
Speeding up the legpts-command in
CHEBFUN

Lukas Fath
KIT

10. Januar 2012



Speeding up the legpts-command in CHEBFUN

1. Introduction

In chapter 19 of the ATAP-book to the CHEBFUN-package for MATLAB you can find
a comparison between the Gauß quadrature and the Clenshaw-Curtis quadrature. To
calculate the nodes and weights for the Clenshaw-Curtis quadrature simple type

[nodes weights] = chebpts(n);

into the MATLAB’s CLI. For the Gauß quadrature the nodes and weights are given by
the following command:

[nodes weights] = legpts(n);

But while the legpts-function is implemented in rather slow MATLAB-code, the chebpts-
function uses the highly optimized FFT built into MATLAB. In fact MATLAB uses the
FFTW-library written in C. So it is not very surprising that chebpts is a lot faster1 than
legpts:

>> tic,[nodes weights] = chebpts(1000000); toc;

Elapsed time is 0.521917 seconds.

>> tic, [nodes weights] = legpts(1000000); toc;

Elapsed time is 39.290675 seconds.

So why not use the ability of MATLAB to call C++ code and speed up the legpts-
command?

2. Calling C++-code in MATLAB

MATLAB provides a interface to use extern C++-subroutines. Out of the C++-code
Matlab creates so-called MEX-files which can be called and executed like ”‘normal”’
Matlab functions.

First you need to configure your system. Type

>> mex −setup

and choose a suitable compiler. A list of all supported compilers is available on the
homepage of MathWorks.

Successfully completed the setup you can compile C++-source-files with the following
commands:

1performed on a 64bit-OS, Core2Duo @ 2.0 GHz

2



>> mex <filename>.cpp

Now you have created a MEX-file and it can be called like the usual m-files. To handle the
data transfer between Matlab and C++ the source file needs a special Gateway function
called mexFunction. Details on how it works exactly can be found in the example files
and descriptions on the MathWorks’ hompage.

3. Speeding up the legpts-command

Using the possibilites shown in section 2 we compile alg1 leg4.cpp by typing

mex alg1 leg4.cpp

This C++-file contains an implementation of Glaser, Liu and Rohklin’s fast algorithm
to calculate the nodes and weights of the Gauß quadrature. Copy the file legpts4.m in
the same directory. Legpts4.m offeres the same interface like the legpts-command in
CHEBFUN, but instead it uses the algorithm in alg1 leg4.cpp:

>> tic; [nodes weights] = legpts4(1000000); toc

Elapsed time is 0.983534 seconds.

To show the exactness of the new algorithm we compare the nodes and weights with the
results of the old implementation (as an example n = 1.000.000):

>> tic;[nodes old weights old]=legpts(1000000);toc

Elapsed time is 40.410179 seconds.

>> max(abs(nodes−nodes old))

ans =

1.1102e−016

>> max(abs(weights−weights old))

ans =

3.0934e−018

That looks perfect: the errors are around double precision. Let’s have a closer look
and compare the performance of both implementations. The first figure displays the
computing time per nodes:

3



0 20.000 40.000 60.000 80.000 100.000 120.000 140.000 160.000 180.000 200.000
0

1

2

3

4

5

6

7

8

#nodes

ti
m

e 
in

 s
ec

legpts4

legpts

legpts vs legpts4

As expected we observe a tremendous increase in speed. The trouble of first having to
compile the new function is definitely worth it.

0 2.000 4.000 6.000 8.000 10.000 12.000 14.000 16.000 18.000 20.000
10

15

20

25

30

35

40

45

#nodes

t_
o

ld
 / 

t_
n

ew

multiplier old and new legpts

For a wide range of nodes the new function is about 35-40 times faster than the old one!
So here is the ’new’ version of the time comparison of chapter 19 in the ATAP book (see
[Tre11], p.141). It plots the accuracy as a function of the computing time for the harder
integral (19.11):

4



0 0,001 0,002 0,003 0,004 0,005 0,006 0,007

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Gauss Clenshaw−Curtis

time (secs)

er
ro

r
Timing comparison for Gauss for Clenshaw−Curtis quadrature

The MATLAB code used to generate these comparisons can be found in example.m.

4. CONCLUSIONS/TODO

� legpts can easily be speeded up and compete with the FFT/chebpts on a DualCore
system

� legpts4 uses SINGLE-CORE, FFT is ’cheating’ and uses more CORES...but that’s
exactly one of the many strengths of FFT; is there a way to parallelise legpts4?

� advantage of FFT is clearly the ability of using all cores on multicore systems and
that it is built-in in (nearly) every mathematical software package.

� code only tested on win64-architecture with MATLAB R2011b and MS VS 10.0.
Does this work with older versions or on other systems?

5



References

[GLR07] Glaser, Andreas ; Liu, Xiangtao ; Rokhlin, Vladimir: A Fast Algorithm
for the Calculation of the Roots of Special Functions. In: SIAM J. Scientific
Computing 29 (2007), Nr. 4, S. 1420–1438

[THD11] Trefethen, L. N. ; Hale, N. ; Driscoll, T. A.: Chebfun version 4.1.1864,
http://www2.maths.ox.ac.uk/chebfun/. (2011)

[Tre11] Trefethen, Lloyd N.: Approximation Theory and Approximation Practice.
June 2011. – draft, Oxford University

6


