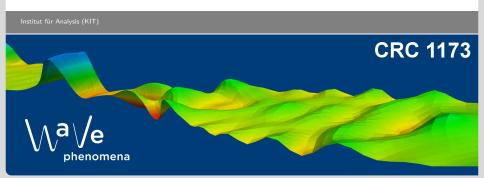


Diskrete Strichartz-Ungleichungen

SFB Workshop (Hirschegg, 7.-11. Oktober 2019)

Konstantin Zerulla



Überblick

- Strichartz-Ungleichungen
 - Motivation
 - Wichtige Resultate zur Schrödinger-Gleichung

Überblick

- Strichartz-Ungleichungen
 - Motivation
 - Wichtige Resultate zur Schrödinger-Gleichung
- Diskrete Strichartz Abschätzungen
 - Numerisches Verfahren ohne dispersive Eigenschaften
 - Gleichmäßige semidiskrete Abschätzungen

Überblick

- Strichartz-Ungleichungen
 - Motivation
 - Wichtige Resultate zur Schrödinger-Gleichung
- Diskrete Strichartz Abschätzungen
 - Numerisches Verfahren ohne dispersive Eigenschaften
 - Gleichmäßige semidiskrete Abschätzungen
- Ein Verfahren für die nichtlineare Schrödinger-Gleichung
 - Wohlgestelltheit

Grundlage: Ignat, Zuazua 2009.

Betrachte die lineare Schrödinger-Gleichung

(LSE)
$$\begin{cases} i\partial_t u(t,x) + \Delta u(t,x) = 0 & \text{auf } \mathbb{R} \times \mathbb{R}, \\ u(0,x) = \varphi(x) \in L^2(\mathbb{R}) & \text{für } x \in \mathbb{R}. \end{cases}$$

Betrachte die lineare Schrödinger-Gleichung

(LSE)
$$\begin{cases} i\partial_t u(t,x) + \Delta u(t,x) = 0 & \text{auf } \mathbb{R} \times \mathbb{R}, \\ u(0,x) = \varphi(x) \in L^2(\mathbb{R}) & \text{für } x \in \mathbb{R}. \end{cases}$$

• $i\Delta$ erzeugt eine isometrische C_0 -Gruppe, d.h. (LSE) besitzt die eindeutige Lösung $u(t,x)=\mathrm{e}^{ti\Delta}\varphi(x)$ und $\|u(t)\|_{L^2(\mathbb{R})}=\|\varphi\|_{L^2(\mathbb{R})}$.

Fokus liegt auf der nichtlinearen Gleichung

$$\text{(NSE)} \ \begin{cases} i\partial_t u + \Delta u = |u|^p u & \text{auf } \mathbb{R} \times \mathbb{R}, \\ u(0) = \varphi \in L^2(\mathbb{R}), \end{cases}$$

mit p > 0.

Fokus liegt auf der nichtlinearen Gleichung

$$(\mathsf{NSE}) \ \begin{cases} i\partial_t u + \Delta u = |u|^p u & \text{auf } \mathbb{R} \times \mathbb{R}, \\ u(0) = \varphi \in L^2(\mathbb{R}), \end{cases}$$

mit p > 0.

→ Verwende Variation-der-Konstanten Formel

$$u(t) = \underbrace{e^{ti\Delta}\varphi - i\int_0^t e^{(t-s)i\Delta}|u(s)|^p u(s) ds}_{=:\Phi(u)(t)}, \quad t \in \mathbb{R}.$$

Fixpunkt von Φ löst die NSE.

Fokus liegt auf der nichtlinearen Gleichung

$$({\rm NSE}) \ \begin{cases} i\partial_t u + \Delta u = |u|^p u & \text{auf } \mathbb{R} \times \mathbb{R}, \\ u(0) = \varphi \in L^2(\mathbb{R}), \end{cases}$$

mit p > 0.

→ Verwende Variation-der-Konstanten Formel

$$u(t) = \underbrace{\mathrm{e}^{ti\Delta} \varphi - i \int_0^t \mathrm{e}^{(t-s)i\Delta} |u(s)|^p u(s) \,\mathrm{d}s}_{=:\Phi(u)(t)}, \qquad t \in \mathbb{R}.$$

- Fixpunkt von Φ löst die NSE.
- **Problem:** Selbstabbildungseigenschaft von Φ nötig für Fixpunktsatz \sim Verlust an Integrabilität wegen p > 0.

Fokus liegt auf der nichtlinearen Gleichung

$$(\text{NSE}) \ \begin{cases} i\partial_t u + \Delta u = |u|^p u & \text{auf } \mathbb{R} \times \mathbb{R}, \\ u(0) = \varphi \in L^2(\mathbb{R}), \end{cases}$$

mit p > 0.

→ Verwende Variation-der-Konstanten Formel

$$u(t) = \underbrace{e^{ti\Delta}\varphi - i\int_0^t e^{(t-s)i\Delta}|u(s)|^p u(s) ds}_{=:\Phi(u)(t)}, \quad t \in \mathbb{R}.$$

- Fixpunkt von Φ löst die NSE.
- **Problem:** Selbstabbildungseigenschaft von Φ nötig für Fixpunktsatz →Verlust an Integrabilität wegen p > 0.
- Frage/Hoffnung: Gewinnt man durch $(e^{ti\Delta})_{t\in\mathbb{R}}$ Integrabilität?

Wichtige Abschätzungen

- Wir beschränken uns auf den Fall d = 1.
- Punktweise gilt die dispersive Abschätzung

$$|\mathrm{e}^{ti\Delta}\varphi(x)| \leq \frac{1}{(4\pi|t|)^{1/2}} \|\varphi\|_{L^1}, \qquad t \neq 0, x \in \mathbb{R}, \quad \varphi \in L^1(\mathbb{R}) \cap L^2(\mathbb{R}).$$

Wichtige Abschätzungen

- Wir beschränken uns auf den Fall d=1.
- Punktweise gilt die dispersive Abschätzung

$$|\mathrm{e}^{ti\Delta}\varphi(x)| \leq \frac{1}{(4\pi|t|)^{1/2}} \|\varphi\|_{L^1}, \qquad t \neq 0, x \in \mathbb{R}, \quad \varphi \in L^1(\mathbb{R}) \cap L^2(\mathbb{R}).$$

■ Ein Paar (q, r) heißt **zulässig**, wenn

$$2 \le q, r \le \infty$$
, $(q, r) \ne (2, \infty)$ und $\frac{2}{q} + \frac{1}{r} = \frac{1}{2}$.

Wichtige Abschätzungen

- Wir beschränken uns auf den Fall d=1.
- Punktweise gilt die dispersive Abschätzung

$$|\mathrm{e}^{ti\Delta}\varphi(x)| \leq \frac{1}{(4\pi|t|)^{1/2}} \|\varphi\|_{L^1}, \qquad t \neq 0, x \in \mathbb{R}, \quad \varphi \in L^1(\mathbb{R}) \cap L^2(\mathbb{R}).$$

■ Ein Paar (q, r) heißt **zulässig**, wenn

$$2 \le q, r \le \infty, \quad (q, r) \ne (2, \infty) \quad \text{und} \quad \frac{2}{q} + \frac{1}{r} = \frac{1}{2}.$$

■ Für (q, r), (\tilde{q}, \tilde{r}) zulässig gelten die Strichartz-Ungleichungen

$$\|e^{ti\Delta}\varphi\|_{L^{q}(\mathbb{R},L^{r}(\mathbb{R}))} \leq C(q,r)\|\varphi\|_{L^{2}(\mathbb{R})},$$

$$\|\int_{0}^{t} e^{(t-s)i\Delta}f(s) ds\|_{L^{q}(\mathbb{R},L^{r}(\mathbb{R}))} \leq C(q,r,\tilde{q},\tilde{r})\|f\|_{L^{\tilde{q}'}(\mathbb{R},L^{\tilde{r}'}(\mathbb{R}))},$$

$$\forall \varphi \in L^{2}(\mathbb{R}), \ f \in L^{\tilde{q}'}(\mathbb{R},L^{\tilde{r}'}(\mathbb{R})).$$

Wohlgestelltheit der NSE

Wir erinnern an die NSE

$$i\partial_t u + \Delta u = |u|^p u, \qquad u(0) = \varphi.$$

Definition 1 (schwache Lösung)

Sei $p \in (0,4)$, $q = 4\frac{p+2}{p}$. u ist eine schwache Lösung von (NSE), wenn

- (i) $u \in C(\mathbb{R}, L^2(\mathbb{R})) \cap L^q_{loc}(\mathbb{R}, L^{p+2}(\mathbb{R}))$,
- $(\mathrm{ii}) \ \mathit{u}(0) = \varphi \quad \mathrm{und} \quad \forall \psi \in \mathcal{D}(\mathbb{R}, \mathit{H}^2(\mathbb{R})) \ \mathrm{gilt}$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u(-i\partial_t \psi + \Delta \psi) \, \mathrm{d}x \, \mathrm{d}t = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |u|^p u \psi \, \mathrm{d}x \, \mathrm{d}t.$$

Globale Wohlgestelltheit der NSE

Wir erinnern an die NSF

$$i\partial_t u + \Delta u = |u|^p u, \qquad u(0) = \varphi.$$

Satz 2 (Tsutsumi)

Seien $p \in (0,4)$, $q = 4\frac{p+2}{p}$ und $\varphi \in L^2(\mathbb{R})$.

Dann existiert eine eindeutige Lösung u von (NSE), die in $L^2(\mathbb{R})$ stetig von den Anfangsdaten abhängt.

Erfüllen semidiskrete Verfahren die dispersiven Abschätzungen aus dem stetigen Fall gleichmäßig?

Hilfsmittel: Semi-diskrete Fourier-Trafo (SDFT)

- Durchweg sei h > 0 der Parameter für die Raumdiskretisierung.
- Definiere für $v^h \in \ell^1(h\mathbb{Z})$ die SDFT

$$\hat{v}^h(\xi) := h \sum_{j \in \mathbb{Z}} e^{-i\xi jh} v_j^h, \qquad \xi \in [-\frac{\pi}{h}, \frac{\pi}{h}].$$

 \sim Erweitere dann auf Folgen $v^h \in \ell^2(h\mathbb{Z})$.

Hilfsmittel: Semi-diskrete Fourier-Trafo (SDFT)

- lacktriangle Durchweg sei h > 0 der Parameter für die Raumdiskretisierung.
- Definiere für $v^h \in \ell^1(h\mathbb{Z})$ die SDFT

$$\hat{v}^h(\xi) := h \sum_{j \in \mathbb{Z}} e^{-i\xi jh} v_j^h, \qquad \xi \in [-\frac{\pi}{h}, \frac{\pi}{h}].$$

- \sim Erweitere dann auf Folgen $v^h \in \ell^2(h\mathbb{Z})$.
- Die inverse semi-diskrete Fourier-Trafo (iSDFT) ist

$$\check{\mathbf{v}}_{j}^{h} := \frac{1}{2\pi} \int_{-\pi/h}^{\pi/h} e^{i\xi j h} \mathbf{v}^{h}(\xi) \, \mathrm{d}\xi, \qquad j \in \mathbb{Z},$$

$$\text{ für } \mathbf{v}^h \in \mathit{L}^1(-\tfrac{\pi}{h},\tfrac{\pi}{h}) \cap \mathit{L}^2(-\tfrac{\pi}{h},\tfrac{\pi}{h}).$$

Numerisches Verfahren ohne dispersive Eigenschaften

■ Betrachte für h > 0 das semidiskrete System

$$\begin{split} i\partial_t u^h + \Delta_h u^h &= 0, \qquad t \in \mathbb{R}, \\ u^h(0) &= \varphi^h, \end{split}$$
 mit $u^h = (u^h_j)_{j \in \mathbb{Z}}, \ u^h_j(t) \approx u(t,jh) \ \mathrm{und}$
$$(\Delta_h u^h)_j := \frac{1}{h^2} (u^h_{j+1} + u^h_{j-1} - 2u^h_j). \end{split}$$

Numerisches Verfahren ohne dispersive Eigenschaften

Betrachte für h > 0 das semidiskrete System

$$i\partial_t u^h + \Delta_h u^h = 0, \qquad t \in \mathbb{R},$$

 $u^h(0) = \varphi^h,$

mit $u^h = (u_i^h)_{i \in \mathbb{Z}}, u_i^h(t) \approx u(t, jh)$ und

$$(\Delta_h u^h)_j := \frac{1}{h^2} (u^h_{j+1} + u^h_{j-1} - 2u^h_j).$$

• Lösung $u^h(t) = e^{ti\Delta_h} \varphi^h$ erfüllt

$$i\partial_t \hat{u}^h(t,\xi) + p_h(\xi)\hat{u}^h(t,\xi) = 0, \qquad t \in \mathbb{R}, \ \xi \in \left[-\frac{\pi}{h}, \frac{\pi}{h} \right],$$
$$\hat{u}^h(0) = \hat{\varphi}^h,$$

$$\mathrm{mit}\ p_h(\xi) := \tfrac{4}{h^2} \sin^2(\tfrac{\xi h}{2}).$$

Numerisches Verfahren ohne dispersive Eigenschaften

Wir erinnern an das semidiskrete System

$$i\partial_t u^h + \Delta_h u^h = 0, \qquad t \in \mathbb{R},$$

 $u^h(0) = \varphi^h,$

mit $u^h = (u^h_j)_{j \in \mathbb{Z}}$, $u^h_j(t) \approx u(t, jh)$ und

$$(\Delta_h u^h)_j := \frac{1}{h^2} (u_{j+1}^h + u_{j-1}^h - 2u_j^h).$$

ullet u^h erfüllt dispersive Abschätzungen i.A. nicht gleichmäßig, z.B. gilt nur

$$||u^h(t)||_{\ell^{\infty}(h\mathbb{Z})} \le C||\varphi^h||_{\ell^1(h\mathbb{Z})}(|t|^{-1/2} + (|t|h)^{-1/3}), \qquad t \ne 0.$$

Numerisches Verfahren ohne dispersive Eigenschaften

Wir erinnern an das semidiskrete System

$$i\partial_t u^h + \Delta_h u^h = 0, \qquad t \in \mathbb{R},$$

 $u^h(0) = \varphi^h,$

mit $u^h = (u_i^h)_{i \in \mathbb{Z}}, u_i^h(t) \approx u(t, jh)$ und

$$(\Delta_h u^h)_j := \frac{1}{h^2} (u_{j+1}^h + u_{j-1}^h - 2u_j^h).$$

• u^h erfüllt dispersive Abschätzungen i.A. nicht gleichmäßig, z.B. gilt nur

$$||u^h(t)||_{\ell^{\infty}(h\mathbb{Z})} \le C||\varphi^h||_{\ell^1(h\mathbb{Z})}(|t|^{-1/2} + (|t|h)^{-1/3}), \qquad t \ne 0.$$

Was bedeutet das für die Approximation der NSE?

Blow-up in endlicher Zeit für die kubische NSE

■ Ein resultierendes Verfahren für die kubische NSE

$$i\partial_t u + \Delta u = 2|u|^2 u$$
 on \mathbb{R}^2 , $u(0) = \varphi$,

ist

$$i\partial_t u_j^h + (\Delta_h u^h)_j = |u_j^h|^2 (u_{j+1}^h + u_{j-1}^h), \qquad j \in \mathbb{Z},$$

$$u^h(0) = \varphi^h \approx \varphi \in L^2(\mathbb{R}).$$

Blow-up in endlicher Zeit für die kubische NSE

■ Ein resultierendes Verfahren für die kubische NSE

$$i\partial_t u + \Delta u = 2|u|^2 u$$
 on \mathbb{R}^2 , $u(0) = \varphi$,

ist

$$i\partial_t u_j^h + (\Delta_h u^h)_j = |u_j^h|^2 (u_{j+1}^h + u_{j-1}^h), \qquad j \in \mathbb{Z},$$

$$u^h(0) = \varphi^h \approx \varphi \in L^2(\mathbb{R}).$$

■ Dann gibt es Daten $\varphi^h \in \ell^2(h\mathbb{Z})$ mit: $\forall T > 0$, $q \ge 1$, r > 2 gilt

$$\frac{\|u^h\|_{L^q((0,T),\ell^r(h\mathbb{Z}))}}{\|u^h(0)\|_{\ell^2(h\mathbb{Z})}}\to\infty, \qquad h\to 0.$$

 \rightsquigarrow Widerspruch zum originalen Problem (Lösung in $L^6_{loc}(\mathbb{R}, L^4(\mathbb{R}))$).

Idee: Approximiere LSE wie bisher, aber mit gefilterten Anfangsdaten.

Idee: Approximiere LSE wie bisher, aber mit gefilterten Anfangsdaten.

Nonstruiere langsam oszillierende Anfangsdaten auf $h\mathbb{Z}$ mittels Interpolation einer Folge auf $4h\mathbb{Z}$.

Idee: Approximiere LSE wie bisher, aber mit gefilterten Anfangsdaten.

- Nonstruiere langsam oszillierende Anfangsdaten auf $h\mathbb{Z}$ mittels Interpolation einer Folge auf $4h\mathbb{Z}$.
 - Sei $\tilde{\Pi}: \ell^2(4h\mathbb{Z}) \to \ell^2(h\mathbb{Z})$ mit

$$(\tilde{\Pi}\varphi^{4h})_{4j+r} = \frac{4-r}{4}\varphi^{4h}_{4j} + \frac{r}{4}\varphi^{4h}_{4j+4}, \qquad j \in \mathbb{Z}, \ r \in \{0,1,2,3\}, \ \varphi^{4h} \in \ell^2(4h\mathbb{Z}).$$

Idee: Approximiere LSE wie bisher, aber mit gefilterten Anfangsdaten.

- Nonstruiere langsam oszillierende Anfangsdaten auf $h\mathbb{Z}$ mittels Interpolation einer Folge auf $4h\mathbb{Z}$.
 - Sei $\tilde{\Pi}:\ell^2(4h\mathbb{Z}) \to \ell^2(h\mathbb{Z})$ mit

$$(\tilde{\Pi}\varphi^{4h})_{4j+r} = \frac{4-r}{4}\varphi^{4h}_{4j} + \frac{r}{4}\varphi^{4h}_{4j+4}, \qquad j \in \mathbb{Z}, \ r \in \{0,1,2,3\}, \ \varphi^{4h} \in \ell^2(4h\mathbb{Z}).$$

■ Definiere auch die Adjungierte $\tilde{\Pi}^*: \ell^2(h\mathbb{Z}) \to \ell^2(4h\mathbb{Z})$ über

$$(\tilde{\Pi}\varphi^{4h},\psi^h)_{\ell^2(h\mathbb{Z})}=(\varphi^{4h},\tilde{\Pi}^*\psi^h)_{\ell^2(4h\mathbb{Z})},\qquad \varphi^{4h}\in\ell^2(4h\mathbb{Z}),\psi^h\in\ell^2(h\mathbb{Z}).$$

Idee: Approximiere LSE wie bisher, aber mit gefilterten Anfangsdaten.

- Konstruiere langsam oszillierende Anfangsdaten auf $h\mathbb{Z}$ mittels Interpolation einer Folge auf $4h\mathbb{Z}$.
 - Sei $\tilde{\Pi}: \ell^2(4h\mathbb{Z}) \to \ell^2(h\mathbb{Z})$ mit

$$(\tilde{\Pi}\varphi^{4h})_{4j+r} = \frac{4-r}{4}\varphi_{4j}^{4h} + \frac{r}{4}\varphi_{4j+4}^{4h}, \qquad j \in \mathbb{Z}, \ r \in \{0, 1, 2, 3\}, \ \varphi^{4h} \in \ell^2(4h\mathbb{Z}).$$

■ Definiere auch die Adjungierte $\tilde{\Pi}^* : \ell^2(h\mathbb{Z}) \to \ell^2(4h\mathbb{Z})$ über

$$(\tilde{\Pi}\varphi^{4h},\psi^h)_{\ell^2(h\mathbb{Z})}=(\varphi^{4h},\tilde{\Pi}^*\psi^h)_{\ell^2(4h\mathbb{Z})}, \qquad \varphi^{4h}\in\ell^2(4h\mathbb{Z}),\psi^h\in\ell^2(h\mathbb{Z}).$$

Lemma 3 (Ignat/Zuazua)

Sei $\varphi^{4h} \in \ell^2(4h\mathbb{Z})$. Dann gilt $\forall \xi \in [-\frac{\pi}{h}, \frac{\pi}{h}]$

$${\hat{\;\;}}(\tilde{\Pi}\varphi^{4h})(\xi)=4{\hat{\;\;}}(\Pi\varphi^{4h})(\xi)\cos^2(\xi h)\cos^2(\frac{\xi h}{2}),$$

wobei $(\Pi \varphi^{4h})_i = \varphi_i^{4h}$ für $j \in 4\mathbb{Z}$ und $(\Pi \varphi^{4h})_i = 0$ sonst.

Diskrete Strichartz-Abschätzungen

Satz 4 (Ignat/Zuazua)

Seien $p \ge 2$, (q, r), (\tilde{q}, \tilde{r}) zulässig (d.h. $2 \le q$, $r \le \infty$, $\frac{2}{q} + \frac{1}{r} = \frac{1}{2}$). Dann:

(i) Es gibt
$$C = C(p) > 0$$
 mit

$$\|\mathrm{e}^{ti\Delta_h}\tilde{\Pi}\varphi^{4h}\|_{\ell^p(h\mathbb{Z})} \leq C|t|^{-(1/2-1/p)}\|\tilde{\Pi}\varphi^{4h}\|_{\ell^{p'}(h\mathbb{Z})}$$

$$\forall \varphi^{4h} \in \ell^{p'}(4h\mathbb{Z}), h > 0, t \neq 0.$$

(ii) Es gibt
$$C = C(r) > 0$$
 mit

$$\|\mathrm{e}^{ti\Delta_h} \tilde{\Pi} \varphi^{4h}\|_{L^q(\mathbb{R},\ell^r(h\mathbb{Z}))} \leq C \|\tilde{\Pi} \varphi^{4h}\|_{\ell^2(h\mathbb{Z})}$$

$$\forall \varphi^{4h} \in \ell^2(4h\mathbb{Z}), h > 0.$$

(iii) Es gibt
$$C = C(r, \tilde{r}) > 0$$
 mit

$$\bigg\| \int_0^t \mathrm{e}^{(t-s)i\Delta_h} \tilde{\Pi} f^{4h}(s) \, \mathrm{d} s \bigg\|_{L^q(\mathbb{R},\ell^r(h\mathbb{Z}))} \leq C \|\tilde{\Pi} f^{4h}\|_{L^{\tilde{q}'}(\mathbb{R},\ell^{\tilde{r}'}(h\mathbb{Z}))}$$

$$\forall f^{4h} \in L^{\tilde{q}'}(\mathbb{R}, \ell^{\tilde{r}'}(4h\mathbb{Z})), h > 0.$$

13

Ziel

Nutze Erkenntnisse über das diskrete homogene Problem zur Approximation des nichtlinearen Problems.

Wir erinnern an die NSE

$$i\partial_t u + \Delta u = |u|^p u, \qquad u(0) = \varphi \in L^2(\mathbb{R}).$$

Wir erinnern an die NSF

$$i\partial_t u + \Delta u = |u|^p u, \qquad u(0) = \varphi \in L^2(\mathbb{R}).$$

Idee: Approximiere die Nichtlinearität im Raum schwacher Oszillationen.

Wir erinnern an die NSF

$$i\partial_t u + \Delta u = |u|^p u, \qquad u(0) = \varphi \in L^2(\mathbb{R}).$$

- **Idee:** Approximiere die Nichtlinearität im Raum schwacher Oszillationen.
- Betrachte für $\varphi^{4h} \in \ell^2(4h\mathbb{Z}), \ \varphi^{4h} \approx \varphi$, das semidiskrete System

$$(\mathsf{sdNSE}) \qquad i\partial_t u^h + \Delta_h u^h = \tilde{\Pi} f(\tilde{\Pi}^* u^h), \qquad t \in \mathbb{R}, \qquad u^h(0) = \tilde{\Pi} \varphi^{4h},$$
 mit $f(u) = |u|^p u$.

Wir erinnern an das semidiskrete System

$$(\mathsf{sdNSE}) \qquad i\partial_t u^h + \Delta_h u^h = \tilde{\Pi} f(\tilde{\Pi}^* u^h), \qquad t \in \mathbb{R}, \qquad u^h(0) = \tilde{\Pi} \varphi^{4h},$$
 mit $f(u) = |u|^p u$.

Satz 5 (Ignat/Zuazua)

Seien $p \in (0,4)$, $q = 4\frac{p+2}{p}$, h > 0, $\varphi^{4h} \in \ell^2(4h\mathbb{Z})$ und I ein endliches Intervall. Dann hat (sdNSE) genau eine Lösung

$$\begin{split} u^h &\in C(\mathbb{R},\ell^2(h\mathbb{Z})) \cap L^q_{loc}(\mathbb{R},\ell^{p+2}(h\mathbb{Z})). \\ \text{Es gibt } C_1 &= C_1(p), C_2 = C_2(I,p) \text{ mit} \\ & \|u^h\|_{L^\infty(\mathbb{R},\ell^2(h\mathbb{Z}))} \leq C_1 \|\tilde{\Pi}\varphi^{4h}\|_{\ell^2(h\mathbb{Z})}, \\ & \|u^h\|_{L^q(L\ell^{p+2}(h\mathbb{Z}))} \leq C_2 \|\tilde{\Pi}\varphi^{4h}\|_{\ell^2(h\mathbb{Z})}. \end{split}$$

Zusammenfassung

- Wir betrachten die NSF $i\partial_t u + \Delta u = |u|^p u, \quad u(0) = \varphi.$
- Dispersive/Strichartz-Abschätzungen wesentlich für den Nachweis der Wohlgestelltheit der NSE.
- Räumliche Diskretisierungen erhalten Verhalten der NSE i.A. nicht.
- Mittels Zwei-Gitter Verfahren filtern wir Anfangsdaten und approximieren die Nichtlinearität.
 - → Gleichmäßige dispersive/Strichartz-Abschätzungen, Wohlgestelltheit.

Konvergenz des Verfahrens

- Sei $P_0^h: \ell^2(h\mathbb{Z}) \to L^2(\mathbb{R})$ der stückweise konstante Interpolationsoperator.
- Für Anfangsdaten $\varphi \in L^2(\mathbb{R})$: Wähle $\varphi^{4h} \in \ell^2(4h\mathbb{Z})$ mit $P_0^h \tilde{\Pi} \varphi^{4h} \to \varphi$ in $L^2(\mathbb{R})$.

Satz 6 (Ignat/Zuazua)

Seien $p \in (0,4)$, $q = 4\frac{p+2}{p}$, h > 0, u^h die Lösung von (sdNSE) und u die Lösung von (NSE) für $f(x) = |x|^p x$. Dann gilt:

$$\begin{array}{cccc} P_0^h u^h \stackrel{*}{\rightharpoonup} u & \text{ in } L^\infty(\mathbb{R}, L^2(\mathbb{R})), \\ P_0^h u^h \rightharpoonup u & \text{ in } L^q_{loc}(\mathbb{R}, L^{p+2}(\mathbb{R})), \\ P_0^h u^h \to u & \text{ in } L^2_{loc}(\mathbb{R}^2), \\ P_0^h \tilde{\Pi} f(\tilde{\Pi}^* u^h) \rightharpoonup f(u) & \text{ in } L^{q'}_{loc}(\mathbb{R}, L^{(p+2)'}(\mathbb{R})). \end{array}$$

Referenzen

- Ignat, L.I. and Zuazua, E.: Numerical dispersive schemes for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 47 (2) (2009), 1366–1390.
- Keel, M. and Tao, T.: Endpoint Strichartz estimates. Amer. J. Math 120 (1998), 955–980.
- Kenig, C.E., Ponce, G. and Vega, L.: Oscillatory integrals and regularity of dispersive equations. Indiana Univ. Math. J. 40 (1991), 33-69.
- Trefethen, L.N.: Spectral Methods in MATLAB, SIAM, Philadelphia 2000.
- Tsutsumi, Y.: L^2 -solutions for nonlinear Schrödinger equations and nonlinear groups. Funkcial. Ekvac., 30 (1987), 115–125.

