that in the simple case of an ODE with constant right-hand side a RK method
provides the exact solution at every time point tn and at every inner stage tn + ciτ , i. e. unh = uh(tn)
and unih = uh(tn + ciτ).
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4.2.2 Explicit Runge-Kutta Methods

We see from (4.6a) that in general the inner stage unih can depend on all inner stages un1
h , . . . , u

ns
h .

The constituting property of an explicit Runge-Kutta method is that we choose aij = 0 for i ≥ j. Thus,

every inner stage unih only depends on the stages un1
h , . . . , u

n(i−1)
h . which allows to compute the inner

stages recursively.

Definition 4.3 (Explicit Runge-Kutta method). A general explicit s-stage Runge-Kutta approximation of
the evolution equation (4.1) is given by

unih =unh + τ
i−1

∑
j=1

aij [−Ahunjh + gnjh ] , i = 1, . . . , s, (4.8a)

un+1
h =unh + τ

s

∑
i=1

bi [−Ahunih + gnih ] . (4.8b)

Henceforth, we consider only explicit RK methods with one, two or three stages and often refer to them
as RK1, RK2 and RK3 methods. We begin by giving some examples for these methods.

4.2.3 Examples

Let us at first state the well-known forward or explicit Euler method which is a one-stage RK method
given by

[ 0 0

1
] { u

n1
h = unh,
un+1
h = unh − τAhunh + τgnh .

Two examples of RK2 methods are the Runge method which is defined by

⎡⎢⎢⎢⎢⎢⎣

0 0 0
1/2 1/2 0

0 1

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨⎪⎪⎪⎩

un1
h = unh,

un2
h = unh − 1

2τAhu
n1
h + 1

2τg
n
h ,

un+1
h = unh − τAhun2

h + τgn+1/2
h ,

where we used the notation gn+1/2
h ∶= gh(tn + 1

2τ), and the two-stage Heun method defined by

⎡⎢⎢⎢⎢⎢⎣

0 0 0
1 1 0

1/2 1/2

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨⎪⎪⎪⎩

un1
h = unh,
un2
h = unh − τAhun1

h + τgnh ,
un+1
h = unh − 1

2τAhu
n1
h + 1

2τg
n
h − 1

2τAhu
n2
h + 1

2τg
n+1
h .

Finally, an example for a RK3 scheme is the three-stage Heun method given by

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
1/3 1/3 0 0
2/3 0 2/3 0

1/4 0 3/4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

un1
h = unh,

un2
h = unh − 1

3τAhu
n1
h + 1

3τg
n
h ,

un3
h = unh − 2

3τAhu
n2
h + 2

3τg
n+1/3
h ,

un+1
h = unh − 1

4τAhu
n1
h + 1

4τg
n
h − 3

4τAhu
n3
h + 3

4τg
n+2/3
h ,

with the same notation for the source-term as above.

4.2.4 Order Conditions

An important quantity in the analysis of RK methods is the order of the method (see e.g. the textbook
[7]). In order to define it we consider the case of a general ODE y′(t) = ĝ(t, y(t)). We say that a RK
method is of order p if the approximation after one step, y1, satisfies

∥y(t1) − y1∥ ≤ Cτp+1,
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given the exact initial value as a starting point, y0 = y(t0), and that the RHS is smooth enough, i. e.
ĝ ∈ Cp+1. The order of a RK method can be examined systematically using rooted trees which yield
certain order conditions on the coefficients (cf. [9, Section 8.6-8.7], [7, Section II.2]). Furthermore, it is
shown in [9, Theorem 8.13] that an explicit s-stage RK method has at most order s. From now on, we
restrict our consideration to explicit RK methods having this maximal order. This is guaranteed by the
simplifying assumption (4.7) together with the following order conditions ([7, Theorem 2.13]).

Assumption 4.4 (Order conditions). We assume that the coefficients of the RK2 methods satisfy

b2c2 =
1

2
, (4.9)

and the coefficients of the RK3 methods satisfy

b2c2 + b3c3 =
1

2
, b2c

2
2 + b3c2

3 =
1

3
, b3a32c2 =

1

6
. (4.10)

Remark 4.5 All examples presented in Section 4.2.3 satisfy the Assumptions 4.2 and 4.4. Furthermore,
the forward Euler method is the only explicit one-stage RK method satisfying the simplifying assumption
(4.7). ◇

Due to Assumptions 4.2 and 4.4 we know that for an s-stage RK approximation (with s ∈ {1,2,3}) of
the evolution equation (4.1) we have

∥uh(t1) − u1
h∥V ≤ C(h)τ s+1, (4.11)

if the source term satisfies gh ∈ Cs+1(0, T ;Vh). From the local bound (4.11) we get a global error
estimate of the form

∥uh(tn+1) − un+1
h ∥V ≤ C(h)τ s, (4.12)

see therefore [9, Theorem 8.5], [7, Theorem 3.6]. But, we point out that constants in this estimates
depend on the operator norm ∥Ah∥Vh←Vh which is proportional to h−1. Therefore, the bound (4.12) is
only applicable if we consider the evolution equation for a fixed meshsize. Since we are interested in
the convergence of the fully discrete scheme, i. e. convergence when τ and h both tend to zero, we
have to use a different approach. Furthermore, this means that we deal with a problem which gets
more and more ill-posed when the meshsize tends to zero making the analysis more complicated. We
will therefore introduce an energy technique which is suitable for such problems.

We begin by stating the considered RK methods with eliminated stages.

Lemma 4.6 (Explicit RK form without inner stages). Let s ∈ {1,2,3} and let {unh}n be an s-stage RK
approximation of the evolution equation (4.1). Then, we have the following recursions:

i) For RK1 methods:
un+1
h = unh − τAhunh + τgnh . (4.13)

ii) For RK2 methods:

un+1
h =unh − τAhunh +

1

2
τ2A2

hu
n
h + τb1gnh + τb2gn2

h − 1

2
τ2Ahg

n
h , (4.14)

iii) For RK3 methods:

un+1
h =unh − τAhunh +

1

2
τ2A2

hu
n
h −

1

6
τ3A3

hu
n
h + τb1gnh + τb2gn2

h + τb3gn3
h

− τ2b2a21Ahg
n
h − τ2b3a31Ahg

n
h − τ2b3a32Ahg

n2
h + 1

6
τ3A2

hg
n
h . (4.15)
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Proof: This follows by straightforward elimination of the inner stages and by using the simplifying
assumption (4.7) and the order conditions (4.9) and (4.10). ◻

We observe that in the absence of a source term all s-stage methods produce the same approximation,
namely

un+1
h = Ps(−τAh)unh, s = 1,2,3, (4.16)

where Ps is the so-called stability polynomial given by

Ps(z) ∶= 1 + z + . . . 1

s!
zs. (4.17)

Clearly, in the case without source term the solution to (4.1) is given by

uh(tn+1) = e−τAhuh(tn), (4.18)

and the RK solution (4.16) can be seen as the approximation of (4.18) obtainded by replacing the
exponential function by its (s,0)-Padé approximation.

Furhtermore, we have proven in Section 3.5 that the semi-discrete solution uh of (4.1) is conserva-
tive or dissipative depending on the choice of the fluxes,

∥ucf
h (t)∥V = 0, ∥uupw

h (t)∥V ≤ 0,

which are properties we would like to mimic in the time discrete case. Obviously, there holds

∥un+1
h ∥V ≤ ∥Ps(−τAh)∥Vh←Vh∥unh∥V ≤ ∥Ps(−τAh)∥nVh←Vh∥u

0
h∥V ,

indicating that the stability polynomial is essential for investigating the stability properties of the RK
approximation. Clearly, the condition ∥Ps(−τAh)∥Vh←Vh ≤ 1 suffices to guarantee stability. One might
therefore be attempted to consider the classical spectral stability, i. e. demanding that the eigenvalues
of −τAh lie in the stability region S given by

S ∶= {z ∈ C ∣ ∣P (z)∣ ≤ 1}.

But, it is pointed out in [13] that this stability analysis can be misleading for ill-conditioned problems
such as we are dealing with. In particular, the upwind fluxes case cannot be covered by the spectral
analysis since it can be shown that the operator Aupw

h is non-normal. In contrary, the case of centered
fluxes seems to be accessible to this analysis since the operator Acf

h clearly is normal. However, the
energy method applies in both cases yielding a full stability analysis and we therefore rely on this
method. The stability regions for RK1, RK2 and RK3 are given in Figure 4.1.

4.3 Energy Identities

4.3.1 Homogeneous Energy Identities

In this section we assume that the source term in (4.1) is zero. Then, we have following result for the
forward Euler method.

Forward Euler method

Lemma 4.7 (Homogeneous energy identity for RK1). Let {unh}n be the forward Euler approximation
of (4.1). Then, there holds

∥un+1
h ∥2

V + 2τ(unh,Ahunh)V = ∥unh∥2
V + ∥τAhunh∥2

V . (4.19)
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Figure 4.1: Stability regions

Remark 4.8 We see by the appearance of the term ∥τAhunh∥2
V on the RHS of (4.19) that the forward

Euler method is anti-dissipative, i. e. it produces energy at each time step. In the upwind fluxes case
this can be compensated to some extent by the dissipative property (3.65) of the operator Aupw

h . In
fact, in the upwind fluxes case we have the following energy identity,

∥un+1
h ∥2

V + 2τ ∣unh ∣2S = ∥unh∥2
V + ∥τAupw

h unh∥2
V .

In contrary, owing to the skew-symmetry of Acf
h , see (3.64), the energy identity in the centered fluxes

case reads
∥un+1

h ∥2
V = ∥unh∥2

V + ∥τAcf
h u

n
h∥2
V .

◇

Proof: We calculate the norm of un+1
h using the recursion (4.13),

∥un+1
h ∥2

V = ∥unh − τAhunh∥2
V = ∥unh∥2

V − 2(unh, τAhunh)V + ∥τAhunh∥2
V .

◻

RK2 methods We proceed with RK2 methods. We first observe that we can write the RK2 approxi-
mation as a corrected forward Euler step. Let therefore Ũn1

h denote the forward Euler step, i. e.

Ũn1
h ∶= unh − τAhunh. (4.20)

Then, the RK2 approximation (4.14) can be written as

un+1
h = Ũn1

h + 1

2
τ2A2

hu
n
h = Ũn1

h + 1

2
τAh(unh − Ũn1

h ). (4.21)

We use this identity to state the RK2 energy identity.
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Lemma 4.9 (Homogeneous energy identity for RK2). Let {unh}n be a RK2 approximation to (4.1).
Then, there holds

∥un+1
h ∥2

V + τ(unh,Ahunh)V + τ(Ũn1
h ,AhŨ

n1
h )V = ∥unh∥2

V +
1

4
∥τ2A2

hu
n
h∥2
V . (4.22)

Remark 4.10 Again, we observe an anti-dissipative behaviour but this time induced by the term
1
4∥τ

2A2
hu

n
h∥2
V . Furthermore, comparing (4.22) with (4.19) we see that in the upwind fluxes case the

RK2 approximation additionaly yields the dissipative term ∣Ũn1
h ∣2S . Indeed, there holds

∥un+1
h ∥2

V + τ ∣unh ∣2S + τ ∣Ũn1
h ∣2S = ∥unh∥2

V +
1

4
∥τ2(Aupw

h )2unh∥2
V .

In the case of centered fluxes we have

∥un+1
h ∥2

V = ∥unh∥2
V +

1

4
∥τ2(Acf

h )2unh∥2
V .

◇

Proof: We compute the norm of un+1
h using the recursion (4.21),

∥un+1
h ∥2

V = ∥Ũn1
h ∥2

V + (Ũn1
h , τAhu

n
h)V − (Ũn1

h , τAhŨ
n1
h )V +

1

4
∥τAh(unh − Ũn1

h )∥2
V .

Applying the RK1 energy identity (4.19) to ∥Ũn1
h ∥2

V yields

∥un+1
h ∥2

V +(unh, τAhunh)V + (Ũn1
h , τAhŨ

n1
h )V

=∥unh∥2
V + (Ũn1

h − unh, τAhunh)V + ∥τAhunh∥2
V +

1

4
∥τAh(unh − Ũn1

h )∥2
V .

Using (4.20) we see
(Ũn1

h − unh, τAhunh)V = −∥τAhunh∥2
V ,

and
1

4
∥τAh(unh − Ũn1

h )∥2
V = 1

4
∥τ2A2

hu
n
h∥2
V ,

which proves the claim. ◻

RK3 methods For RK3 methods we define Ũn2
h as the approximation given by a RK2 scheme, i. e.

Ũn2
h ∶= unh − τAhunh +

1

2
τ2A2

hu
n
h = Ũn1

h + 1

2
τ2A2

hu
n
h. (4.23)

Revisiting the recursion for RK3 methods (4.15) we see that we can write the RK3 approximation as

un+1
h = Ũn2

h − 1

6
τ3A3

hu
n
h = Ũn2

h + 1

3
τAh(Ũn1

h − Ũn2
h ). (4.24)

Lemma 4.11 (Homogeneous energy identity for RK3). Let {unh}n be a RK3 approximation to (4.1).
Then, there holds

∥un+1
h ∥2

V + τ(unh,Ahunh)V +
1

3
τ(Ũn1

h ,AhŨ
n1
h )V +

2

3
τ(Ũn2

h ,AhŨ
n2
h )V +

1

12
∥τ2A2

hu
n
h∥2
V

=∥unh∥2
V +

1

3
τ(τAhunh, τA2

hu
n
h)V +

1

36
∥τ3A3

hu
n
h∥2
V .

(4.25)



4.3. ENERGY IDENTITIES 61

Remark 4.12 We see that RK3 schemes essentially differ from RK1 and RK2 schemes. Even in the
centered fluxes case we have a dissipative term. Indeed, there holds

∥un+1
h ∥2

V +
1

12
∥τ2(Acf

h )2unh∥2
V = ∥unh∥2

V +
1

36
∥τ3(Acf

h )3unh∥2
V .

We will see later that this significantly improves the stability behaviour. For the upwind fluxes case the
energy identity (4.25) reads as

∥un+1
h ∥2

V + τ ∣unh ∣2S +
1

3
τ ∣Ũn1

h ∣2S +
2

3
τ ∣Ũn2

h ∣2S +
1

12
∥τ2(Aupw

h )2unh∥2
V

=∥unh∥2
V +

1

3
τ ∣τAupw

h unh ∣2S +
1

36
∥τ3(Aupw

h )3unh∥2
V .

Compared to the centered fluxes case we benefit on the one hand from the additional dissipation
provided from space discretization in form of the S-seminorm terms on the LHS but on the other hand
suffer from the non-negative term 1

3τ ∣τAhu
n
h ∣2S on the RHS. ◇

Proof: We use the recursion (4.24) to infer

∥un+1
h ∥2

V = ∥Ũn2
h ∥2

V +
2

3
(Ũn2

h , τAhŨ
n1
h )V −

2

3
(Ũn2

h , τAhŨ
n2
h )V +

1

9
∥τAh(Ũn1

h − Ũn2
h )∥2

V .

Applying the RK2 energy identity (4.22) to the ∥Ũn2
h ∥2

V we get

∥un+1
h ∥2

V +(unh, τAhunh)V +
1

3
(Ũn1

h , τAhŨ
n1
h )V +

2

3
(Ũn2

h , τAhŨ
n2
h )V

= ∥unh∥2
V +

2

3
(Ũn2

h − Ũn1
h , τAhŨ

n1
h )V +

1

4
∥τ2Ahu

n
h∥2
V +

1

9
∥τAh(Ũn1

h − Ũn2
h )∥2

V . (4.26)

Let us consider the second term on the RHS. From (4.23) we have Ũn2
h − Ũn1

h = 1
2τ

2A2
hu

n
h and thus

we deduce
2

3
(Ũn2

h − Ũn1
h , τAhŨ

n1
h )V = 2

3
(τ2A2

hu
n
h, τAhu

n
h)V −

1

3
∥τ2A2

hu
n
h∥2
V ,

as well as
1

9
∥τAh(Ũn1

h − Ũn2
h )∥2

V = 1

36
∥τ3A3

hu
n
h∥2
V .

Inserting this equalities in (4.26) yields (4.25). ◻

4.3.2 Inhomogeneous Energy Identities

We extend the ideas from the previous section to the general case with gh ≠ 0. In the case of the
forward Euler method this can be done straightforward.

Forward Euler method

Lemma 4.13 (Energy identity for RK1). Let {unh}n be the forward Euler discretization of (4.1). Then,
there holds

∥un+1
h ∥2

V + 2τ(unh,Ahunh)V = ∥unh∥2
V + 2τ(unh, gnh)V + ∥τAhunh − τgnh∥2

V . (4.27)

Proof: Using the recursion (4.13) we see

∥un+1
h ∥2

V =∥unh − τAhunh + τgnh∥2
V = ∥unh∥ − 2(unh, τAhunh − τgnh)V + ∥τAhunh − τgnh∥2

V .

◻
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RK2 methods Reviewing the homogeneous RK2 energy identity (4.22) we realize that it was impor-
tant to write the RK2 scheme as a corrected forward Euler method. From the RK2 recursion (4.14) it
is not clear if this is possible if the source term is non-zero. We show that this can indeed be done.
First, we introduce Peano kernels, which provide a uniform notation of the remainder terms of Taylor
expansions.

Definition 4.14 (Peano kernel). We define the Peano kernel with parameters x and p as

κx,p(t) ∶=
1

p!
(x − t)p+ = {

1
p!(x − t)

p, t ≤ x,
0, t > x. (4.28)

Now, let Un1
h denote the forward Euler step, i. e.

Un1
h ∶= unh − τAhunh + τgnh . (4.29)

Then, we can prove the following RK2 recursion.

Lemma 4.15 (RK2 recursion). Let gh ∈ C2(0, T ;Vh). Then, we can write the RK2 approximation
(4.14) as

un+1
h = Un1

h + 1

2
τAh(unh −Un1

h ) + 1

2
τ2∂tg

n
h + τRn2 , (4.30)

where the remainder term Rn2 is given as

Rn2 = −τb2
tn+1

∫
tn

κ′c2,2 (
s − tn
τ

)∂ttgh(s)ds.

Proof: Recall that we have shown in Lemma 4.6 the RK2 recursion

un+1
h = unh − τAhunh +

1

2
τ2A2

hu
n
h + τb1gnh + τb2gn2

h − 1

2
τ2Ahg

n
h . (4.31)

Employing Taylor expansion to gn2
h yields

gn2
h = gnh + c2τ∂tg

n
h − τ

tn+1

∫
tn

κ′c2,2 (
s − tn
τ

)∂ttgh(s)ds.

Inserting this in (4.31) gives

un+1
h = unh − τAhunh +

1

2
τ2A2

hu
n
h + τ(b1 + b2)gnh + τ2b2c2∂tg

n
h −

1

2
τ2Ahg

n
h + τRn2 .

Using the simplifying assumption (4.7) and the RK2 order condition (4.9) it follows

un+1
h =unh − τAhunh + τgnh +

1

2
τAh(τAhunh − τgnh) +

1

2
τ2∂tg

n
h + τRn2 ,

whence we infer (4.30) by (4.29). ◻

This lemma enables us to prove the RK2 energy identity for the inhomogeneous case.

Lemma 4.16 (Energy identity for RK2). Let {unh}n be a RK2 approximation of (4.1). Then, there holds

∥un+1
h ∥2

V + τ(unh,Ahunh)V + τ(Un1
h ,AhU

n1
h )V

=∥unh∥2
V + τ(unh, gnh)V + τ(Un1

h , gnh + τ∂tgnh + 2Rn2 )V

+ 1

4
∥τ2A2

hu
n
h − τ2Ahg

n
h + τ2∂tg

n
h + 2τRn2 ∥2

V (4.32)
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Proof: We abbreviate the last two terms in the recursion (4.30) with R, i. e.

un+1
h = Un1

h + 1

2
τAh(unh −Un1

h ) +R.

Taking the inner-product of the above equation with itself we get

∥un+1
h ∥2

V =∥Un1
h ∥2

V + (Un1
h , τAhu

n
h)V − (Un1

h , τAhU
n1
h )V + 2(Un1

h ,R)V

+ 1

4
∥τAh(unh −Un1

h ) + 2R∥2
V .

Using the RK1 identity (4.27) for the term ∥Un1
h ∥2

V yields

∥un+1
h ∥2

V +(unh, τAhunh)V + (Un1
h , τAhU

n1
h )V

=∥unh∥2
V + 2(unh, τgnh)V + 2(Un1

h ,R)V + (Un1
h − unh, τAhunh)V

+ ∥τAhunh − τgnh∥2
V +

1

4
∥τAh(unh −Un1

h ) + 2R∥2
V .

By (4.29) we see Un1
h − unh = −τAhunh + τgnh and thus that it holds

(Un1
h − unh, τAhunh)V = −∥τAhunh − τgnh∥2

V + (Un1
h − unh, τgnh)V ,

whence we conclude (4.32). ◻

RK3 methods We proceed with RK3 schemes by the same steps as for RK2 methods. First we
introduce

Un2
h ∶= Un1

h + 1

2
τAh(unh −Un1

h ) + 1

2
τ2∂tg

n
h , (4.33)

which is the RK2 step without the remainder termRn2 . This allows to prove the following RK3 recursion.

Lemma 4.17 (RK3 recursion). Let gh ∈ C3(0, T ;Vh). Then, we can write the RK3 approximation
(4.15) as

un+1
h =Un2

h + 1

3
τAh(Un1

h −Un2
h ) + 1

6
τ3∂ttg

n
h + τRn3 , (4.34)

where the remainder term Rn3 is given as

Rn3 ∶= −τ2
3

∑
i=2

⎡⎢⎢⎢⎢⎣
bi

tn+1

∫
tn

κ′ci,3 (
s − tn
τ

)∂tttgh(s)ds
⎤⎥⎥⎥⎥⎦
− τ2b3a32

tn+1

∫
tn

κ′′c2,3 (
s − tn
τ

)Ah(∂ttgh(s))ds.

Note that for RK3 methods the remainder term includes the term Ah(∂ttgh). This will later force us to
demand higher regularity assumptions than gh ∈ C3(0, T ;Vh).

Proof: Recall that the RK3 recursion (4.15) reads

un+1
h =unh − τAhunh +

1

2
τ2A2

hu
n
h −

1

6
τ3A3

hu
n
h + τb1gnh + τb2gn2

h + τb3gn3
h

− τ2b2a21Ahg
n
h − τ2b3a31Ahg

n
h − τ2b3a32Ahg

n2
h + 1

6
τ3A2

hg
n
h . (4.35)

We expand g2n
h and g3n

h in the above equation into a second order Taylor series,

gnih = gnh + τci∂tgnh +
1

2
τ2c2

i ∂ttg
n
h − τ2

tn+1

∫
tn

κ′ci,3 (
s − tn
τ

)∂tttgh(s)ds, i = 2,3,
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and g2n
h stemming from Ahg

n2
h into a first order Taylor series,

g2n
h = gnh + τc2∂tg

n
h + τ

tn+1

∫
tn

κ′′c2,3 (
s − tn
τ

)∂ttgh(s)ds.

Then, the source terms in (4.35) can be written as

τ(b1 + b2 + b3)gnh + τ2(b2c2 + b3c3)∂tgnh +
1

2
τ3(b2c2

2 + b3c2
3)∂ttgnh

− τ2(b2a21 + b3a31 + b3a32)Ahgnh − τ3b3a32c2Ah(∂tgnh) +
1

6
τ3A2

hg
n
h + τRn3 . (4.36)

Inserting (4.36) together with the simplifying assumption (4.7) and the RK3 order conditions (4.10) into
(4.35) gives

un+1
h =unh − τAhunh +

1

2
τ2A2

hu
n
h −

1

6
τ3A3

hu
n
h + τgnh +

1

2
τ2∂tg

n
h +

1

6
τ3∂ttg

n
h

− 1

2
τ2Ahg

n
h −

1

6
τ3Ah(∂tgnh) +

1

6
τ3A2

hg
n
h + τRn3 .

Inserting (4.29) in (4.33) yields

Un2
h = unh − τAhunh +

1

2
τ2A2

hu
n
h + τgnh +

1

2
τ2∂tg

n
h −

1

2
τ2Ahg

n
h ,

whence we deduce

un+1
h =Un2

h − 1

6
τ3A3

hu
n
h −

1

6
τ3Ah(∂tgnh) +

1

6
τ3A2

hg
n
h +

1

6
τ3∂ttg

n
h + τRn3 .

We can write this equation as

un+1
h =Un2

h − 1

3
τAh (unh − τAhunh +

1

2
A2
hu

n
h + τgnh +

1

2
τ2∂tg

n
h −

1

2
τ2Ahg

n
h)

+ 1

3
τAh (unh − τAhunh + τgnh) +

1

6
τ3∂ttg

n
h + τRn3

=Un2
h − 1

3
τAhU

n2
h + 1

3
τAhU

n1
h + 1

6
τ3∂ttg

n
h + τRn3 .

◻

We end this section with the energy identity for RK3 schemes.

Lemma 4.18 (Energy identity for RK3). Let {unh}n be a RK3 approximation of (4.1). Then, there holds

∥un+1
h ∥2

V +τ(unh,Ahunh)V +
1

3
τ(Un1

h ,AhU
n1
h )V

+ 2

3
τ(Un2

h ,AhU
n2
h )V +

1

12
∥τ2A2

hu
n
h − τ2Ahg

n
h + τ2∂tg

n
h∥2
V

=∥unh∥2
V +

1

3
τ((τAhunh − τgnh),Ah(τAhunh − τgnh))V

+ τ(unh, gnh +
1

3
τ∂tg

n
h)V +

1

3
τ(Un1

h , gnh)V +
2

3
τ(Un2

h , gnh + τ∂tgnh +
1

2
τ2∂ttg

n
h + 3Rn3 )V

+ 1

36
∥τ3A3

hu
n
h − τ3A2

hg
n
h + τ3Ah(∂tgnh) − τ3∂ttg

n
h − 6τRn3 ∥2

V . (4.37)



4.3. ENERGY IDENTITIES 65

Proof: By denoting R ∶= 1
2τ

3∂ttg
n
h + 3τRn3 we can write the RK3 recursion (4.34) as

un+1
h = Un2

h + 1

3
τAh(Un1

h −Un2
h ) + 1

3
R.

By taking the inner-product of the above equation with itself we get

∥un+1
h ∥2

V =∥Un2
h ∥2

V +
2

3
(Un2

h , τAhU
n1
h )V −

2

3
(Un2

h , τAhU
n2
h )V +

2

3
(Un2

h ,R)V

+ 1

9
∥τAh(Un1

h −Un2
h ) +R∥2

V . (4.38)

We can use the RK2 energy identity (4.32) for ∥Un2
h ∥2

V by dropping the remainder term Rn2 . This yields

∥Un2
h ∥2

V + τ(unh,Ahunh)V + τ(Un1
h ,AhU

n1
h )V =∥unh∥2

V + τ(unh, gnh)V + τ(Un1
h , gnh + τ∂tgnh)V

+ 1

4
∥τ2A2

hu
n
h − τ2Ahg

n
h + τ2∂tg

n
h∥2
V .

Plugging this into (4.38) gives

∥un+1
h ∥2

V +(unh, τAhunh)V +
1

3
(Un1

h , τAhU
n1
h )V +

2

3
(Un2

h , τAhU
n2
h )V

=∥unh∥2
V + (unh, τgnh)V + (Un1

h , τgnh + τ2∂tg
n
h)V +

2

3
(Un2

h ,R)V

+ 2

3
(Un2

h −Un1
h , τAhU

n1
h )V +

1

4
∥τ2A2

hu
n
h − τ2Ahg

n
h + τ2∂tg

n
h∥2
V

+ 1

9
∥τAh(Un1

h −Un2
h ) +R∥2

V . (4.39)

Let us consider the term 2
3(U

n2
h −Un1

h , τAhU
n1
h )V . It holds

Un2
h −Un1

h = 1

2
τ2A2

hu
n
h −

1

2
τ2Ahg

n
h +

1

2
τ2∂tg

n
h , (4.40)

and

τAhU
n1
h = τAh(unh − τAhunh + τgnh) = (τAhunh + τ2∂tg

n
h) − (τ2A2

hu
n
h − τ2Ahg

n
h + τ2∂tg

n
h).

Consequently we have

2

3
(Un2

h −Un1
h , τAhU

n1
h )V =1

3
(τ2A2

hu
n
h − τ2Ahg

n
h + τ2∂tg

n
h , τAhu

n
h + τ2∂tg

n
h)V

− 1

3
∥τ2A2

hu
n
h − τ2Ahg

n
h + τ2∂tg

n
h∥2
V . (4.41)

The first term is yet unpleasant and we rewrite it as

1

3
(τ2A2

hu
n
h−τ2Ahg

n
h + τ2∂tg

n
h , τAhu

n
h + τ2∂tg

n
h)V

=1

3
(τAh(τAhunh − τgnh), (τAhunh − τgnh))V +

1

3
(τ2∂tg

n
h , (τAhunh − τgnh))V

+ 1

3
(τ2A2

hu
n
h − τ2Ahg

n
h + τ2∂tg

n
h , τg

n
h + τ2∂tg

n
h)V , (4.42)

which ensure that we can at least apply the skew-adjointness ofAcf
h or the dissipative property ofAupw

h
to the first term. Furthermore, from unh −Un1

h = τAhunh − τgnh and (4.40) we see that the last two terms
in (4.42) can be written as

1

3
(τ2∂tg

n
h , (τAhunh − τgnh))V +

1

3
(τ2A2

hu
n
h − τ2Ahg

n
h + τ2∂tg

n
h , τg

n
h + τ2∂tg

n
h)V

=1

3
(unh, τ2∂tg

n
h)V − (Un1

h ,
2

3
gnh + τ2∂tg

n
h)V +

2

3
(Un2

h , τgnh + τ2∂tg
n
h)V .
(4.43)
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Inserting (4.41) with (4.42) and (4.43) in (4.39) yields

∥un+1
h ∥2

V +(unh, τAhunh)V +
1

3
(Un1

h , τAhU
n1
h )V +

2

3
(Un2

h , τAhU
n2
h )V

=∥unh∥2
V + (unh, τgnh +

1

3
τ2∂tg

n
h)V +

1

3
(Un1

h , τgnh)V +
2

3
(Un2

h , τgnh + τ2∂tg
n
h +R)V

+ (τAh(τAhunh − τgnh), (τAhunh − τgnh))V −
1

12
∥τ2A2

hu
n
h − τ2Ahg

n
h + τ2∂tg

n
h∥2
V

+ 1

9
∥τAh(Un1

h −Un2
h ) + τR∥2

V .

Employing the identity (4.40) in the last term concludes the proof. ◻

4.4 Stability

Using the energy identities we can prove the stability of the RK discretizations. We will see that each
method is stable only if the time step size is bounded w. r. t. the meshsize h. This condition is called
the CFL condition. Furthermore, we will see that higher order methods admit better stability properties
in the sense of more relaxed CFL conditions. From now on, we assume without loss of generality that
τ ≤ 1.

Definition 4.19 (CFL-conditions). Let %, %′ and %′′ be positive numbers. We say that the step size τ
satisfies the usual CFL condition if it holds

τ ≤ % h
c∞

. (4.44)

Furthermore, the step size satisfies the 4/3-CFL condition if

τ ≤ %′ ( h

c∞
)

4/3

, (4.45)

and it satisfies the 2-CFL condition if

τ ≤ %′′ ( h

c∞
)

2

. (4.46)

The hierachy of the CFL conditions is as follows: The 2-CFL is the strongest assumption and implies
the 4/3-CFL condition and the usual CFL condition. Furthermore, the 4/3-CFL condition implies the
usual CFL condition.

Our first stability result is for the forward Euler scheme which requires the strongest 2-CFL condi-
tion.

Forward Euler method

Lemma 4.20 (Stability for RK1). Let {unh}n be the forward Euler approximation of (4.1). Then, under
the 2-CFL condition (4.46), the following results hold:

i) In the case of centered fluxes,

∥unh∥2
V ≤ C1 (∥u0

h∥2
V + 3τ

n−1

∑
m=0

∥gmh ∥2
V ) . (4.47)

ii) In the case of upwind fluxes,

∥unh∥2
V + 2τ

n−1

∑
m=0

∣umh ∣2S ≤ C ′
1 (∥u0

h∥2
V + 3τ

n−1

∑
m=0

∥gmh ∥2
V ) . (4.48)

The constants are C1 = exp ((1 + 2(Ccf
h )2%′′)tn) and C ′

1 = exp ((1 + 2(Cupw
h )2%′′)tn).
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Remark 4.21 Note that tn ≤ T guarantees that the constants C1 and C ′
1 are uniformly bounded w. r. t.

τ (and clearly also w. r. t. h). Furthermore, recall that by the boundedness of the projection operator
(3.59) we have ∥u0

h∥V ≤ ∥u0∥V and ∥gmh ∥V ≤ ∥g(tm)∥V . In summary, the inequalities (4.47) and
(4.48) guarantee the continuous dependency of the fully discrete solution on the initial value u0 and
the source term g independent of both h and τ . However, the stability constants depend exponentially
on the 2-CFL condition constant %′′ and on the constants Ccf

h and Cupw
h . ◇

Proof: We recall the energy identity (4.27) for the forward Euler method:

∥un+1
h ∥2

V + 2τ(unh,Ahunh)V = ∥unh∥2
V + 2τ(unh, gnh)V + ∥τAhunh − τgnh∥2

V .

We apply the Cauchy-Schwarz inequality and Young’s inequality to the second term of the RHS and
the triangle inequality and Young’s inequality to the last term,

∥un+1
h ∥2

V + 2τ(unh,Ahunh)V ≤ ∥unh∥2
V + τ∥unh∥2

V + τ∥gnh∥2
V + 2∥τAhunh∥2

V + 2∥τgnh∥2
V .

The term ∥τAhunh∥2
V can be estimated with the bound (4.2) of the discrete operator Ah,

∥un+1
h ∥2

V + 2τ(unh,Ahunh)V ≤ ∥unh∥2
V + τ∥unh∥2

V + (1 + 2τ)τ∥gnh∥2
V + 2C2

hc
2
∞τ

2h−2∥unh∥2
V .

Applying the 2-CFL condition and using (1 + 2τ) ≤ 3 then yields

∥un+1
h ∥2

V − ∥unh∥2
V + 2τ(unh,Ahunh)V ≤ 3τ∥gnh∥2

V + (1 + 2C2
h%

′′)τ∥unh∥2
V . (4.49)

Let us denote C0 ∶= 1 + 2C2
h%

′′. Summing (4.49) from 0 to n − 1 gives

∥unh∥2
V + 2τ

n−1

∑
m=0

(umh ,Ahumh )V ≤ ∥u0
h∥2
V + 3τ

n−1

∑
m=0

∥gmh ∥2
V +C0τ

n−1

∑
m=0

∥umh ∥2
V , (4.50)

which obviously implies

∥unh∥2
V ≤ ∥u0

h∥2
V + 3τ

n−1

∑
m=0

∥gmh ∥2
V +C0τ

n−1

∑
m=0

∥umh ∥2
V .

This inequality meets the assumptions of the discrete Gronwall Lemma A.5 and its application provides
the estimate

∥unh∥2
V ≤ eC0nτ (∥u0

h∥2
V + 3τ

n−1

∑
m=0

∥gmh ∥2
V ) .

Inserting this bound in the RHS of (4.50) shows

∥unh∥2
V + 2τ

n−1

∑
m=0

(umh ,Ahumh )V ≤ ∥u0
h∥2
V + 3τ

n−1

∑
m=0

∥gmh ∥2
V +C0τ

n−1

∑
m=0

[eC0mτ (∥u0
h∥2
V + 3τ

m−1

∑
l=0

∥glh∥2
V )] ,

which can be estimated by

∥unh∥2
V + 2τ

n−1

∑
m=0

(umh ,Ahumh )V ≤ (1 +C0τ
n−1

∑
m=0

eC0mτ)(∥u0
h∥2
V + 3τ

n−1

∑
m=0

∥gmh ∥2
V ) .

Note that the sum τ ∑n−1
m=0 e

C0mτ is a lower sum of the monotonically increasing function eC0t and thus
we can deduce

τ
n−1

∑
m=0

eC0mτ ≤ ∫
tn

0
eC0s ds = C−1

0 (eC0tn − 1) .

Combining the last two inequalities yields

∥unh∥2
V + 2τ

n−1

∑
m=0

(umh ,Ahumh )V ≤ eC0tn (∥u0
h∥2
V + 3τ

n−1

∑
m=0

∥gmh ∥2
V ) ,

whence (4.47) follows from the skew-adjointness of Acf
h and (4.48) from the dissipative property of

Aupw
h , see (3.64) and (3.65). ◻
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RK2 and RK3 methods We proceed with the higher order methods. For RK2 schemes we can prove
the stability analogously to RK1 schemes except that we can weaken the 2-CFL condition to the 4/3-
CFL condition. The stability proof of RK3 schemes requires more attention but this is paid off with the
necessity of only the usual CFL condition. For the sake of clarity we omit from now writing out the
constants and use a generic constant C which is independet of τ and h but can depend on g, u, the
constants in Lemmata 3.28, 3.32, 3.35, the RK coefficients and the CFL constants. The value of C can
change at each occurance.

We begin by a short technical lemma.

Lemma 4.22 (Bounds for Un1
h , Un2

h , Rn2 , Rn3 and the Peano kernels).

i) For Un1
h and Un2

h the following bounds hold,

∥Un1
h ∥2

V ≤C(∥unh∥2
V + ∥gnh∥2

V ), (4.51)

∥Un2
h ∥2

V ≤C(∥unh∥2
V + ∥gnh∥2

V + ∥τ∂tgnh∥2
V ). (4.52)

ii) For x ∈ [0,1] the Peano kernels are bounded by

sup
s∈[tn,tn+1]

∣κ(q)
x,p (

s − tn
τ

)∣ ≤ 1

(p − q)!x
p−q, ∀q ≤ p. (4.53)

iii) Let gh ∈ C2(0, T ;Vh) in the RK2 case and gh ∈ C3(0, T ;Vh) in the RK3 case. Then, the
remainder terms can be estimated by

∥Rn2 ∥2
V ≤ Cτ3

tn+1

∫
tn

∥∂ttgh(s)∥2
V ds, (4.54)

and

∥Rn3 ∥2
V ≤ Cτ5

tn+1

∫
tn

∥∂tttgh(s)∥2
V ds +Cτ5

tn+1

∫
tn

∥Ah(∂ttgh(s))∥2
V ds. (4.55)

Remark 4.23 Note that the estimate (4.54) together with the boundedness of πh imply

∥Rn2 ∥2
V ≤ Cτ3

tn+1

∫
tn

∥∂ttg(s)∥2
V ds.

In contrast, we need to apply the boundedness of Ah (4.2) and the usual CFL condition to the second
term in the estimate (4.55) in order to get

∥Rn3 ∥2
V ≤ Cτ5

tn+1

∫
tn

∥∂tttg(s)∥2
V ds +Cτ3

tn+1

∫
tn

∥∂ttg(s)∥2
V ds.

We observe the reduction by a factor τ2 in the second term. This does not spoil a stability result but
causes problems for the convergence, cf. Section 4.5. ◇
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Proof: i) Using the triangle inequality and Young’s inequality in (4.29) we infer

∥Un1
h ∥2

V ≤ C(∥unh∥2
V + ∥τAhunh∥2

V + ∥τgnh∥2
V ).

Furthermore, we apply the boundedness of Ah (4.2) and the usual CFL condition to the second term
and τ2 ≤ 1 to the third,

∥Un1
h ∥2

V ≤ C(∥unh∥2
V + ∥gnh∥2

V ).

This proves (4.51). The bound (4.52) is shown analogously.
ii) Let x ∈ [0,1]. It holds

∣κ(q)
x,p (

s − tn
τ

)∣ = 1

(p − q)! (
tn + τx − s

τ
)
p−q

+

,

which is a monotonically decreasing function on [tn, tn+1] and thus takes its maximum for s = tn.
iii) We use the bound on the Peano kernels (4.53) to infer

∥Rn2 ∥2
V ≤ Cτ2

⎛
⎜
⎝

tn+1

∫
tn

∥∂ttgh(s)∥V ds
⎞
⎟
⎠

2

≤ Cτ3

tn+1

∫
tn

∥∂ttgh(s)∥2
V ds,

where the second estimate is obtained with the Cauchy-Schwarz inequality. The bound forRn3 is proven
analogously. ◻

Now, we state the stability results for RK2 and RK3 methods.

Lemma 4.24 (Stability for RK2). Let {unh}n be a RK2 discretization of (4.1) and let

gn2 = ∥gnh∥2
V + ∥τ∂tgnh∥2

V + ∥Rn2 ∥2
V .

Then, under the 4/3-CFL condition (4.45), the following results hold:

i) In the centered fluxes case,

∥unh∥2
V ≤ C (∥u0

h∥2
V + τ

n−1

∑
m=0

gm2 ) . (4.56)

ii) In the upwind fluxes case,

∥unh∥2
V + τ

n−1

∑
m=0

[∣umh ∣2S + ∣Um1
h ∣2S] ≤ C (∥u0

h∥2
V + τ

n−1

∑
m=0

gm2 ) . (4.57)

Proof: We apply the Cauchy-Schwarz inequality and Young’s inequality to the RK2 energy identity
(4.32), which yields

∥un+1
h ∥2

V +τ(unh,Ahunh)V + τ(Un1
h ,AhU

n1
h )V

≤ ∥unh∥2
V +Cτ(∥unh∥2

V + ∥Un1
h ∥2

V ) +Cτ(∥gnh∥2
V + ∥τ∂tgnh∥2

V + ∥Rn2 ∥2
V )

+ 1

4
∥τ2A2

hu
n
h − τ2Ahg

n
h + τ2∂tg

n
h + 2τRn2 ∥2

V . (4.58)

For the last term we use the triangle inequality, Young’s inequality and the boundedness of Ah (4.2) to
infer

1

4
∥τ2A2

hu
n
h − τ2Ahg

n
h + τ2∂tg

n
h + 2τRn2 ∥2

V ≤C4
hc

4
∞τ

4h−4∥unh∥2
V +C2

hc
2
∞τ

2h−2∥τgnh∥2
V

+ ∥τ2∂tg
n
h∥2
V + ∥2τRn2 ∥2

V .
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We see that the first term requires the 4/3-CFL condition whereas for the second term we can use the
usual CFL condition. Then, we have

1

4
∥τ2A2

hu
n
h − τ2Ahg

n
h + τ2∂tg

n
h + 2τRn2 ∥2

V ≤ Cτ∥unh∥2
V +C∥τgnh∥2

V + ∥τ2∂tg
n
h∥2
V + ∥2τRn2 ∥2

V .

Inserting this inequality together with τ2 ≤ τ and (4.51) into (4.58) yields

∥un+1
h ∥2

V +τ(unh,Ahunh)V + τ(Un1
h ,AhU

n1
h )V

≤ ∥unh∥2
V +Cτ∥unh∥2

V +Cτ(∥gnh∥2
V + ∥τ∂tgnh∥2

V + ∥Rn2 ∥2
V ).

The rest of the proof proceeds analogously to the proof of Lemma 4.20 for the forward Euler method,
i. e. by summing from 0 to n − 1 and applying the discrete Gronwall lemma. This gives

∥unh∥2
V +τ

n−1

∑
m=0

[(umh ,Ahumh )V + (Um1
h ,AhU

m1
h )V ]

≤eCnτ (∥u0
h∥2
V +Cτ

n−1

∑
m=0

[∥gmh ∥2
V + ∥τ∂tgmh ∥2

V + ∥Rn2 ∥2
V ]) .

Then, (4.56) follows by the skew-adjointness of Acf
h and (4.57) follows by the dissipative property of

Aupw
h . ◻

Lemma 4.25 (Stability for RK3). Let {unh}n be a RK3 discretization of (4.1) and let

gn3 = ∥gnh∥2
V + ∥τ∂tgnh∥2

V + ∥τ2∂ttg
n
h∥2
V + ∥Rn3 ∥2

V .

i) In the centered fluxes case assume that the usual CFL condition (4.44) is satisfied with

%cf ≤
√

3

2
(Ccf

h )−1
.

Then, there holds

∥unh∥2
V ≤ C (∥u0

h∥2
V + τ

n−1

∑
m=0

gm3 ) . (4.59)

ii) In the upwind fluxes case assume that the usual CFL condition (4.44) is satisfied with

%upw ≤ min
⎛
⎝

√
3

4
(Cupw

h )−1,
5

154
C−2

bnd

⎞
⎠
.

Then, there holds

∥unh∥2
V + τ

n−1

∑
m=0

[ 1

12
∣umh ∣2S +

1

3
∣Um1
h ∣2S +

1

12
∣Um2
h ∣2S] ≤ C (∥u0

h∥2
V + τ

n−1

∑
m=0

gm3 ) . (4.60)

Remark 4.26 We observe that the upwind case requires a stronger assumption on the parameter
% to infer stability. Revisiting the RK3 energy identity (4.37) this manifests in the term 1

3((τAhu
n
h −

τgnh), τAh(τAhunh − τgnh))V which vanishes in the centered fluxes case but is a non-negative quantity
which needs to be balanced in the upwind fluxes case . ◇



4.4. STABILITY 71

Proof: We apply the Cauchy-Schwarz inequality and Young’s inequality to the RK3 energy identity
(4.37), which yields

∥un+1
h ∥2

V +τ(unh,Ahunh)V +
1

3
τ(Un1

h ,AhU
n1
h )V

+ 2

3
τ(Un2

h ,AhU
n2
h )V +

1

12
∥τ2A2

hu
n
h − τ2Ahg

n
h + τ2∂tg

n
h∥2
V

≤ ∥unh∥2
V +

1

3
τ((τAhunh − τgnh),Ah(τAhunh − τgnh))V

+Cτ(∥unh∥2
V + ∥Un1

h ∥2
V + ∥Un2

h ∥2
V ) +Cτ(∥gnh∥2

V + ∥τ∂tgnh∥2
V + ∥τ2∂ttg

n
h∥2
V + ∥Rn3 ∥2

V )

+ 1

36
∥τ3A3

hu
n
h − τ3A2

hg
n
h + τ3Ah∂tg

n
h − τ3∂ttg

n
h − 6τRn3 ∥2

V . (4.61)

We split the last term using the triangle inequality and Young’s inequality into

1

18
∥τ3A3

hu
n
h − τ3A2

hg
n
h + τ3Ah∂tg

n
h∥2
V +

1

18
∥τ3∂ttg

n
h + 6τRn3 ∥2

V . (4.62)

Furthermore, we use the boundedness property (4.2) of Ah and the usual CFL condition to infer

1

18
∥τ3A3

hu
n
h − τ3A2

hg
n
h + τ3Ah∂tg

n
h∥ ≤

1

18
C2
h%

2∥τ2A2
hu

n
h − τ2Ahg

n
h + τ2∂tg

n
h∥2
V . (4.63)

The triangle inequality and Young’s inequality together with (4.63) show that (4.62) can be bounded by

1

18
C2
h%

2∥τ2A2
hu

n
h − τ2Ahg

n
h + τ2∂tg

n
h∥2
V +Cτ(∥τ2∂ttg

n
h∥2
V + ∥Rn3 ∥2

V ). (4.64)

Inserting (4.64) into (4.61) and using the bounds (4.51) and (4.52) on ∥Un1
h ∥2

V and ∥Un2
h ∥2

V in (4.61)
give

∥un+1
h ∥2

V +τ(unh,Ahunh)V +
1

3
τ(Un1

h ,AhU
n1
h )V

+ 2

3
τ(Un2

h ,AhU
n2
h )V +

1

12
∥τ2A2

hu
n
h − τ2Ahg

n
h + τ2∂tg

n
h∥2
V

≤ ∥unh∥2
V +

1

3
τ((τAhunh − τgnh),Ah(τAhunh − τgnh))V

+Cτ∥unh∥2
V +Cτ(∥gnh∥2

V + ∥τ∂tgnh∥2
V + ∥τ2∂ttg

n
h∥2
V + ∥Rn3 ∥2

V )

+ 1

18
C2
h%

2∥τ2A2
hu

n
h − τ2Ahg

n
h + τ2∂tg

n
h∥2
V . (4.65)

i) Centered fluxes case: Owing to the skew-ajointness of the centered fluxes operator Acf
h , see (3.64),

we can considerably simplify (4.65). In fact, there holds

∥un+1
h ∥2

V +
1

12
∥τ2(Acf

h )2unh − τ2Acf
h g

n
h + τ2∂tg

n
h∥2
V

≤ ∥unh∥2
V +Cτ∥unh∥2

V +Cτ(∥gnh∥2
V + ∥τ∂tgnh∥2

V + ∥τ2∂ttg
n
h∥2
V + ∥Rn3 ∥2

V )

+ 1

18
(Ccf

h )2%2∥τ2(Acf
h )2unh − τ2Acf

h g
n
h + τ2∂tg

n
h∥2
V .

Requiring % ≤
√

3
2(C

cf
h )−1 enables us to balance the last term with its counterpart on the LHS. Then,

we have

∥un+1
h ∥2

V − ∥unh∥2
V ≤ Cτ∥unh∥2

V +Cτ(∥gnh∥2
V + ∥τ∂tgnh∥2

V + ∥τ2∂ttg
n
h∥2
V + ∥Rn3 ∥2

V ).

Summing this inequality from 0 to n−1 and subsequently applying the discrete Gronwall lemma implies
assertion (4.59).
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ii) Upwind fluxes case: We consider again equation (4.65) but this time we use the dissipative property
(3.65) of the upwind fluxes operator Aupw

h . This yields

∥un+1
h ∥2

V +τ ∣unh ∣2S +
1

3
τ ∣Un1

h ∣2S +
2

3
τ ∣Un2

h ∣2S +
1

12
∥τ2(Aupw

h )2unh − τ2Aupw
h gnh + τ2∂tg

n
h∥2
V

≤ ∥unh∥2
V +Cτ∥unh∥2

V +
1

3
τ ∣τAupw

h unh − τgnh ∣2S
+Cτ(∥gnh∥2

V + ∥τ∂tgnh∥2
V + ∥τ2∂ttg

n
h∥2
V + ∥Rn3 ∥2

V )

+ 1

18
(Cupw

h )2%2∥τ2(Aupw
h )2unh − τ2Aupw

h gnh + τ2∂tg
n
h∥2
V . (4.66)

In contrast to the centered fluxes case we now have to additionally balance the term 1
3τ ∣τAhu

n
h−τgnh ∣2S .

We have τAhunh − τgnh = unh −Un1
h and thus could estimate it by the weighted Young’s inequality as

1

3
τ ∣τAhunh − τgnh ∣2S ≤

1

3
τ(1 + γ)∣unh ∣2S +

1

3
τ(1 + γ−1)∣Un1

h ∣2S ,

for a positive number γ. But, by revisiting (4.66) we realize that we cannot cancel 1
3τ(1 + γ

−1)∣Un1
h ∣2S

for any choice of γ. Thus, we additionally incorporate the term Un2
h by

unh −Un1
h =(unh −Un2

h ) + (Un2
h −Un1

h )

=(unh −Un2
h ) + 1

2
(τ2(Aupw

h )2unh − τ2Aupw
h gnh + τ2∂tg

n
h) .

Consequently, we get with the weighted Young’s inequality

1

3
τ ∣τAhunh − τgnh ∣2S ≤

1

3
τ(1 + γ1)∣unh −Un2

h ∣2S

+ 1

12
τ(1 + γ−1

1 ) ∣τ2(Aupw
h )2unh − τ2Aupw

h gnh + τ2∂tg
n
h ∣

2

S
,

for a positive number γ1. Applying the weighted Young’s inequality once more on the first term with
γ2 > 0 and using the bound (3.24) on the S-seminorm in the second term eventually gives

1

3
τ ∣τAhunh − τgnh ∣2S ≤

1

3
τ(1 + γ1)(1 + γ2)∣unh ∣2S +

1

3
τ(1 + γ1)(1 + γ−1

2 )∣Un2
h ∣2S

+ 1

12
C2

bndc∞h
−1τ(1 + γ−1

1 )∥τ2(Aupw
h )2unh − τ2Aupw

h gnh + τ2∂tg
n
h∥2
V . (4.67)

In view of the LHS of (4.66) we choose γ1 = 5
72 and γ2 = 11

7 so that 1
3(1 + γ1)(1 + γ2) = 11

12 and
1
3(1 + γ1)(1 + γ−1

2 ) = 7
12 . Furthermore, we apply the usual CFL condition to the last term of (4.67) and

get

1

3
τ ∣τAhunh − τgnh ∣2S ≤

11

12
τ ∣unh ∣2S +

7

12
∣Un2
h ∣2S +

77

60
C2

bnd%∥τ2(Aupw
h )2unh − τ2Aupw

h gnh + τ2∂tg
n
h∥2
V

(4.68)

Finally we insert (4.68) into (4.66), which unfolds

∥un+1
h ∥2

V +
1

12
τ ∣unh ∣2S +

1

3
τ ∣Un1

h ∣2S +
1

12
τ ∣Un2

h ∣2S +
1

12
∥τ2(Aupw

h )2unh − τ2Aupw
h gnh + τ2∂tg

n
h∥2
V

≤∥unh∥2
V +Cτ∥unh∥2

V +Cτ (∥gnh∥2
V + ∥τ∂tgnh∥2

V + ∥τ2∂ttg
n
h∥2
V + ∥Rn3 ∥2

V )

+ ( 1

18
(Cupw

h )2%2 + 77

60
C2

bnd%) ∥τ2(Aupw
h )2unh − τ2Aupw

h gnh + τ2∂tg
n
h∥2
V .

By choosing % ≤ min(
√

3
4(C

upw
h )−1, 5

154C
−2
bnd) we get rid of the last term and obtain

∥un+1
h ∥2

V +
1

12
τ ∣unh ∣2S +

1

3
τ ∣Un1

h ∣2S +
1

12
τ ∣Un2

h ∣2S
≤∥unh∥2

V +Cτ∥unh∥2
V +Cτ(∥gnh∥2

V + ∥τ∂tgnh∥2
V + ∥τ2∂ttg

n
h∥2
V + ∥Rn3 ∥2

V ).
The assertion now follows by summing from 0 to n − 1 and applying the discrete Gronwall lemma. ◻
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4.5 Convergence

In this section we prove that an s-stage RK method applied to the semi-discrete evolution equation (4.1)
yields a convergent approximation of Maxwell’s equations (1.35). In Chapter 3 we have already proven
the convergence of the semi-discretization (4.1) with order hk and hh+1/2 for centered and upwind
fluxes, respectively. So far, we have shown the stability of the full-discretization and we recall that for
the semi-discrete case stability already ensured convergence of suboptimal order hk. We prove that
this stays true for the fully discrete case. In fact, we show that we can directly deduce the convergence
of order hk + τ s from the stability results. Last, we improve this bound to the order hk+1/2 + τ s for the
upwind case.

4.5.1 Error Analysis

We recall that in Section 3.6.1 we have introduced the spatial discretization errors ecf(t) = u(t)−ucf
h (t)

and eupw(t) = u(t) − uupw
h (t), where u is the exact solution of Maxwell’s equations (1.35) and ucf

h ,
uupw
h are the solutions of the semi-discretizations (3.66) and (3.67). In addition, we recall that we

splitted the errors into a projection error and a dG error, e(t) = eπ(t) − eh(t) with e ∈ {ecf , eupw} and
eh ∈ {ecf

h , e
upw
h }. In the following definition we transfer this quantities to the fully discrete case. We

refer to the general semi-discrete evolution problem (4.1) and only distinguish the cases Ah = Acf
h and

Ah = Aupw
h when necessary.

Definition 4.27 (Error types). Let u(t) ∈ V⋆ denote the exact solution of (1.35) and {unh}n denote the
RK approximation of (4.1). We define the full discretization error

en ∶= u(tn) − unh.

Furthermore, we split the error into two parts

en = enπ − enh,

where enπ is the projection error at time tn,

enπ ∶= u(tn) − πhu(tn),

and enh is given as
enh ∶= unh − πhu(tn).

In Lemma 3.32 we have proven the bound ∥enπ∥V ≤ Chk+1∣u(tn)∣Hk+1(Th)
6 for the projection error

provided the exact solution satisfies u ∈ Hk+1(Th)6. We define Bπ ∶= ∣u(tn)∣Hk+1(Th)
6 for later pur-

pose. Obviously, this error does not depend on the time discretization nor on the spatial discretization
scheme. It only depends on the choice of the discrete space Vh. Both time and spatial discretization
errors are containded in enh. Thus, our aim is to bound enh. We recall our approach for the spatial dis-
cretization error. We showed that the error eh(t) is governed by the same discrete evolution equation
as uh(t) but with the defect Aheπ(t) instead of a source term. This enabled us to use the stability
result to infer convergence.

The error recusions for the full-discretization rely on Taylor expansions of the projection of the
exact solution πhu(t) and the consistency property Ahu(t) = πhAu(t) of the discrete operators, see
Proposition 3.28. Indeed, we see by the consistency property that the projection of the exact solution
satisfies following evolution equation, cf. Lemma 3.33,

∂tπhu(t) = −Ahu(t) + gh(t). (4.69)

Clearly, this yields
∂ttπhu(t) = −Ah(∂tu(t)) + ∂tgh(t),
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or equivlanetly,
∂ttπhu(t) = −Ah(∂teπ(t) + ∂tπhu(t)) + ∂tgh(t).

Using (4.69) in the above equation we get

∂ttπhu(t) = A2
hu(t) −Ah(∂teπ(t)) −Ahgh(t) + ∂tgh(t). (4.70)

Differentiating (4.69) twice w. r. t. t gives

∂tttπhu(t) = −Ah(∂tteπ(t) + ∂ttu(t)) + ∂ttgh(t),

and applying (4.70) yields

∂tttπhu(t) = −A3
hu(t) +A2

h(∂teπ(t)) −Ah(∂tteπ(t)) +A2
hgh(t) −Ah(∂tgh(t)) + ∂ttgh(t). (4.71)

We will need this identities to derive error recursions for the RK methods. We begin with the forward
Euler method.

Forward Euler method

Lemma 4.28 (Error recursion for RK1). Let u ∈ C2(0, T ;V ) ∩ C(0, T ;V⋆) denote the exact solution
of (1.35) and {unh}n denote the forward Euler approximation of the semi-discrete problem (4.1). Then,
the following error recursion holds

en+1
h = enh − τAhenh + τAhenπ + τDn

1 , (4.72)

where the defect Dn
1 is given as

Dn
1 = −

tn+1

∫
tn

κ1,1 (
s − tn
τ

)πh(∂ttu(s))ds.

We see that the error satisfies the RK1 recursion (4.13) where the source term is substituted by
τAhe

n
π + τDn

1 .

Proof: We write the exact solution as first order Taylor expansion,

u(tn+1) = u(tn) + τ∂tu(tn) + τ
tn+1

∫
tn

κ1,1 (
s − tn
τ

)∂ttu(s)ds.

Projecting onto Vh then gives

πhu(tn+1) = πhu(tn) + τ∂tπhu(tn) − τDn
1 .

Using the consistency equation (4.69) we see that this is equivalent to

πhu(tn+1) = πhu(tn) − τAhu(t) + τgnh − τDn
1 . (4.73)

Subtracting (4.73) from the RK1 recursion (4.13) yields

en+1
h = enh + τAhen + τDn

1 , (4.74)

whence the assertion follows by splitting the error in Ahen = Ah(enπ − enh). ◻
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RK2 methods We introduce errors similar to Definition 4.27 associated with Un1
h .

Definition 4.29 Let u(t) ∈ V⋆ denote the exact solution of (1.35). We define

Un1
π ∶= πhu(tn) + τ∂tπhu(tn).

Furthermore, we define the error En1 as

En1 ∶= u(tn) + τ∂tu(tn) −Un1
h ,

and split it into two parts
En1 ∶= En1

π −En1
h .

The first error En1
π is given as

En1
π ∶= u(tn) + τ∂tu(tn) −Un1

π ,

and the second error En1
h is given as

En1
h ∶= Un1

h −Un1
π .

Using (4.29) and (4.69) we see that there holds

En1
h =unh − τAhunh + gnh − πhu(tn) − τ∂tπhu(tn) = unh − πhu(tn) + τAhu(tn) − τAhunh.

Thus, we have

En1
h = enh + τAhen = enh − τAhenh + τAhenπ. (4.75)

We see that En1
h is the error of the forward Euler approximation without the defect Dn

1 . Now, we state
the RK2 error recursion.

Lemma 4.30 (Error recursion for RK2). Let u ∈ C3(0, T ;V )∩C(0, T ;V⋆) denote the exact solution of
(1.35) and {unh}n denote a RK2 approximation of the semi-discrete problem (4.1). Then, the following
error recursion holds

en+1
h = En1

h + 1

2
τAh(enh −En1

h ) + 1

2
τ2Ah(∂tenπ) + τDn

2 + τRn2 , (4.76)

where the defect Dn
2 is given as

Dn
2 = −τ

tn+1

∫
tn

κ1,2 (
s − tn
τ

)πh(∂tttu(s))ds.

Proof: We apply second order Taylor expansion to the exact solution,

u(tn+1) = u(tn) + τ∂tu(tn) +
1

2
τ2∂ttu(tn) + τ2

tn+1

∫
tn

κ1,2 (
s − tn
τ

)∂tttu(s)ds.

Projecting onto Vh and subsequently applying (4.70) yields

πhu(tn+1) =Un1
π + 1

2
τ2A2

hu(tn) −
1

2
τ2Ahg

n
h +

1

2
τ2∂tg

n
h −

1

2
τ2Ah(∂tenπ) − τDn

2 . (4.77)

Recall that we have shown in (4.30) that the RK2 approximations satisfies the following recursion

un+1
h = Un1

h + 1

2
τ2A2

hu
n
h −

1

2
τ2Ahg

n
h +

1

2
τ∂tg

n
h + τRn2 . (4.78)

Using Definition 4.29 we conclude that the difference between (4.78) and (4.77) is

en+1
h = En1

h − 1

2
τ2A2

he
n + 1

2
τ2Ah(∂tenπ) + τDn

2 + τRn2 .

From (4.75) we see τAhen = En1
h − enh, whence we infer the claim. ◻
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RK3 methods Similar to RK2 methods we define errors associated with Un2
h .

Definition 4.31 Let u(t) ∈ V⋆ denote the exact solution of (1.35). We define

Un2
π ∶= Un1

π + 1

2
τ2∂ttπhu(tn).

In addition, we introduce the error En2 as

En2 ∶= u(tn) + τ∂tu(tn) +
1

2
τ2∂ttu(tn) −Un2

h ,

and split it into two parts
En2 = En2

π −En2
h .

The first error En2
π is given as

En2
π ∶= u(tn) + τ∂tu(tn) +

1

2
τ2∂ttu(tn) −Un2

π ,

and the second error En2
h is given as

En2
π ∶= Un2

h −Un2
π .

Recalling the definition of Un2
h given in (4.33) we see that there holds

En2
h = Un1

h + 1

2
τAh(unh −Un1

h ) + 1

2
τ2∂tg

n
h −Un1

π − 1

2
τ2∂ttπhu(tn).

Plugging the definition of Un1
h , i. e. (4.29), and the identity (4.70) into the above equation we get

En2
h =Un1

h −Un1
π + 1

2
τ2A2

hu
n
h −

1

2
τ2Ahu(tn) +

1

2
τ2Ah(∂tenπ)

=En1
h − 1

2
τ2A2

he
n + 1

2
τ2Ah(∂tenπ)

=En1
h + 1

2
τAh(enh −En1

h ) + 1

2
τ2Ah(∂tenπ), (4.79)

where the third equality is obtained by (4.75). We observe that En2
h is the error of the RK2 approxima-

tion without remainder term Rn2 and without defect Dn
2 , see (4.76).

Lemma 4.32 (Error recursion for RK3). Let u ∈ C4(0, T ;V ) ∩ C(0, T ;V⋆) denote the exact solution
of (1.35) and let {unh}n denote a RK3 approximation of the semi-discrete problem (4.1). Then, the
following error recursion holds

en+1
h = En2

h + 1

3
τAh(En1

h −En2
h ) + 1

6
τ3Ah(∂ttenπ) + τDn

3 + τRn3 , (4.80)

where the defect Dn
3 is given as

Dn
3 = −τ2

tn+1

∫
tn

κ1,3 (
s − tn
τ

)πh(∂4
t u(s))ds.
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Proof: The third order Taylor approximation of u(tn+1) is given by

u(tn+1) = u(tn) + τ∂tu(tn) +
1

2
τ2∂ttu(tn) +

1

6
τ3∂tttu(tn) + τ3

tn+1

∫
tn

κ1,3 (
s − tn
τ

)∂4
t u(s)ds.

We project onto Vh and afterwards apply (4.71),

πhu(tn+1) =Un2
π − 1

6
τ3A3

hu(tn) +
1

6
τ3A2

hg
n
h −

1

6
τ3Ah(∂tgnh) +

1

6
τ3∂ttg

n
h

+ 1

6
τ3A2

h(∂tenπ) −
1

6
τ3Ah(∂ttenπ) − τDn

3 .

We know from Lemma 4.17 that the RK3 recursion can be stated as

un+1
h = Un2

h − 1

6
τ3A3

hu
n
h +

1

6
τ3A2

hg
n
h −

1

6
τ3Ah(∂tgnh) +

1

6
τ3∂ttg

n
h + τRn3 .

Subtracting the last two equations and using Definition 4.31 gives

en+1
h =En2

h + 1

6
τ3A3

he
n − 1

6
τ3A2

h(∂tenπ) −
1

6
τ3Ah(∂ttenπ) + τDn

3 + τRn3 .

The above equation can be rewritten as

en+1
h =En2

h + 1

3
τAh (

1

2
τ2A2

he
n − 1

2
τ2Ah(∂tenπ)) −

1

6
τ3Ah(∂ttenπ) + τDn

3 + τRn3 .

Hence, the claim is obtained by (4.79). ◻

We end this section by giving a bound for the defects.

Lemma 4.33 (Bound on defects). Under the respective assumptions in Lemmata 4.28, 4.30 and 4.32
the defects Dn

1 , Dn
2 and Dn

3 can be bounded by

∥Dn
s ∥2
V ≤ Cτ2s−1

tn+1

∫
tn

∥∂s+1
t u(s)∥2

V ds, s = 1,2,3. (4.81)

Proof: Let s ∈ {1,2,3} and note that we can write the defects as

Dn
s = τ s−1

tn+1

∫
tn

κ1,s (
s − tn
τ

)πh(∂s+1
t u(s))ds.

According to (4.53) the Peano kernels are bounded by

sup
s∈(tn,tn+1)

∣κ1,s (
s − tn
τ

)∣ = 1

s!
.

Thus, we can deduce with (3.59) and the Cauchy-Schwarz inequality that it holds

∥Dn
s ∥2
V ≤ Cτ2s−2

⎛
⎜
⎝

tn+1

∫
tn

∥∂s+1
t u(s)∥V ds

⎞
⎟
⎠

2

≤ Cτ2s−1

tn+1

∫
tn

∥∂s+1
t u(s)∥2

V ds.

◻
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4.5.2 Centered Fluxes Case

In the previous section we have proven that the error en+1
h satisfies the same type of recurion as the RK

approximation un+1
h . This enables us to apply the stability results obtained in Section 4.4 to the error

and allows to prove convergence of order hk + τ s. Therefore, we consider only the centered fluxes
case here. Thus, by writing Ah we mean throughout this section Acf

h .
We begin by stating the stability results for the error.

Lemma 4.34 (Stability for error). Let {enh}n be the error sequence of an s-stage RK approximation of
the semi-discrete problem (4.1).

i) For the forward Euler method let the 2-CFL condition (4.46) be satisfied. Then, there holds

∥enh∥2
V ≤ Cτ

n−1

∑
m=0

∥Ahemπ +Dm
1 ∥2

V . (4.82)

ii) For a RK2 method let the 4/3-CFL condition (4.45) be satisfied. Then, there holds

∥enh∥2
V ≤ Cτ

n−1

∑
m=0

[∥Ahemπ ∥2
V + ∥τAh(∂temπ )∥2

V + ∥Dm
2 +Rm2 ∥2

V ] (4.83)

iii) For a RK3 method let the usual CFL condition (4.44) with % ≤
√

3
2(C

cf
h )−1 be satisfied. Then,

there holds

∥enh∥2
V ≤ Cτ

n−1

∑
m=0

[∥Ahemπ ∥2
V + ∥τAh(∂temπ )∥2

V + ∥τ2Ah(∂ttemπ )∥2
V + ∥Dm

3 +Rm3 ∥2
V ] (4.84)

Proof: This immediately follows from the error recursions and the stability results, see Lemmata 4.28-
4.32 and Lemmata 4.20, 4.24, 4.25, and the fact that e0

h = 0. ◻

Now, we prove convergence starting with the forward Euler method.

Forward Euler method

Theorem 4.35 (Convergence for RK1). Let u ∈ C2(0, T ;V ) ∩C(0, T ;V⋆,k+1) denote the exact solu-
tion of (1.35) and {unh}n denote the forward Euler approximation of the semi-discrete problem (4.1).
Then, under the 2-CFL condition (4.46), there holds

∥en∥2
V ≤ C(τ2B1 + h2kB′

1 + h2k+2Bπ),

with

B1 =
tn

∫
0

∥∂ttu(s)∥2
V ds, B′

1 = τ
n−1

∑
m=0

∣u(tm)∣2Hk+1(Th)
6 .

Proof: We use the triangle inequality and Young’s inequality in the stability estimate (4.82) ton infer

∥enh∥2
V ≤ Cτ

n−1

∑
m=0

[∥Ahemπ ∥2
V + ∥Dm

1 ∥2
V ] ≤ C (τ

n−1

∑
m=0

∥Ahemπ ∥2
V + τ2B1) .

Thereby, the second inequality is obtained with Lemma 4.33. Furthermore, the boundedness of Ah
and the bounds for the projection errors, see Theorem 4.1 and Lemma 3.32, imply

∥Ahemπ ∥2
V ≤ Ch−2∥emπ ∥2

V ≤ Ch2k∣u(tm)∣2Hk+1(Th)
6 , (4.85)
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and we deduce
∥enh∥2

V ≤ C(τ2B1 + h2kB′
1). (4.86)

Last, we split the full error using Young’s inequality,

∥en∥2
V ≤ C(∥enh∥2

V + ∥enπ∥2
V ) ≤ C∥enh∥2

V +Ch2k+2Bπ,

where the second inequality is obtained from Lemma 3.32. Inserting (4.86) yields the claim. ◻

Convergence of RK2 methods is shown analogously.

RK2 methods

Theorem 4.36 (Convergence for RK2). Let u ∈ C3(0, T ;V ) ∩ C1(0, T ;Hk(Th)6) ∩ C(0, T ;V⋆,k+1)
denote the exact solution of (1.35) with source term g ∈ C2(0, T ;V ). Furthermore, let {unh}n denote a
RK2 approximation of the semi-discrete problem (4.1). Then, under the 4/3-CFL condition (4.45), there
holds

∥en∥2
V ≤ C(τ4B2 + h2kB′

2 + h2k+2Bπ),
where

B2 =
tn

∫
0

∥∂ttg(s)∥2
V + ∥∂tttu(s)∥2

V ds,

and

B′
2 = τ

n−1

∑
m=0

[∣u(tm)∣2Hk+1(Th)
6 + ∣∂tu(tm)∣2Hk(Th)

6] .

Proof: We bound the three terms on the RHS of the stability result (4.83). In (4.85) we already derived
a bound for the first term and Lemmata 4.33 and 4.22 provide bounds for the terms Dn

2 and Rn2 . This
yields

∥enh∥2
V ≤ C (τ4B2 + τ

n−1

∑
m=0

[h2k∣u(tm)∣Hk+1(Th)
6 + ∥τAh(∂temπ )∥2

V ]) .

The remaining term is bounded using the boundedness property (4.2) of Ah together with the CFL
condition and Lemma 3.32,

∥τAh(∂temπ )∥2
V ≤ C∥∂temπ ∥2

V ≤ Chk∣∂tu(tn)∣2Hk(Th)
6 . (4.87)

We conclude
∥enh∥2

V ≤ C(τ4B2 + h2kB′
2).

The bound for the full error is obtained analogously to the previous theorem. ◻

RK3 methods We revisit the stability result for the error of RK3 methods given in Lemma 4.34 and
observe with Lemma 4.17 that the remainder τRn3 contains a term involving Ah(∂ttgh). In Lemma
4.22 we have shown the bound

∥Rn3 ∥2
V ≤ Cτ5

tn+1

∫
tn

∥∂tttgh(s)∥2
V ds +Cτ5

tn+1

∫
tn

∥Ah(∂ttgh(s))∥2
V ds,

and pointed out that requiring solely g ∈ C3(0, T ;V ) admits only the bound

∥Rn3 ∥2
V ≤ Cτ5

tn+1

∫
tn

∥∂tttg(s)∥2
V ds +Cτ3

tn+1

∫
tn

∥∂ttg(s)∥2
V ds.

This would lead to an order reduction from τ3 to τ2. It is possible to avoid this reduction but we have
to require more regularity from the source term.
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Proposition 4.37 (Regularity and bound for the source term). Let g ∈ C3(0, T ;V ) ∩ C2(0, T ;V⋆).
Then, there holds

∥Rn3 ∥2
V ≤ Cτ5

tn+1

∫
tn

∥∂tttg(s)∥2
V ds +Cτ5

tn+1

∫
tn

∣∂ttg(s)∣2H1(Th)
6 ds. (4.88)

Remark 4.38 We recall that V⋆ = D(A) ∩ H1(Th)6 and that a function v = [H,E]T ∈ D(A) has
zero tangential component on the boundary, i. e. n × E∣∂Ω = 0. Thus, the regularity assumption in
Proposition 4.37 does not only concern the smoothness of the source term but also requires a (weak)
boundary condition from. ◇

Proof: The bound on the first term is clear. For the second term we use a result proven in [16, Theorem
6.2], namely that there holds for all v ∈ V⋆

∥Ahπhv − πhAv∥V ≤ C ∣v∣H1(Th)
6 , (4.89)

with a constant independent of h. This enables the following estimate

∥Ah(∂ttgh(s))∥V =∥Ah(πh∂ttg(s))∥V
≤∥Ah(πh∂ttg(s)) − πhA(∂ttg(s))∥V + ∥πhA(∂ttg(s))∥V
≤C ∣∂ttg(s)∣H1(Th)

6 + ∥A(∂ttg(s))∥V .

For the second term we can use the bounds obtained in Proposition 3.28, namely

∥A(∂ttg(s))∥V ≤ C(∥∇h × ∂ttg(s)∥V + h−1/2∣∂ttg(s)∣S).

From ∂ttg ∈ V⋆ it follows ∣∂ttg(s)∣S = 0, see (3.45), and clearly we have ∥∇h × ∂ttg(s)∥V ≤
∣∂ttg(s)∣H1(Th)

6 , which concludes the proof. ◻

Now we can prove convergence.

Theorem 4.39 (Convergence for RK3). Let u ∈ C4(0, T ;V ) ∩ C2(0, T ;Hk−1(Th)6) ∩
C1(0, T ;Hk(Th)6) ∩ C(0, T ;V⋆,k+1) denote the exact solution of (1.35) with source term g ∈
C3(0, T ;V )∩C2(0, T ;V⋆). Furthermore, let {unh}n denote a RK3 approximation of the semi-discrete
problem (4.1). Assume that the step size satisies the usual CFL condition (4.44) with

% ≤
√

3

2
(Ccf

h )−1.

Then, there holds
∥en∥2

V ≤ C (τ6B3 + h2kB′
3 + h2k+2Bπ) ,

where

B3 =
tn

∫
0

∣∂ttg(s)∣2H1(Th)
6 + ∥∂tttg(s)∥2

V + ∥∂4
t u(s)∥2

V ds,

and

B′
3 = τ

n−1

∑
m=0

[∣u(tm)∣2Hk+1(Th)
6 + ∣∂tu(tm)∣2Hk(Th)

6 + ∣∂ttu(tm)∣2Hk−1(Th)
6] .
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Proof: We bound the four terms in the stability result (4.84). Therefore, we apply (4.85) to the first term,
(4.87) to the second term and Propostion 4.37 and Lemma 4.22 to the last. This yields

∥enh∥2
V ≤ C (τ6B3 + τ

n−1

∑
m=0

[∣u(tm)∣2Hk+1(Th)
6 + ∣∂tu(tm)∣2Hk(Th)

6 + ∥τ2Ah(∂ttemπ )∥2
V ]) .

For the remaining term we apply the boundedness property (4.2) of Ah together with the usual CFL
condition and subsequently Lemma 3.32 to bound the projection error. This gives

∥τ2Ah(∂ttemπ )∥2
V ≤ Cτ2∥∂ttemπ ∥2

V ≤ Cτ2h2k−2∣∂ttu(tm)∣2Hk−1(Th)
6 ≤ Ch2k∣∂ttu(tm)∣2Hk−1(Th)

6 ,

whence
∥enh∥2

V ≤ C(τ6B3 + h2kB′
3).

The result for the full error is obtained similar to Theorem 4.35. ◻

4.5.3 Upwind Fluxes Case

Now, we turn to the upwind fluxes case. So, let throughout this section denote Ah = Aupw
h . Our aim is

to prove convergence of order hk+1/2 + τ s which is not possible using the stability results from Lemma
4.34. Instead, we begin by the following energy identities for the errors.

Lemma 4.40 (Energy identities for errors). Let {enh}n denote the error sequence of an s-stage RK
approximation of the semi-discrete problem (4.1). Then, following energy identities hold:

i) For the forward Euler method:

∥en+1
h ∥2

V − ∥enh∥2
V + 2τ ∣enh ∣2S = 2τ(enh,AhE11

π +Dn
1 )V + ∥τAhenh − τAhenπ − τDn

1 ∥2
V . (4.90)

ii) For RK2 methods:

∥en+1
h ∥2

V − ∥enh∥2
V + τ ∣enh ∣2S + τ ∣En1

h ∣2S =τ(enh,AhE21
π )V + τ(En1

h ,AhE
22
π + 2(Dn

2 +Rn2 ))V

+ 1

4
∥τ2A2

he
n
h − τ2A2

he
n
π + τ2Ah(∂tenπ) + 2τ(Dn

2 +Rn2 )∥2
V .

(4.91)

iii) For RK3 methods:

∥en+1
h ∥2

V −∥enh∥2
V + τ ∣enh ∣2S +

1

3
τ ∣En1

h ∣2S +
2

3
τ ∣En2

h ∣2S +
1

12
∥τ2A2

he
n
h − τ2A2

he
n
π + τ2Ah(∂tenπ)∥2

V

=1

3
τ ∣τAhenh − τAhenπ ∣2S

+ τ(enh,AhE31
π )V +

1

3
τ(En1

h ,AhE
32
π )V +

2

3
τ(En2

h ,AhE
33
π + 3(Dn

3 +Rn3 ))V

+ 1

36
∥τ3A3

he
n
h − τ3A3

he
n
π + τ3A2

h(∂tenπ) − τ3Ah(∂ttenπ) − 6τ(Dn
3 +Rn3 )∥2

V . (4.92)

Thereby, the projection errors are given as

i) E11
π ∶= enπ,

ii) E21
π ∶= enπ, E22

π ∶= enπ + τ∂tenπ,

iii) E31
π ∶= enπ + 1

3τ∂te
n
π, E32

π ∶= enπ, E33
π ∶= enπ + τ∂tenπ + 1

2τ
2∂tte

n
π.
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Proof: This follows by applying the RK energy identities obtained in Lemmata 4.13, 4.16 and 4.18 to
their respective error recursion stated in Lemmata 4.28, 4.30 and 4.32. ◻

We observe that all three methods are featured by a certain structure of errors. Each type needs a
different handling.

Lemma 4.41 Let q ∈ {0,1,2} and assume that the exact solution of (1.35) satisfies u ∈
Cq(0, T ;Hk+1−q(Th)6). Then, under the usual CFL condition (4.44), we have for every γq > 0 the
bound

τ(enh,Ah(τ q∂
q
t e
n
π))V ≤ γqτ ∣enh ∣2S +Cτh2k+1∣∂qt u(tn)∣2Hk+1−q(Th)

6 . (4.93)

Remark 4.42 The proof of this lemma is based on Lemma 3.35 from Section 3.6. It was exactly
this lemma which enabled us to prove the better convergence rate hk+1/2 for the upwind case in the
semi-discrete case. ◇

Proof: From Lemma 3.35 we get

τ(enh,Ah(τ q∂
q
t e
n
π))V ≤ Cτh−1/2∣enh ∣S∥τ q∂

q
t e
n
π∥V ≤ Cτ1/2∣enh ∣S∥τ q∂

q
t e
n
π∥V ,

where the second estimate is gained with the usual CFL condition. We continue by applying the
weighted Young’s inequality with γq > 0 and Lemma 3.32,

τ(enh,Ah(τ q∂
q
t e
n
π))V ≤ γqτ ∣enh ∣2S +C∥τ q∂qt enπ∥2

V ≤ γqτ ∣enh ∣2S +Cτ2qh2k+2−2q ∣∂qt u(tn)∣2Hk+1−q(Th)
6 .

The assertion now follows by applying the usual CFL condition. ◻

Lemma 4.43 Let s ∈ {1,2,3}, q ∈ {0, . . . , s − 1} and assume that the exact solution of (1.35) satisfies
u ∈ Cq(0, T ;Hk+1−q(Th)6). Then, under the usual CFL condition (4.44), it holds

∥τ sAs−qh (∂qt enπ)∥2
V ≤ Cτh2k+1∣∂qt u(tn)∣2Hk+1−q(Th)

6 . (4.94)

Proof: We use the boundedness of Ah (4.2) and the bounds on the projection errors provided by
Lemma 3.32 to infer

∥τ sAs−qh (∂qt enπ)∥2
V ≤ τ2sh−2s+2qh2k+2−2q ∣∂qt u(tn)∣2Hk+1−q(Th)

6 = τ2sh2k+2−2s∣∂qt u(tn)∣2Hk+1−q(Th)
6 ,

whence the assertion follows with the usual CFL condition. ◻

This two Lemmata allow us to prove convergence for the forward Euler method and the RK2 methods.

Forward Euler method

Theorem 4.44 (Convergence for RK1). Let u ∈ C2(0, T ;V ) ∩C(0, T ;V⋆,k+1) denote the exact solu-
tion of (1.35) and {unh}n denote the forward Euler approximation of the semi-discrete problem (4.1).
Then, under the 2-CFL condition (4.46), there holds

∥en∥2
V + τ

n−1

∑
m=0

∣em∣2S ≤ C(τ2B1 + h2k+1B′
1 + h2k+2Bπ), (4.95)

where B1, B′
1 are defined in Theorem 4.35.
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Proof: We bound the two terms on the RHS of the forward Euler energy identity (4.90). For the first
term we use Lemma 4.41 with γ0 = 1/2 to get

2τ(enh,AhE11
π +Dn

1 )V ≤τ ∣enh ∣2S +Cτh2k+1∣u(tn)∣2Hk+1(Th)
6 + 2τ(enh,Dn

1 )V
≤τ ∣enh ∣2S + τ∥enh∥2

V + τ∥Dn
1 ∥2
V +Cτh2k+1∣u(tn)∣2Hk+1(Th)

6 , (4.96)

where the second inequality is obtained by the Cauchy-Schwarz inequality and Young’s inequality. The
second term can be splitted with the triangle inequality and Young’s inequality into

∥τAhenh − τAhenπ − τDn
1 ∥2
V ≤ C(∥τAhenh∥2

V + ∥τAhenπ∥2
V + ∥τDn

1 ∥2
V ).

Now, we apply the boundedness property (4.2) of Ah together with the 2-CFL condition to the first
term, Lemma 4.43 to the second term and use τ ≤ τ2 in the third term. Alltogether, this gives

∥τAhenh − τAhenπ − τDn
1 ∥2
V ≤ Cτ∥enh∥2

V +Cτ∥Dn
1 ∥2
V +Cτh2k+1∣u(tn)∣2Hk+1(Th)

6 . (4.97)

Inserting (4.96) and (4.97) in the energy identity (4.90) yields

∥en+1
h ∥2

V − ∥enh∥2
V + τ ∣enh ∣2S ≤ Cτ∥enh∥2

V +Cτ∥Dn
1 ∥2
V +Cτh2k+1∣u(tn)∣Hk+1(Th)

6 .

Summing this iequality from 0 to n − 1 and using e0
h = 0 and the bound on the defect (4.81) give

∥enh∥2
V + τ

n−1

∑
m=0

∣emh ∣2S ≤ Cτ
n−1

∑
m=0

∥emh ∥2
V +C(τ2B1 + h2k+1B′

1).

Hence, we infer by using the discrete Gronwall lemma analogously as in the proof of Lemma 4.20 that
there holds

∥enh∥2
V + τ

n−1

∑
m=0

∣emh ∣2S ≤ C(τ2B1 + h2k+1B′
1). (4.98)

This concludes the estimate for the error part enh. For the projection error enπ we use Lemmata 3.32 and
3.24 together with the usual CFL condition to infer

∥enπ∥2
V + τ

n−1

∑
m=0

∣emπ ∣2S ≤Ch2k+2∣u(tn)∣2Hk+1(Th)
6 +Ch2k+1τ

n−1

∑
m=0

∣u(tm)∣2Hk+1(Th)
6

=C(h2k+2Bπ + h2k+1B′
1). (4.99)

The estimate (4.95) now follows with Young’s inequality and the bounds (4.98) and (4.99). ◻

RK2 methods

Theorem 4.45 (Convergence for RK2). Let u ∈ C3(0, T ;V ) ∩ C1(0, T ;Hk(Th)6) ∩ C(0, T ;V⋆,k+1)
denote the exact solution of (1.35) with source term g ∈ C2(0, T ;V ). Further let {unh}n denote a
RK2 approximation of the semi-discrete problem (4.1). Then, under the 4/3-CFL condition (4.45), there
holds

∥en∥2
V + τ

n−1

∑
m=0

[∣em∣2S + ∣Em1∣2S] ≤ C(τ4B2 + h2k+1B′
2 + h2k+2Bπ), (4.100)

where B2 and B′
2 are defined in Theorem 4.36.
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Proof: We bound the three terms in the RK2 energy identity (4.91). The first two terms are bounded
by Lemma 4.41 with γ0 = γ1 = 1/2,

τ(enh,AhE21
π )V + τ(En1

h ,AhE
22
π + 2(Dn

2 +Rn2 ))V ≤ 1

2
τ ∣enh ∣2S +

1

2
τ ∣En1

h ∣2S + 2τ(En1
h ,Dn

2 +Rn2 )V

+Cτh2k+1 (∣u(tn)∣2Hk+1(Th)
6 + ∣∂tu(tn)∣2Hk(Th)

6) .

Applying further the Cauchy-Schwarz inequality and Young’s inequality show

τ(enh,AhE21
π )V + τ(En1

h ,AhE
22
π + 2(Dn

2 +Rn2 ))V ≤ 1

2
τ ∣enh ∣2S +

1

2
τ ∣En1

h ∣2S +Cτ∥En1
h ∥2

V

+Cτ (∥Dn
2 ∥2
V + ∥Rn2 ∥2

V )

+Cτh2k+1 (∣u(tn)∣2Hk+1(Th)
6 + ∣∂tu(tn)∣2Hk(Th)

6) .

Furthermore, the third term in (4.91) is splitted using Young’s inequality,

1

4
∥τ2A2

he
n
h−τ2A2

he
n
π + τ2Ah(∂tenπ) + 2τ(Dn

2 +Rn2 )∥2
V

≤C(∥τ2A2
he
n
h∥2
V + ∥τ2A2

he
n
π∥2
V + ∥τ2Ah(∂tenπ)∥2

V + ∥τDn
2 ∥2
V + ∥τRn2 ∥2

V ).

Now, the first term is bounded using (4.2) together with the 4/3-CFL condition, the second and third
term are bounded by Lemma 4.43 and for the last two terms τ2 ≤ τ is used. This yields the bound

1

4
∥τ2A2

he
n
h−τ2A2

he
n
π + τ2Ah(∂tenπ) + 2τ(Dn

2 +Rn2 )∥2
V

≤Cτ∥enh∥2
V +Cτ (∥Dn

2 ∥2
V + ∥Rn2 ∥2

V ) +Cτh2k+1 (∣u(tn)∣2Hk+1(Th)
6 + ∣∂tu(tn)∣2Hk(Th)

6) .

In addition, using the triangle inequality, Young’s inequality, the CFL condition and Lemma 4.43 we infer

τ∥En1
h ∥2

V ≤ Cτ∥enh∥2
V +Cτh2k+1∣u(tn)∣2Hk+1(Th)

6 .

Alltogether, we obtain

∥en+1
h ∥2

V −∥enh∥2
V +

1

2
τ ∣enh ∣2S +

1

2
τ ∣En1

h ∣2S

≤Cτ∥enh∥2
V +Cτ(∥Dn

2 ∥2
V + ∥Rn2 ∥2

V ) +Cτh2k+1 (∣u(tn)∣2Hk+1(Th)
6 + ∣∂tu(tn)∣2Hk(Th)

6) .

Summing from 0 to n − 1 and applying the discrete Gronwall lemma yields

∥enh∥2
V + τ

n−1

∑
m=0

[1

2
∣emh ∣2S +

1

2
∣Em1
h ∣2S] ≤ C(τ4B2 + h2k+1B′

2). (4.101)

The projection error part is bounded as in (4.99). Indeed, there holds

∥enπ∥2
V + τ

n−1

∑
m=0

[1

2
∣emπ ∣2S +

1

2
∣Em1
π ∣2S] ≤ C(h2k+2Bπ + h2k+1B′

2). (4.102)

Combining (4.101) and (4.102) concludes the proof. ◻

RK3 methods We end this chapter by proving the convergence for RK3 methods.

Theorem 4.46 (Convergence for RK3). Let u ∈ C4(0, T ;V ) ∩ C2(0, T ;Hk−1(Th)6) ∩
C1(0, T ;Hk(Th)6) ∩ C(0, T ;V⋆,k+1) denote the exact solution of (1.35) with source term g ∈
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C3(0, T ;V )∩C2(0, T ;V⋆). Furthermore, let {unh}n denote a RK3 approximation of the semi-discrete
problem (4.1). Assume that the step size satisies the usual CFL condition (4.44) with

% ≤ min
⎛
⎝

√
3

4
(Cupw

h )−1,
5

154
C−2

bnd

⎞
⎠
.

Then, there holds

∥en∥2
V + τ

n−1

∑
m=0

[ 1

24
∣em∣2S +

1

6
∣Em1∣2S +

1

24
∣Em2∣2S] ≤ C(τ6B3 + h2k+1B′

3 + h2k+2Bπ), (4.103)

where B3 and B′
3 are given in Theorem 4.39.

Proof: We bound the terms on the RHS of the RK3 energy identity (4.92). Therefore, we proceed in
two steps.
i) The first step is motivated by the stability proof of Lemma 4.25. We write the first term in (4.92) as

1

3
τ ∣τAhenh − τAhenπ ∣2S =

1

3
τ ∣(enh −En2

h ) + 1

2
(τ2A2

he
n
h − τ2A2

he
n
π + τ2Ah(∂tenπ))∣2S .

Applying the triangle inequality and weighted Young’s inequalities with γ̃1 = 5/72 and γ̃2 = 11/7 we can
draw the following estimate,

1

3
τ ∣τAhenh − τAhenπ ∣2S ≤

1

3
τ(1 + γ̃1)(1 + γ̃2)∣enh ∣2S +

1

3
τ(1 + γ̃1)(1 + γ̃−1

2 )∣En2
h ∣2S

+ 1

12
τ(1 + γ̃−1

1 )∣τ2A2
he
n
h − τ2A2

he
n
π + τ2Ah(∂tenπ)∣2S

=11

12
τ ∣enh ∣2S +

7

12
τ ∣En2

h ∣2S +
77

60
τ ∣τ2A2

he
n
h − τ2A2

he
n
π + τ2Ah(∂tenπ)∣2S .

The bound for the S-seminorm (3.56) combined with the usual CFL condition with % ≤ 5
154C

−2
bnd show

that the last term is bounded by

77

60
τ ∣τ2A2

he
n
h − τ2A2

he
n
π + τ2Ah(∂tenπ)∣2S ≤

1

24
∥τ2A2

he
n
h − τ2A2

he
n
π + τ2Ah(∂tenπ)∥2

V .

Hence, we deduce

1

3
τ ∣τAhenh − τAhenπ ∣2S ≤

11

12
τ ∣enh ∣2S +

7

12
τ ∣En2

h ∣2S +
1

24
∥τ2A2

he
n
h − τ2A2

he
n
π + τ2Ah(∂tenπ)∥2

V .

Next, we use Young’s inequality to split the last term in the energy identity (4.92) into

1

18
∥τ3A3

he
n
h − τ3A3

he
n
π + τ3A2

h(∂tenπ)∥2
V +

1

18
∥τ3Ah(∂ttenπ) + 6τ(Dn

3 +Rn3 )∥2
V .

For the first term we use the boundedness property (4.2) of Ah together with the usual CFL condition

with % ≤
√

3
4(C

upw
h )−1 to infer

1

18
∥τ3A3

he
n
h − τ3A3

he
n
π + τ3A2

h(∂tenπ)∥2
V ≤ 1

24
∥τ2A2

he
n
h − τ2A2

he
n
π + τ2Ah(∂tenπ)∥2

V .

In summary, we obtain

∥en+1
h ∥2

V −∥enh∥2
V +

1

12
τ ∣enh ∣2S +

1

3
τ ∣En1

h ∣2S +
1

12
τ ∣En2

h ∣2S

= τ(enh,AhE31
π )V +

1

3
τ(En1

h ,AhE
32
π )V +

2

3
τ (En2

h ,AhE
33
π + 3(Dn

3 +Rn3 ))V

+ 1

18
∥τ3Ah(∂ttenπ) + 6τ(Dn

3 +Rn3 )∥2
V . (4.104)
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ii) The second part is similar to the proof of Theorem 4.45. We apply Lemma 4.41 to the first three
terms on the RHS of (4.104) with γ0 = 1/24, γ1 = 1/2 and γ2 = 1/16. This yields

τ(enh,AhE31
π )V +

1

3
τ(En1

h ,AhE
32
π )V +

2

3
τ(En2

h ,AhE
33
π + 3(Dn

3 +Rn3 ))V

≤ 1

24
τ ∣enh ∣2S +

1

6
τ ∣En1

h ∣2S +
1

24
τ ∣En2

h ∣2S + 2τ(En2
h ,Dn

3 +Rn3 )V

+Cτh2k+1 (∣u(tm)∣2Hk+1(Th)
6 + ∣∂tu(tm)∣2Hk(Th)

6 + ∣∂ttu(tm)∣2Hk−1(Th)
6) . (4.105)

Plugging (4.105) into (4.104) unfolds

∥en+1
h ∥2

V −∥enh∥2
V +

1

24
τ ∣enh ∣2S +

1

6
τ ∣En1

h ∣2S +
1

24
τ ∣En2

h ∣2S

≤2τ(En2
h ,Dn

3 +Rn3 )V +
1

18
∥τ3Ah(∂ttenπ) + 6τ(Dn

3 +Rn3 )∥2
V

+Cτh2k+1 (∣u(tm)∣2Hk+1(Th)
6 + ∣∂tu(tm)∣2Hk(Th)

6 + ∣∂ttu(tm)∣2Hk−1(Th)
6) . (4.106)

Next, we split the first two terms on the RHS of (4.106). For the first term we use the Cauchy-Schwarz
inequality and Young’s inequality, whereas for second term we apply the triangle inequality and Young’s
inequality. This yields

2τ(En2
h ,Dn

3 +Rn3 )V +
1

18
∥τ3Ah(∂ttenπ) + 6τ(Dn

3 +Rn3 )∥2
V

≤ Cτ∥En2
h ∥2

V +Cτ(∥Dn
3 ∥2
V + ∥Rn3 ∥2

V ) +C∥τ3Ah(∂ttenπ)∥2
V

≤ Cτ∥En2
h ∥2

V +Cτ(∥Dn
3 ∥2
V + ∥Rn3 ∥2

V ) +Ch2k+1∣∂ttu(tm)∣2Hk−1(Th)
, (4.107)

where we used Lemma 4.43 in the second inequality. We continue by using the boundedness property
(4.2) of Ah together with the usual CFL condition and Lemma 4.43 to infer

τ∥En2
h ∥2

V ≤ Cτ∥enh∥2
V +Cτh2k+1 (∣u(tm)∣2Hk+1(Th)

6 + ∣∂tu(tm)∣2Hk(Th)
6) . (4.108)

Finally, inserting (4.107) and (4.108) into (4.106) gives

∥en+1
h ∥2

V −∥enh∥2
V +

1

24
τ ∣enh ∣2S +

1

6
τ ∣En1

h ∣2S +
1

24
τ ∣En2

h ∣2S
≤Cτ∥enh∥2

V +Cτ(∥Dn
3 ∥2
V + ∥Rn3 ∥2

V )

+Cτh2k+1 (∣u(tm)∣2Hk+1(Th)
6 + ∣∂tu(tm)∣2Hk(Th)

6 + ∣∂ttu(tm)∣2Hk−1(Th)
6) .

Summing from 0 to n − 1 gives

∥enh∥2
V + τ

n−1

∑
m=0

[ 1

24
∣enh ∣2S +

1

6
∣En1
h ∣2S +

1

24
∣En2
h ∣2S] ≤ Cτ

n−1

∑
m=0

∥emh ∥2
V +C(τ6B3 + h2k+1B′

3),

whence applying the discrete Gronwall lemma yields

∥enh∥2
V + τ

n−1

∑
m=0

[ 1

24
∣enh ∣2S +

1

6
∣En1
h ∣2S +

1

24
∣En2
h ∣2S] ≤ C(τ6B3 + h2k+1B′

3).

The projection errors are bounded similar to (4.99) and (4.102). Indeed, there holds

∥enπ∥2
V + τ

n−1

∑
m=0

[ 1

24
∣enπ ∣2S +

1

6
∣En1
π ∣2S +

1

24
∣En2
π ∣2S] ≤ C(h2k+2Bπ + h2k+1B′

3).

Hence, the claim follows with Young’s inequality and the two above estimates. ◻



Chapter 5

Implementation and Numerical Results

The last chapter is dedicated to numerical experiments which illustrate the theoretical results gained in
this thesis, in particular in Chapter 3 and 4. We begin by shortly giving an insight into aspects of im-
plementation. Then, we turn to numerical examples and confirm three main results of this thesis. First,
we confirm the energy identities. In fact, our numerical results demonstrate the conservative behaviour
of the centered fluxes discretization and the dissipative behaviour of the upwind fluxes discretization.
In addition, our results illustrate the anti-dissipative behaviour of RK2 methods and the dissipative be-
haviour of RK3 methods. Then, we turn to verifying the convergence results. Therefore, we first check
the convergence of the semi-discrete scheme and subsequently turn towards the convergence of the
full discretization. Our examples are based on the matlab code of Hesthaven and Warbuton, see [8,
Chapter 6], in a complemented version of Tomislav Pažur, see [16]. Additional examples with implicit
RK methods and TE Maxwell’s equations on a deformed domain can also be found in [16, Chapter 7].

5.1 Implementation of dG Methods

We start with the semi-discrete problem obtained in Chapter 3 by discretiziting Maxwell’s equations
with dG methods: We search uh(t) ∈ C1(0, T ;Vh) such that

mh(∂tuh(t), ϕh) + ah(uh(t), ϕh) = (g(t), ϕh)V ∀ϕh ∈ Vh. (5.1)

The bilinear form mh is given in (3.26) and accords with

mh(∂tuh(t), ϕh) = (∂tuh(t), ϕh)V . (5.2)

Furthermore, we have ah ∈ {acf
h , a

upw
h } depending on the choice of the flux; thereby, acf

h is given in
(3.33) and aupw

h in (3.41).
The problem (5.1) is accessible for computitional solving since it is set in the finite dimensional

space Vh. Owing to this fact, we can choose a basis of Vh consisting of finitely many vectors. Let us
denote this basis with Vh = {ϕ1, . . . , ϕN}. The dimension N of the space Vh is given in Section 2.1.3
and depends on the number of mesh elements and on the polynomial degree we work with in the dG
discretization. Since the dG approximation uh(t) is an element of the space Vh we deduce that there
is a (unique) coefficient vector uh(t) = [uh,1(t), . . . , uh,N(t)]T ∈ RN such that

uh(t) =
N

∑
m=1

uh,m(t)ϕm. (5.3)

Obviously, for equation (5.1) it is equivalent to hold for all ϕh ∈ Vh or to hold for all basis functions
ϕm ∈ Vh. Following this idea and further employing (5.2) and (5.3) we deduce that the problem

N

∑
m=1

(ϕm, ϕl)V u′h,m(t) +
N

∑
m=1

ah (ϕm, ϕl)uh,m(t) = (g(t), ϕl)V ∀l = 1, . . . ,N, (5.4)

is equivalent to (5.1). This motivates the following definition.

87
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Definition 5.1 (Mass and stiffness matrix). We define the mass matrix M ∈ RN×N by

M ∶= [(ϕm, ϕl)V ]Nl,m=1 , (5.5)

and the stiffness matrix A ∈ RN×N by

A ∶= [ah (ϕm, ϕl)]Nl,m=1 . (5.6)

Owing to the choice of the space Vh, both matrices are sparse. Furthermore, the mass matrix is
block diagonal and symmetric positive definite and thus invertible. For a deeper insight we refer to [17,
Appendix A]. We continue by defining

gh(t) ∶= [(g(t), ϕm)V ]Nm=1 ∈ R
N ,

and alltogether have derived the following equivalent formulation of (5.4)

Mu′h(t) +Auh(t) = gh(t).

Let us shortly reveal the connection between the source term gh(t) in our discretizations and gh(t).
Recall that we have defined gh(t) = πhg(t) and thus there holds

gh(t) = πhg(t) =
N

∑
m=1

(g(t), ϕm)V ϕm =
N

∑
m=1

gh,m(t)ϕm,

where gh,m(t) denotes the m-th component of gh(t). As already commented, M is invertible and we
conclude

u′h(t) +M−1Auh(t) = g̃h(t), (5.7)

with g̃h(t) ∶=M−1gh(t). It is crucial to compare this problem to (3.66), (3.67), or alternatively to (4.1),
in order to realize that the matrix M−1A corresponds to the discrete operator Ah.

5.2 Numerical Results

We consider TM polarized Maxwell’s equations (1.9) for our numerical experiments. We recall that in
this special case Maxwell’s equations read as

∂t

⎡⎢⎢⎢⎢⎢⎣

Hx

Hy

Ez

⎤⎥⎥⎥⎥⎥⎦
+ATM

⎡⎢⎢⎢⎢⎢⎣

Hx

Hy

Ez

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0
0
−Jz

⎤⎥⎥⎥⎥⎥⎦
in (0, T ) ×Ω, (5.8)

where the TM-Maxwell operator is given as

ATM ∶=
⎡⎢⎢⎢⎢⎢⎣

0 0 ∂y
0 0 −∂x
∂y −∂x 0

⎤⎥⎥⎥⎥⎥⎦
. (5.9)

We choose the domain as Ω = [−1,1]2 and the medium to be homogeneous, i. e. ε = µ = 1.
Discretizing (5.8) in space yields a semi-discrete system as (5.7), i. e.

⎡⎢⎢⎢⎢⎢⎣

H ′
h,x

H ′
h,y

E′
h,z

⎤⎥⎥⎥⎥⎥⎦
+Ah,TM

⎡⎢⎢⎢⎢⎢⎣

Hh,x

Hh,y

Eh,z

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0
0

−πhJz

⎤⎥⎥⎥⎥⎥⎦
, (5.10)

where Ah,TM corresponds to the discretization of the operator ATM . The eigenvalues of Ah,TM for
k = 3 and h = 0.25 are plotted in Figures 5.1(a) and 5.1(b). The first figure shows the eigenvalues when
cenetred fluxes are used whereas for the second figures upwind fluxes were considered. We see that
for upwind fluxes the eigenvalues lie in the left half-plan with a concentration towards to imaginary axis.
In contrast, the eigenvalues for centered fluxes are close to the imaginary axis. Despite the occuring
real parts are very small the eigenvalues with a positive real part can cause numerical instabilities.
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(a) h = 0.25, k = 3, centered fluxes
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(b) h = 0.25, k = 3, upwind fluxes

Figure 5.1: Eigenvalues of Ah,TM

5.2.1 Energy

We begin our numerical experiments with verifying the theorical results concering the evolution of the
energy of a full discretization of (5.10) with explicit RK methods. We therefore consider an example of
TM Maxwell’s equations (5.8) given in [8, Chapter 6] without external forcing, Jz = 0, and with initial
value

⎡⎢⎢⎢⎢⎢⎣

Hx(0)
Hy(0)
Ez(0)

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0
0

sin(πx) sin(πy)

⎤⎥⎥⎥⎥⎥⎦
. (5.11)

The exact solution is given by

⎡⎢⎢⎢⎢⎢⎣

Hx(t, x, y)
Hy(t, x, y)
Ez(t, x, y)

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

−πω sin(πx) cos(πy) sin(ωt)
π
ω cos(πx) sin(πy) sin(ωt)
sin(πx) sin(πy) cos(ωt)

⎤⎥⎥⎥⎥⎥⎦
, (5.12)

where ω ∶=
√

2π is the resonance frequency. We can easily compute the norm of the solution as

XXXXXXXXXXXXXX

⎡⎢⎢⎢⎢⎢⎣

Hx(t, ⋅, ⋅)
Hy(t, ⋅, ⋅)
Ez(t, ⋅, ⋅)

⎤⎥⎥⎥⎥⎥⎦

XXXXXXXXXXXXXXV
= 1, ∀t ≥ 0.

In Figure 5.2 the energy of the full discrete solution at time T = 10 is plotted. We used either centered or
upwind fluxes combined with the two- and three-stage Heun method as representant for RK2 and RK3
methods, respectively. For Figure 5.2(a) we used h = 1 and k = 3 and for Figure 5.2(b) we used h = 0.5
and k = 4 to illustrate the effect of a finer mesh and a higher polynomial degree on the energy. Owing
to Theorem 3.29 and Remark 3.30 we expect that for upwind fluxes the latter discretization yields less
dissipation which is clearly verified by our example. Furthermore, by the same theorem, we expect
that the centered fluxes discretization is conservative. This is also confirmed if we consider Figures
5.2(a), 5.2(b) for small step sizes τ . This ensures that we deal with a negligible time discretization error
and thus that the spatial discretization properties are dominant. Then, we see that the centered fluxes
approximation yields energy equal to 1 which is in accordance with the exact solution.
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In addition, Figure 5.2 approves the superior stability properties of the RK3 methods compared
to RK2 methods which were reflected in the necessity of the stronger 4/3-CFL condition for the RK2
methods in contrast to the usual CFL condition for RK3 methods. Indeed, we see that RK3 methods
allow a larger τ than RK2 methods. Furthermore, we observe that RK2 methods benefit from stabiliza-
tion, i. e. upwind fluxes admit a larger limit for τ than the centered fluxes. This is explained by recalling
the RK2 energy identity (4.22). For centered fluxes it reads as

∥un+1
h ∥2

V = ∥unh∥2
V +

1

4
∥τ2(Acf

h )2unh∥2
V ,

whereas for upwind fluxes we have

∥un+1
h ∥2

V + τ ∣unh ∣2S + τ ∣Un1
h ∣2S = ∥unh∥2

V +
1

4
∥τ2(Aupw

h )2unh∥2
V .

We see that the appearance of the two S-seminorm terms in the upwind case allow to compensate to
some extent the anti-dissipative term 1

4∥τ
2(Aupw

h )2unh∥2
V which is not possible with centered fluxes. In

contrary to RK2 methods working with stabilization requires a smaller limit for τ in the RK3 case. This
is seen with the RK3 energy identity (4.25) which yields in the centered fluxes case

∥un+1
h ∥2

V +
1

12
∥τ2(Acf

h )2unh∥2
V = ∥unh∥2

V +
1

36
∥τ3(Acf

h )3unh∥2
V ,

and in the upwind case

∥un+1
h ∥2

V + τ ∣unh ∣2S +
1

3
τ ∣Un1

h ∣2S +
2

3
τ ∣Un2

h ∣2S +
1

12
∥τ2(Aupw

h )2unh∥2
V

=∥unh∥2
V +

1

3
τ ∣τAupw

h unh ∣2S +
1

36
∥τ3(Aupw

h )3unh∥2
V .

We have proven in Lemma 4.25 that we can estimate the anti-dissipative term 1
36∥τ

3A3
hu

n
h∥2
V by the

term 1
18C

2
h%

2∥τ2A2
hu

n
h∥2
V . This enabled us to choose in the centered fluxes case %cf ≤

√
3
2(C

cf
h )−1

which even yields a dissipative behaviour

∥un+1
h ∥V ≤ ∥unh∥V .

In the upwind fluxes case we could not balance the additional anti-dissipative term 1
3τ ∣τA

upw
h unh ∣2S

solely with the S-seminorm terms on the LHS but had to balance it with 1
12∥τ

2(Aupw
h )2unh∥2

V , too.

This led to a larger CFL coeffiecient %upw ≤ min(
√

3
4(C

upw
h )−1, 5

154C
−2
bnd) which explains the smaller

limit for τ compared to the centered fluxes case. However, if this limit is satisfied, RK3 methods in
combination with upwind fluxes are also dissipative, see Figure 5.2.

5.2.2 Convergence of the Semi-Discretization

Now, let us check the convergence of the dG semi-discretization proven in Theorems 3.34 and 3.36.
We adapt an example from [4] and use the following source term

Jz = −et [(1 − x2)(1 − y2) + 2(1 − x2) + 2(1 − y2)] .
Then, the exact solution of (5.8) is given by

⎡⎢⎢⎢⎢⎢⎣

Hx(t, x, y)
Hy(t, x, y)
Ez(t, x, y)

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

2et(1 − x2)y
−2etx(1 − y2)

et(1 − x2)(1 − y2)

⎤⎥⎥⎥⎥⎥⎦
. (5.13)

Since we want to investigate the spatial convergence we have to ensure that the time discretization
error is small. Therefore, we choose a 3-stage Gauss collocation method for the time integration. This
method is of order 6 and choosing τ = 0.01 guarantees that the time discretization error is negligible.
In Figure 5.3 the full error, i. e. en = u(tn) − unh, of both the centered fluxes and the upwind fluxes
discretization is plotted. We observe convergence of order hk in the centered fluxes case and hk+1 in
the upwind fluxes case.
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Figure 5.2: Electromagnetic energy at time T = 10
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Figure 5.3: Convergence of semi-discretization
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5.2.3 Convergence of the Full Discretization

Finally, we illustrate the fully discrete convergence results given in Theorems 4.35, 4.36, 4.39 for RK1,
RK2 and RK3 methods combined with centered fluxes and in Theorems 4.44, 4.45, 4.46 for RK1,
RK2 and RK3 methods combined with upwind fluxes. In the previous section we already verified the
convergence rate for the spatial discretization. Thus, we now check the time discretization results. We
give a homogeneous and an inhomogeneous example.

Example 1 We begin by considering (5.8) without source term and with the initial value (5.11). Ob-
serve that the semi-discretization of (5.8) is

⎡⎢⎢⎢⎢⎢⎣

H ′
h,x(t)

H ′
h,y(t)

E′
h,z(t)

⎤⎥⎥⎥⎥⎥⎦
+Ah,TM

⎡⎢⎢⎢⎢⎢⎣

Hh,x(t)
Hh,y(t)
Eh,z(t)

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0
0
0

⎤⎥⎥⎥⎥⎥⎦
,

and consequently the exact solution is given by

⎡⎢⎢⎢⎢⎢⎣

Hh,x(t)
Hh,y(t)
Eh,z(t)

⎤⎥⎥⎥⎥⎥⎦
= e−tAh,TM

⎡⎢⎢⎢⎢⎢⎣

Hh,x(0)
Hh,y(0)
Eh,z(0)

⎤⎥⎥⎥⎥⎥⎦
.

The ODE error of the fully discrete approximation is defined as

enODE ∶=
⎡⎢⎢⎢⎢⎢⎣

Hn
h,x

Hn
h,y

Enh,z

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

Hh,x(tn)
Hh,y(tn)
Eh,z(tn)

⎤⎥⎥⎥⎥⎥⎦
.

For this example we use the ODE error to survey the time convergence of the discretizations. Figure
5.4 shows the ODE error for RK1, RK2 and RK3 methods combined with centered or upwind fluxes.
We choose a fixed polynomial degree k = 4 and use h ∈ {0.5,0.25,0.125} as meshsizes. The slope
of the plotted errors confirm the proven order τ s, s = 1,2,3, for all three RK schemes. In addition, we
observe the properties investigated in Section 5.2.1, namely the relaxed CFL conditions of RK1 and
RK2 methods when using upwind fluxes instead of centered fluxes and the tightend CFL condition for
RK3 in the contrary case.

Example 2 Next we consider the example given in Section 5.2.2 to check our results in the inho-
mogeneous case.We choose the polynomial order k = 4 for the spatial discretization. Revisiting the
exact solution given in (5.13) we realize that it is also a polynomial of degree 4 in the spatial variables.
Consequently, the fully discrete approximation contains no spatial error and the full error en is the time
discretization error. In Figure 5.5 the full error is plotted for h ∈ {0.5,0.25,0.125} and we observe the
same behaviour as in the previous example.
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Figure 5.4: Convergence of full discretization
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Figure 5.5: Convergence of full discretization
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Summary and Outlook

We have provided the stability and the error analysis of dG discretizations of Maxwell’s equations in
space for both centered and upwind fluxes. Furthermore, we have proven the stability and the con-
vergence of schemes obtained when discretizing the resulting semi-discrete problem with the forward
Euler method, RK2 or RK3 methods. Clearly, the next step is to consider RK4 methods, in particular in
combination with upwind fluxes. We shortly point out the main problem appearing for the simpler case
without source term. Then, we get an energy identity similar to the one of RK3 methods, see (4.25). In
fact, we we get

∥un+1
h ∥2

V +∣unh ∣2S +
1

3
τ ∣Un1

h ∣2S +
1

6
τ ∣Un2

h ∣2S +
1

2
∣Un3
h ∣2S +

1

72
∥τ3(Aupw

h )3∥2
V

=∥unh∥2
V +

1

4
τ ∣τAupw

h unh ∣2S +
1

12
τ ∣τAupw

h Un1
h ∣2S +

1

242
∥τ4(Aupw

h )4unh∥2
V ,

with Un3
h ∶= Un2

h − 1
6τ

3(Aupw
h )3unh. Even in this case it is not clear how the two S-seminorm terms

on the RHS side can be balanced with the terms on the LHS. Since this is the first step towards the
convergence our next goal is to solve this problem.
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Appendix A

Auxiliary Results

A.1 Stone’s Theorem

In Chapter 1 we use Stone’s theorem which is stated below.

Theorem A.1 (Stone’s theorem, [18, Theorem 1.36]). Let H be a Hilbert space and A ∶ D(A) → H
be a linear operator with dense domain, i. e. D(A) = H . Then, A generates a C0-group of unitary
operators if and only if A is skew-adjoint.

A.2 Useful Inequalities

Throughout the thesis the following two inequalities are frequently used.

Theorem A.2 (Cauchy Schwarz inequality, [19, Theorem I.1.10]). Let (Ω,Σ, µ) be a measure space
and let f , g ∈ L2(µ). Then, fg ∈ L1(µ) and there holds

∥fg∥L1 ≤ ∥f∥L2∥g∥L2 .

Note that this also applies to sequences a, b ∈ l2. Then, ab ∈ l1 and it holds

∥ab∥l1 ≤ ∥a∥l2∥b∥l2 .

Theorem A.3 (Young’s inequality). Let x, y ≥ 0 be real numbers. Then, there holds for every γ > 0

xy ≤ 1

2
γx2 + 1

2
γ−1y2.

We call this inequality the weighted Young’s inequality. The (usual) Young’s inequality is obtained by
choosing γ = 1.

A.3 Gronwall Lemmata

In Chapter 3 and 4 the continuous and discrete Gronwall lemma are used.

Theorem A.4 (Continuous Gronwall lemma, [6, Proposition 2.1]. Let T ∈ R+ ∪ {∞}, f , g ∈ L∞(0, T )
and c ≥ 0. Furthermore, let g be a monotonically increasing, continuous function and let f satisfy

f(t) ≤ g(t) + c
t

∫
0

f(s)ds a. e. in [0, T ].

Then, there holds
f(t) ≤ ectg(t).
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Theorem A.5 (Discrete Gronwall lemma, [6, Proposition 4.1]). Let {an}n, {bn}n ⊂ R be two se-
quences, c ≥ 0 and τ > 0 be two constants. Let {bn}n be monotonically increasing and let {an}n
satisfy

an ≤ bn + cτ
n−1

∑
m=0

am, n = 1,2, . . . ,

with initial value a0 ≤ b0. Then, there holds

an ≤ (1 + cτ)nbn ≤ ecnτ bn.
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