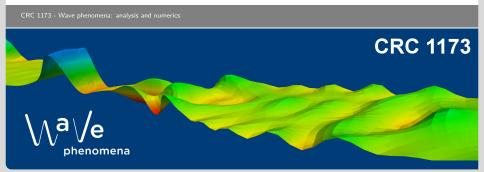


(A projector splitting operator for) Dynamical low-rank approximation

Stefan Schrammer



Die Ausgangslage

Finde für $t \in [0, T]$ Niedrigrang-Approximation Y(t) einer gegebenen Matrix $A(t) \in \mathbb{R}^{m \times n}$, d.h.

$$Y(t) \in \mathcal{M}_r = \mathcal{M}_r^{m \times n} = \{B \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(B) = r\}$$

mit

$$Y(t) pprox A(t)$$
 für alle $t \in [0, T]$

Die Ausgangslage

Finde für $t \in [0, T]$ Niedrigrang-Approximation Y(t) einer gegebenen Matrix $A(t) \in \mathbb{R}^{m \times n}$, d.h.

$$Y(t) \in \mathcal{M}_r = \mathcal{M}_r^{m \times n} = \{B \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(B) = r\}$$

mit

$$Y(t) \approx A(t)$$
 für alle $t \in [0, T]$

Später Erweiterung auf A(t) als (unbekannte) Lösung der Matrix-Differentialgleichung

$$\dot{A} = F(A), \quad t \in [0, T]$$

Untermannigfaltigkeit, Tangentialraum

Definition 1

Eine Menge $\mathcal{M} \subset \mathbb{R}^n$ heißt **Untermannigfaltigkeit von** \mathbb{R}^n , falls für jedes $a \in \mathcal{M}$ offene Mengen $U, V \subset \mathbb{R}^n$ mit $a \in U$ sowieso ein Diffeomorphismus $\varphi : U \to V$ existieren, sodass

$$\varphi(U \cap \mathcal{M}) = \varphi(U) \cap (\mathbb{R}^k \times \{0\}).$$

Die Zahl k heißt Dimension von \mathcal{M} , n-k die Kodimension.

Definition 2

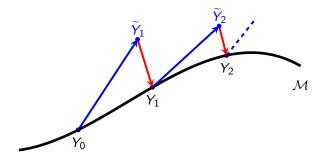
Sei $\mathcal{M} \subset \mathbb{R}^n$ eine Untermannigfaltigkeit von \mathbb{R}^n und sei $a \in \mathcal{M}$. Der **Tangentialraum von** \mathcal{M} **in** a ist der lineare Raum

$$\mathcal{T}_{a}\mathcal{M} = \{ v \in \mathbb{R}^{n} \mid \exists \gamma : (-\varepsilon, \varepsilon) \to \mathbb{R}^{n} \text{ differenzierbar mit } \gamma(t) \in \mathcal{M}, \\ t \in (-\varepsilon, \varepsilon), \gamma(0) = a, \dot{\gamma}(0) = v \}.$$

Integration auf Mannigfaltigkeiten I

- "Standard projection method"
 - Starte auf Mannigfaltigkeit
 - ▶ Führe einen Schritt mit Integrator der Wahl aus
 - ▶ Ziehe die Lösung zurück auf die Mannigfaltigkeit

"Zurückziehen" z.B. durch Orthogonalprojektion, allgemeiner: retractions



Integration auf Mannigfaltigkeiten II

- Integration auf Mannigfaltigkeit (direkt)
 - ▶ Leite DGL auf \mathcal{M} her, d.h. $\dot{Y} = F(Y)$ mit

$$Y_0 \in \mathcal{M} \quad \Rightarrow \quad Y(t) \in \mathcal{M} \ \forall t$$

▶ Löse die DGL mit einem geeigneten (numerischen) Verfahren

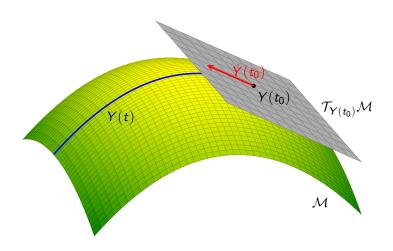
Theorem 3 (Theorem IV.5.2¹)

Let \mathcal{M} be a submanifold of \mathbb{R}^n . The problem $\dot{Y} = F(Y)$ is a differential equation on the manifold \mathcal{M} if and only if

$$F(Y) \in \mathcal{T}_Y \mathcal{M}$$
 for all $Y \in \mathcal{M}$.

¹Hairer, Lubich, Wanner (2016): Geometric Numerical Integration

Integration auf Mannigfaltigkeiten II



Integration auf Mannigfaltigkeiten I

Berechne
$$A(t)$$
 an ge vinschle Zeile $f: i = 0, 1, ..., n$
Berechne die $2cng-r$ - Bestapproximation $X(k)$, ol. h .

$$\|A(k) - X(k)\| = \min \quad \forall t;$$

$$X(k) = U(k) \sum_{i} (k) V(k)^{T}$$

$$u:1$$

$$A(k) = U(k) \sum_{i} (k) V(k)^{T}, \quad U'(k) U(k) = \sum_{i} V'(k) M(k) = \sum_{i} N'(k) M(k) = \sum_{i} N$$

Integration auf Mannigfaltigkeiten II

Beredine YII) Ettrans der folgenden Bedinging:

$$(\pi i) \quad \| \dot{y}(t) - \dot{A}(t) \| = \min!$$

Vorteile von Variante II

- II hängt von \dot{A} ab, nicht von $A \rightsquigarrow \text{Vorteil wenn } \dot{A}$ dünn(er) besetzt ist
- In II wird \dot{A} nur mit Matrizen mit r Spalten multipliziert (siehe später), in I dagegen mit Matrizen der vollen Dimension
- lacktrians II liefert im Allgemeinen glatte Lösung Y(t) im Gegensatz zu I
- II lässt sich auf die Situation $Y(t) \approx A(t)$ mit $\dot{A} = F(A)$ übertragen:

Der erste Ansatz²

■ Zerlege $Y \in \mathcal{M}_r$ in $Y = USV^T$ mit

$$U \in \mathcal{V}_{m,r}$$
, $S \in GL_r(\mathbb{R})$

■ Zerlegung ist nicht eindeutig: ?Q ∈ O,(Q)

- Anderes Kriterium für Eindeutigkeit: Eindeutigkeit im Tangentialraum
- lacksquare Tangentialraum in $U \in \mathcal{V}_{m,r}$

$$\mathcal{T}_{U}\mathcal{V}_{m,r} = \{\delta U \in \mathbb{R}^{m \times r} \mid \delta U^{T} U + U^{T} \delta U = 0\}$$

²Othmar Koch and Christian Lubich (2007): Dynamical low-rank approximation

 $^{{}^{3}\}mathcal{V}_{m,r} := \{U \in \mathbb{R}^{m \times r} \mid U^{T}U = I_{r}\}$

Der erste Ansatz

■ Man kann zeigen: $\delta Y \in \mathcal{T}_Y \mathcal{M}_r$ hat Darstellung

$$\delta Y = \delta U S V^T + U \delta S V^T + U S \delta V^T,$$

mit

$$\delta U \in \mathcal{T}_U \mathcal{V}_{m,r}, \quad \delta V \in \mathcal{T}_V \mathcal{V}_{n,r}, \quad \delta S \in \mathbb{R}^{r \times r}$$

■ Eindeutigkeit von δU , δV , δS wenn $U^T \delta U = 0 = V^T \delta V$ gefordert. Dann

$$\text{(TGL)} \begin{cases} \delta S &= U^T (\delta Y - \delta U S V^T - U S \delta V^T) V \\ &= U^T \delta Y V - U^T \delta U S V^T V - U^T U S \delta V^T V \\ &= u^T \delta Y V \end{cases}$$

$$\delta U &= \dots = P_U^\perp \delta Y V S^{-1}$$

$$\delta V &= \dots = P_V^\perp \delta Y^T U S^{-T}$$

$$P_U = UU^T$$
, $P_U^{\perp} = I_m - P_U$

Der erste Ansatz

• Für: Finde $Y \in \mathcal{M}_r$ mit

$$\begin{split} (*) \quad \dot{Y} &\in \mathcal{T}_{Y} \mathcal{M}_{r}, \quad \text{sodass} \quad \|\dot{Y} - \dot{A}\| = \text{min!} \\ &\Rightarrow \quad \langle \dot{Y} - \dot{A}, \delta Y \rangle = 0 \quad \forall \delta Y \in \mathcal{T}_{Y} \mathcal{M}_{r} \end{split}$$

gilt

Proposition 4 (Proposition 2.1⁴)

Für $Y = USV^T \in \mathcal{M}_r$ mit nichtsingulärem $S \in \mathbb{R}^{r \times r}$ und $U \in \mathbb{R}^{m \times r}$, $V \in \mathbb{R}^{n \times r}$ orthogonal ist (*) äquivalent zu $\dot{Y} = \dot{U}SV^T + U\dot{S}V^T + US\dot{V}^T$ mit

(DGL)
$$\begin{cases} \dot{S} = U^T \dot{A}V \\ \dot{U} = P_U^{\perp} \dot{A}VS^{-1} \\ \dot{V} = P_V^{\perp} \dot{A}^T US^{-T} \end{cases}$$

⁴Othmar Koch and Christian Lubich (2007): Dynamical low-rank approximation

Der erste Ansatz

- Beweis von Proposition 4 nutzt
 - Darstellung

$$\mathcal{T}_{Y}\mathcal{M}_{r}\ni\delta Y=\delta USV^{T}+U\delta SV^{T}+US\delta V^{T}$$

Gleichungen

(TGL)
$$\begin{cases} \delta S = U^{T} \delta Y V \\ \delta U = P_{U}^{\perp} \delta Y V S^{-1} \\ \delta V = P_{V}^{\perp} \delta Y^{T} U S^{-T} \end{cases}$$

► Einschränkungen

$$\dot{\boldsymbol{U}}^T \boldsymbol{U} = \boldsymbol{0} = \dot{\boldsymbol{V}}^T \boldsymbol{V}$$

▶ Identität

$$\langle uv^T, B \rangle = u^T B v, \quad \langle A, B \rangle = \operatorname{trace}(A^T B), \quad \|A\|_F^2 = \langle A, A \rangle$$

Der erste Ansatz - Resultate

Proposition 4

Für $Y = USV^T \in \mathcal{M}_r$ mit nichtsingulärem $S \in \mathbb{R}^{r \times r}$ und $U \in \mathbb{R}^{m \times r}$, $V \in \mathbb{R}^{n \times r}$ orthogonal ist (*) äquivalent zu $\dot{Y} = \dot{U}SV^T + U\dot{S}V^T + US\dot{V}^T$ mit

(DGL)
$$\begin{cases} \dot{S} = U^T \dot{A} V \\ \dot{U} = P_U^{\perp} \dot{A} V S^{-1} \\ \dot{V} = P_V^{\perp} \dot{A}^T U S^{-T} \end{cases}.$$

 Erhalte numerisches Verfahren durch Anwendung eines geeigneten Integrators auf System (DGL)

Eine Fehlerschranke

Theorem 5

Die Matrix A(t) sei zerlegbar in A(t) = X(t) + E(t), $0 \le t \le T$, wobei $X(t) \in \mathcal{M}_r$ nicht notwendigerweise die Bestapproximation ist. Weiter gelte

$$\|\dot{X}(t)\|_2 \leq \mu$$
, $\|\dot{E}(t)\| \leq \varepsilon$,

mit $\varepsilon \leq \frac{1}{8}\mu$. Außerdem sei $\sigma_r(X(t)) \geq \rho > 0$.

Dann ist der Approximationsfehler von $(*)^5$ (mit Startwert Y(0) = X(0)) beschränkt durch

$$\|Y(t) - X(t)\| \le 2t\varepsilon, \quad t \le \min\left\{T, \frac{\rho}{4\sqrt{2\mu\varepsilon}}\right\}.$$

⁵(*) Finde $Y(t) \in \mathcal{M}_r$ mit $||\dot{Y} - \dot{A}|| = \min!$

Eine Fehlerschranke – Bemerkungen

- lacktriangle Zeitinterval winzig wenn $ho \leq arepsilon$
- $\rho \le \varepsilon$: Effektiver Rang von A(t) ist q < r, aber Approximation durch Rang-r Matrix Y(t).
- S ist schlecht konditioniert, (nah) singulär
- Inverse von S in System (DGL)
- Erwartbar: schwerwiegend unerwünschter Einfluss auf Approximationseigenschaften
- Tatsächlich: Fehlerschranke mit linearem Wachstum in t, allerdings nur unter sehr vielen Voraussetzungen und Einschränkungen an das stabile Zeitintervall
- Fall der Überapproximation sehr realistisch → neuer Ansatz

Der zweite Ansatz⁶

■ Beginne erneut bei Minimierungsaufgabe: Finde $Y(t) \in \mathcal{M}_r$, $\dot{Y} \in \mathcal{T}_Y \mathcal{M}_r$ mit

$$\|\dot{Y} - \dot{A}\| = \min!$$

■ Berechne $\dot{Y}(t)$ als Orthogonalprojektion von \dot{A} auf $\mathcal{T}_{Y}\mathcal{M}_{r}$:

$$\dot{Y} = P(Y)\dot{A}$$

DGL auf $\mathcal{M}_r \Rightarrow Y(t) \in \mathcal{M}_r$ wenn $Y_0 \in \mathcal{M}_r$

• Wie sieht der Projektor P(Y) auf $\mathcal{T}_Y \mathcal{M}_r$ aus?

⁶Christian Lubich and Ivan V. Oseledets (2014): A projector-splitting operator for dynamical low-rank approximation

Der Orthogonalprojektor P(Y)

- $\dot{\mathbf{Y}} = P(\mathbf{Y})\dot{\mathbf{A}} = \dot{\mathbf{A}}P_{\mathbf{V}} P_{\mathbf{U}}\dot{\mathbf{A}}P_{\mathbf{V}} + P_{\mathbf{U}}\dot{\mathbf{A}}$
- Aus dieser Darstellung Konstruktion des Projektor-Splitting-Integrators (abstrakte Formulierung):
 - ▶ Löse die DGL $\dot{Y}_I = \dot{A}P_V$ mit Anfangswert $Y_I(t_0) = Y_0$ auf $t_0 \le t \le t_1$
 - ▶ Löse die DGL $\dot{Y}_{II} = -P_{II}\dot{A}P_{V}$ mit Anfangswert $Y_{II}(t_0) = Y_{I}(t_1)$ auf $t_0 < t < t_1$
 - ▶ Löse die DGL $\dot{Y}_{III} = P_{II}\dot{A}$ mit Anfangswert $Y_{III}(t_0) = Y_{II}(t_1)$ auf $t_0 < t < t_1$
 - $Y_1 = Y_{III}(t_1)$ als Approximation an $Y(t_1)$ (Lösung von $\dot{Y} = P(Y)\dot{A}$ bei $t=t_1$
- Verfahren erster Ordnung
- Jeder Teilschritt explizt lösbar
- Robust gegen Approximation mit zu hohem Rang ("Überapproximation")

18

Lemma 6 (Lemma 3.1⁷)

Die Lösung von 1 ist

$$Y_I(t) = U_I(t)S_I(t)V_I^T(t), \quad mit \frac{d}{dt}(U_IS_I) = \dot{A}V_I, \dot{V}_I = 0.$$

Die Lösung von II ist

$$Y_{II}(t) = U_{II}(t)S_{II}(t)V_{II}^{T}(t), \quad mit \ \dot{S}_{II} = -U_{II}^{T}\dot{A}V_{II}, \ \dot{U}_{II} = 0, \ \dot{V}_{II} = 0.$$

Die Lösung von III ist

$$Y_{III}(t) = U_{III}(t)S_{III}(t)V_{III}^{T}(t), \quad mit \frac{d}{dt}(\dot{V}_{III}\dot{S}_{III}^{T}) = \dot{A}^{T}U_{III}^{T}, \dot{U}_{III} = 0.$$

⁷Christian Lubich and Ivan V. Oseledets (2014): A projector-splitting operator for dynamical low-rank approximation

=>
$$Y_{\underline{I}}(t) = U_{\underline{I}}(t)S_{\underline{I}}(t)V_{\underline{I}}(t)^{T}$$

 $Y_{\underline{I}}(t) = \frac{d}{dt}(U_{\underline{I}}S_{\underline{I}})V_{\underline{I}}^{T} + (U_{\underline{I}}S_{\underline{I}})V_{\underline{I}}^{T} = AV_{\underline{I}}V_{\underline{I}}^{T}$

■ Für bekanntes A(t) können die Lösungen der DGLn I - III explizit aufgeschrieben werden:

$$\begin{split} U_{I}(t)S_{I}(t) &= U_{I}(t_{0})S_{I}(t_{0}) + \big(A(t) - A(t_{0})\big)V_{I}(t_{0}), \\ S_{II}(t) &= S_{II}(t_{0}) - U_{II}(t_{0})^{T}\big(A(t) - A(t_{0})\big)V_{II}(t_{0}), \\ V_{III}(t)S_{III}(t)^{T} &= V_{III}(t)S_{III}(t)^{T} + \big(A(t) - A(t_{0})\big)^{T}U_{III}(t_{0}). \end{split}$$

Explizites Verfahren der Ordnung 1 basierend auf dieser Darstellung:
 Projektor-Splitting-Integrator

Algorithm 1 Projektor-Splitting-Integrator

- 1: Input: $\Delta A = A(t_1) A(t_0)$,
- 2: Rang-*r*-Approximation $Y_0 = U_0 S_0 V_0^H \approx A_0 = A(t_0)$.
- 3: Output: Rang-r-Approximation $Y_1 \approx A(t_1)$.
- 4: Erster Schritt:
- 5: $K_1 = U_0 S_0 + \Delta A V_0$
- 6: Berechne Zerlegung: $U_1\widehat{S}_1=K_1, \ \widehat{S}_1\in\mathbb{C}^{r\times r}$ regulär, U_1 orthogonal.
- 7: Zweiter Schritt:
- 8: $\widehat{S}_0 = \widehat{S}_1 U_1^T \Delta A V_0$
- 9: Dritter Schritt:
- $10: \quad L_1 = V_0 \widetilde{S}_0^T + \Delta A^T U_1$
- 11: Berechne Zerlegung: $V_1S_1^T = L_1$, $S_1 \in \mathbb{C}^{r \times r}$ regulär, V_1 orthogonal.
- 12: Approximation $Y_1 = U_1 L_1^T$.

 Verfahren zweiter Ordnung durch symmetrische Komposition des Flusses mit eigener Adjungierten. Verfahren höher Ordnung durch geeignete weitere Komposition (Standard)

⁸Christian Lubich and Ivan V. Oseledets (2014): A projector-splitting operator for dynamical low-rank approximation

- Verfahren zweiter Ordnung durch symmetrische Komposition des Flusses mit eigener Adjungierten. Verfahren höher Ordnung durch geeignete weitere Komposition (Standard)
- Übertragung auf Matrix-DGLn: A(t) unbekannte Lösung von $\dot{A} = F(A)$, ersetze ΔA durch $\tau F(Y_0)$
 - ▶ Verfahren der Ordnung 1
 - explizite Verfahren höherer Ordnung durch weitere Näherungen und geeignete Zwischenwerte

⁸Christian Lubich and Ivan V. Oseledets (2014): A projector-splitting operator for dynamical low-rank approximation

- Verfahren zweiter Ordnung durch symmetrische Komposition des Flusses mit eigener Adjungierten. Verfahren höher Ordnung durch geeignete weitere Komposition (Standard)
- Übertragung auf Matrix-DGLn: A(t) unbekannte Lösung von $\dot{A} = F(A)$, ersetze ΔA durch $\tau F(Y_0)$
 - ▶ Verfahren der Ordnung 1
 - explizite Verfahren höherer Ordnung durch weitere Näherungen und geeignete Zwischenwerte
- Updatereihenfolge $K \rightsquigarrow S \rightsquigarrow L$ willkürlich. "Exactness property" aber nur für diese Reihenfolge gültig:

Theorem 7 (Theorem 4.18)

A(t) habe höchstens Rang r für alle t. Mit $Y_0=A(t_0)$ ist Algorithmus 1 exakt: $Y_1=A(t_1)$

 $^{^8}$ Christian Lubich and Ivan V. Oseledets (2014): A projector-splitting operator for dynamical low-rank approximation

Beweis von Theorem 7:

Der zweite Ansatz – Robustheit gegen Überapproximation

- Verbesserung des Verhaltens bei Überapproximation unter schwächeren Voraussetzungen:
 - ▶ $A(t) = A_1(t) + \varepsilon A_2(t)$ mit rank $(A_1(t)) = q < r$, A_1 , A_2 und ihre Ableitungen beschränkt unabhängig von ε
 - $ightharpoonup \sigma_q(A_1(t)) \geq \rho > 0, \ 0 \leq t \leq T$
 - $\blacktriangleright \ A_1(t) = \mathit{U}_1(t)\mathit{S}_1(t)\mathit{V}_1(t)^\mathsf{T} \ \mathsf{mit} \ \mathit{U}_1 \in \mathcal{V}_{m,q}, \ \mathit{V}_1 \in \mathcal{V}_{m,q}, \ \mathit{S}_1 \in \mathsf{GL}_q(\mathbb{R})$
 - ightharpoonup Startwert für dynamische Rang-r Approximation von A(t)

$$Y_0 = A_1(t_0) + \varepsilon A_{2,0}$$
, $\operatorname{rank}(Y_0) = r$,

 $A_{2,0} \neq A_2(t_0)$ zugelassen, $A_{2,0}$ unabhängig von ε beschränkt

Verglichen wird mit Ergebnis aus Rang-q Approximation mit Startwert

$$\hat{Y}_0 = A_1(t_0) + \varepsilon \hat{A}_{2,0}, \quad \operatorname{rank}(\hat{Y}_0) = q < r$$

Der zweite Ansatz – Robustheit gegen Überapproximation

Theorem 8

In der geschilderten Situation seien Y_n und \hat{Y}_n die Ergebnisse nach n Schritten des Splitting-Integrators für die Rang-r-Approximation bzw. die Rang-q-Approximation, jeweils mit Schrittweite τ . Solange $n\tau \leq T$, gilt

$$||Y_n - \hat{Y}_n|| \le C(\varepsilon + \tau),$$

wobei C unabhängig von n, τ und ε ist (aber von T abhängt).

- Nonsequenz: Änderung des Rangs während Iteration möglich
 - ▶ Verringerung des Rangs durch Weglassen von Singulärwerten
 - ightharpoonup Erhöhung durch Hinzufügen von Singulärwerten (=0)
- $lack
 ightarrow \mathsf{Rangadaptivit ilde{a}t}$ wenn mit geeigneten Kriterien kombiniert