
A Convergence Analysis of the Peaceman-Rachford
Scheme for Semilinear Evolution Equations

Benjamin Dörich

10. October 2017



Problem Set-up

Semilinear evolution equation

u′(t) = (A + F )u(t), u(0) = u0
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Example Problem - Allan Cahn equation

Reaction-diffusion equation:

u′(t) = ∆u(t) + u(t)− u(t)3

with splitting:
(A + F )u = ∆u + (u − u3)

(last term from potential: 1
4(1− u2)2 )

Model of of certain phase separation processes
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Peaceman-Rachford Scheme

Compute one time step by applying the operator

S = (I − τ

2
F )−1︸ ︷︷ ︸

imp. Euler

(I +
τ

2
A) (I − τ

2
A)−1 (I +

τ

2
F )︸ ︷︷ ︸

exp. Euler

to last solution.

Yields approximation u(nτ) ≈ Snu0

Advantage: A and F separated
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Goal

Additional Regularity of solution

⇓

Error bound depending on τ
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Existence and Uniqueness of Solutions

Establish well-posedness by assumptions on
initial value u0 (regularity)

A + F → exact solution
A and F → numerical solution

Main assumption:
Operators A, F and A + F are maximal dissipative. Then:
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Maximal Dissipative

A operator G : D(G ) 7→ H (real HS) is called maximal dissipative if
there exists M[G ] ≥ 0 such that

R(I − τG ) = H for all τ > 0 with τM[G ] < 1(
Gu − Gv , u − v

)
≤ M[G ]‖u − v‖2 for all u, v ∈ D(G )
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Main Result

Under certain further assumptions we have the estimate

‖u(nh)− Snu0‖ ≤
5
2
τp e3/2T (M[A]+M[F ])

p∑
j=0

‖Ap−ju(j+1)‖L1(0,T ,H)

for nτ ≤ T where either p = 1 or p = 2.
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Step 1: stability
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Strategy of the Proof

Step 2: local error

Regularity assumptions → fundamental theorem of calculus

Split the remaining term:

quadrature error
splitting error
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Possible Extensions

Add another operator

Consider
u′(t) = (A + B + F )u(t), u(0) = u0

where B might satisfy some stronger assumptions.
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Possible Extensions

Consider complex Hilbert space

Consider Schrödinger equation → i∆

⇓

change condition:

Re
(
Gu − Gv , u − v

)
≤ M[G ]‖u − v‖2 for all u, v ∈ D(G )
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Numerical Example
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Numerical Example - Convergence of Lie
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Numerical Example - Convergence of Peacemann-Rachford
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