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Dynamic boundary conditions

a O c R9 bounded and open domain with Lipschitz-boundary T := 90

ug(t,x) — Au(t,x) =0, (t,x) €[0, T] xQ + ivs + bcs

Definition: Dynamic boundary conditions are differential or evolution
equations on the boundary.

Model problem

kinetic boundary conditions

Uy — Aru = —adpu onT
acoustic boundary conditions
méy + dés + ké = —uy onT

Ot = dnpu onT
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Dynamic boundary conditions

a O c R9 bounded and open domain with Lipschitz-boundary T := 90

ug(t,x) — Au(t,x) =0, (t,x) €[0, T] xQ + ivs + bcs

Definition: Dynamic boundary conditions are differential or evolution
equations on the boundary.

Model problem

kinetic boundary conditions

Uy — Aru = —adpu onT

acoustic boundary conditions
méy + dés + ké = —uy onT
0t = opU onT

Goal: Convergence rates for finite element space discretizations
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Analysis of wave eq with kinetic bcs AT

us—Au=0 in Q)
Uy + U— Aru= —0dpu onT € C?

Variational formulation: find u: (0, T) — V s.t.
m(u”(t), ¢) +a(u(t),9) =0 VeV,
where
V={ve H'(Q)| 1(v) e H' )}
9) = dx+ [ vods,
m(v, @) /QVq) X+ rV(p

a(v,¢) :/QVV'V(de—F/FVqH—Vrv-Vr(pds.
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Non-conforming finite elements ﬂ(“'

sruhe Institute of Technology

® boundary conditions with Ar imposed on
smooth T (e.g. C?)

m triangulations leads to (), = ()
m discretization is non-conforming since

VhZ V, mp # m, ap#a

ah(uh, (Ph) = /0 Vup - Vepdx+ /1" Uppp + Vrhuh . Vrh(ph ds
h h
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Non-conforming finite elements ﬂ(“'

® boundary conditions with Ar imposed on
smooth T (e.g. C?)

m triangulations leads to (), = ()
m discretization is non-conforming since

VhZ V, mp # m, ap # a
Idea: use pw smooth homeomorphism

Gp: Qp — Q

from [Elliott, Ranner '13] to define

up(x) = up(G, ' (x)), x €0

ah(uh, (Ph) = /Oh Vup - Vepdx+ /l"h Uppp + Vrhuh . Vrh(ph ds
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Non-conforming finite elements

® boundary conditions with Ar imposed on
smooth T (e.g. C?)

m triangulations leads to ~ ()

m discretization is non-conforming since

Vhy VvV, my # m, ap # a

Idea: use pw smooth homeomorphism Gp
Ghp: QOp > Q

from [Elliott, Ranner '13] to define

up(x) = up(G, ' (x)), x €0

ah(uh, (Ph) = /Q Vup-Vepdx + /1" Uppp + Vrhuh . Vrh(ph ds
h h
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Challenges A

Karlsruhe Institute of Technology

convergence rates for finite element discretizations

1. use general from literature X  (non-conforming FEs)

2. develop error analysis by using ideas from related situation
(X) (multiple pdes ~~ repetitive work)
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My fear of large numbers
wave eq with Robin bcs
wave eq with kinetic bcs

wave eq with acoustic bcs

David Hipp - A unified error analysis for spatial discretizations of wave-type equations
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My fear of large numbers IT
wave eq with Robin bcs FEM
wave eq with kinetic bcs >< FEM smooth domain
wave eq with acoustic bcs /
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My fear of large numbers ﬂ(“'

wave eq with Robin bcs >< FEM
wave eq with kinetic bcs / FEM smooth domain
wave eq with acoustic bcs FEM mass lumping

Maxwell’s eq dG method

advection eq HMM

finite differences

David Hipp - A unified error analysis for spatial discretizations of wave-type equations



My fear of large numbers Q(IT

wave eq with Robin bcs FEM

wave eq with kinetic bcs <77—> FEM smooth domain
s\?«’if

AN

wave eq with acoustic bcs SR

Maxwell’s eq

advection eq

. finite differences
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My fear of large numbers Q(IT

Karlsruhe Ins

wave eq with Robin bcs FEM
wave eq with kinetic bcs FEM smooth domain
wave eq with Gut feélilng: proofs of error estirr:a'_t(la‘s similalr mping
Maxwell’s eq dG method
advection eq HMM

finite differences
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Modular approach A\‘(IT

| space discretization |

=9

unified error analysis

| wave-type eq|
s X' + Sx

’ abstract a priori bounds ‘

approx props
| |

O(hP)
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Abstract non-conforming space discretizations [T

X'(t)+ Sx(t) = g(t)

X ——— Qp(Xp)

I Interpretation:

! X =L2(Q)

. Q; w “X, = FEsin Q)
: Qn » “Qnxy = X}

v
Xh

X (1) + Shxn(t) = gn(1)
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Abstract non-conforming space discretizations [T

X'(t)+ Sx(t) = g(t)

Z¢ X ? Oh(Xh)
E Interpretation:
! X =L2(Q)
' Q; ® “X, = FEsin Q"
Jn ! Qn w “Quxp = X}
I m “J, = interpolation”
w7 =H2(Q)
Y
Xh

X (1) + Shxn(t) = gn(1)
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General error bound &(IT
Theorem T

X'(t)+Sx(t) = g(t)

1 Qnxn(t) — x(1)l|x 7 X < Qu(Xp)
<CA+t)(E1+Ex+ E3) !
where E Q;
Ey = [Ix) — Inx®llx, + l1gn — Qhall i (x,) N\t /S Qn
Ez = (@5 — )X ll 1m0y X»
+ [1(QhS = Sndn) Xl 12 X, (1) + Spxa(t) = (1)

Es = [|(1 = Qndn) Xl 1o (x)

Idea of proof. split error into
Qnxp — X = Qpep + (Qpdpx — X), e = Xp — JpX
and use discrete stability in
ey 4+ Shen = gnh — Qhg + (QhS — Shdn) x + (Qf — Jn) X’
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Towards the complete estimate ﬂ(IT

Lemma

1(Qh = In) XMl 1) < C(H(' = Qndn) X[l oo (x) + ||Ap(JhX/)||Loo(x;;))
where

AP(zn, yn) = P(Qnzn, Qnyn) — Pn(zn. Yn)

Proof. Use
m pinner product on X
® py inner product on Xy

= 12hllx, = max)y, |, —1Pn(Zh ¥n)

® [[-llx, ~ 1 Qn-llx
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Error bound for symmetric hyperbolic systems AT
For symmetric hyperbolic systems use S € L(Y, X)
E> = [I(Qh = In)X [l (x,) + QRS — Shdn) Xl 1o (x,)
< C(11(1= Qndn)¥ 1) + 18P IX ) o )

+ 110 = Qnd) Xl ) + 1880 1o )
[ Qnxn(t) — x(8)[| x

< C(1 + t)(error in data + interp. of x, X' + "0 — pp" + "s — s5,")

Proof.
m use general error bound
m choose J, = Iy,

Er = Ixp — Jnx®llx, + ll9n — Qp9ll1(x,) and Es = [ (I = Qnn) X[ 1 (x)
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Modularity A\‘(IT

| space discretization |

unified error analysis

| wave-type eq|

’error < data + interp. + ‘

approx props
| |

O(hP)
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Modularity and full discretization AT
| space discretization |

X!+ Shxn = gh | y Crank—Nicolson

=9

|

' x' +Sx

time stepping error analysis

o
o)
()
o
>
-
()
>
®©
=

error < data + interp. + + T
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Exponential quadrature ﬂ(“'

Variation-of-constants formula:
T
X(thr1) = € x(ty) +/ e (T0Sg(t,+6)ds,  t,=nt
0

\dea: for t € [ty, th41] use

t) ~ ig(tn—l- cT)l(t),  4i(t) = ﬁ t._ >

i= m=1 G — Cm
m#i
Exponential quadrature rule
X" = g TS 4 2 bi(—t8)g(th + ¢iT), n>0,

where b;(—1S) == [, e ("5¢;(0) do

m order g conditions <= exact integration for g € Py
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Full discretization

Karlsruhe Institute of Technology

Fully discrete scheme:

S
Xt = e ™+ Y bi(—TSh)gh(ta+GT), n>0
i=

14 DavidHipp - Aunified error analysis for spatial discretizations of wave-type equations



Full discretization ﬂ(“.

Karlsruhe Institute of

Fully discrete scheme:

S
Xt = e ™+ Y bi(—TSh)gh(ta+GT), n>0
i=

m consider e} = xJ — Jpx(tn)
m subtract Jyx(t,.1) from scheme

S
ept! = e ™Shef + e TShUpx(tn) + Y, bi(—TSh)gn(th + &) — Jpx(tai1)
i=1
= eirsh ez + An

m with stability of exponential schemes

Iehllx, < C(llehllx, + tn sup ="llAdllx,)
=0,..., n
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Full error analysis

m for schemes of order q

S

An = e "hdpx(ty) + Z —1Sp)gn(tn + ¢iT) — Ipx(thsiq)
= Xp(T) — JhX(fn+1)
where
Xh+ SnXn=Tq9n  Xn(0) = Jpx(tn)
a from general error bound
1Anllx, = IXn(T) = Inx(tas1)llx,
<Ct (Hqu,, — Jngl| 1= (x,,) + spatial error)

< Ct (19 + spatial error)
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Error bound AT

te of Technology

Theorem

|Qnxp — x(ta) || x < C(1 +tn) (Tq + spatial error)

Proof. Split error

1Qnxp = X(tn)llx < 1Qn(xh — Jnx(ta))llx  + (1= Qndn)x(tn) [l x
< Cllehllx + 1(1 = Qndn) x(tn) Il x

and use

Iefllx, < C(llefllx, +tn sup Al )
=0,..., n
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Error bound

<IT

te of Technology

Theorem

|Qnxf — x(ta) ]l x < C(1 +tn) (Tq + spatial error)

Proof. Split error

1Qnxp = X(tn)llx < 1Qn(xh — Jnx(ta))llx  + (1= Qndn)x(tn) [l x
< Cllehllx + 1(1 = Qndn) x(tn) Il x

and use

lenllx, < C(HeﬂHXthtn sup (79 + spatial error))
k=0,....n
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Modularity and full discretization A\‘(IT

| space discretization | | cy,...,Cs and T|

__________________ -
1

X!+ ShXn = gh | s exponential quadrature

=g

|

s x' + Sx

time stepping error analysis

o
o)
©
Q
>
T
)
>
®©
=

(%]

= ’ error < data + interp. + + 19 ‘
a

x

o

Q.

& O(hP + 19)
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Modu

|

' x' +Sx

o
o)
()
o
>
-
()
>
®©
=

David Hipp

larity and full discretization

| space discretization |

=9

error < data + interp. +

+ Ts+1

approx props
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time stepping error analysis




Benefits of the unified error analysis AT

m formalized derivation of (new) convergence rates

a error bounds for full discretization with

m algrebaically stable and coercive Runge—Kutta methods
m exponential quadrature rules

® modularization s.t. extensions have wide range of applications
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