A Convergence Analysis of the Peaceman-Rachford Scheme for Semilinear Evolution Equations

Benjamin Dörich

10. October 2017

Problem Set-up

Semilinear evolution equation

$$u'(t) = (A + F)u(t), \quad u(0) = u_0$$

Problem Set-up

Semilinear evolution equation

$$u'(t) = (A + F)u(t), \quad u(0) = u_0$$

where

- A is linear
- F is possibly nonlinear

Example Problem - Allan Cahn equation

Reaction-diffusion equation:

$$u'(t) = \Delta u(t) + u(t) - u(t)^3$$

Example Problem - Allan Cahn equation

Reaction-diffusion equation:

$$u'(t) = \Delta u(t) + u(t) - u(t)^3$$

with splitting:

$$(A+F)u = \Delta u + (u-u^3)$$

(last term from potential: $\frac{1}{4}(1-u^2)^2$)

Example Problem - Allan Cahn equation

Reaction-diffusion equation:

$$u'(t) = \Delta u(t) + u(t) - u(t)^3$$

with splitting:

$$(A+F)u = \Delta u + (u-u^3)$$

(last term from potential: $\frac{1}{4}(1-u^2)^2$)

Model of of certain phase separation processes

Peaceman-Rachford Scheme

Compute one time step by applying the operator

$$S = \underbrace{(I - \frac{\tau}{2}F)^{-1}}_{} (I + \frac{\tau}{2}A) (I - \frac{\tau}{2}A)^{-1} \underbrace{(I + \frac{\tau}{2}F)}_{}$$

to last solution.

Peaceman-Rachford Scheme

Compute one time step by applying the operator

$$S = \underbrace{(I - \frac{\tau}{2}F)^{-1}}_{} (I + \frac{\tau}{2}A) (I - \frac{\tau}{2}A)^{-1} \underbrace{(I + \frac{\tau}{2}F)}_{}$$

to last solution.

Yields approximation $u(n\tau) \approx S^n u_0$

Peaceman-Rachford Scheme

Compute one time step by applying the operator

$$S = \underbrace{(I - \frac{\tau}{2}F)^{-1}}_{\text{imp. Euler}} (I + \frac{\tau}{2}A) (I - \frac{\tau}{2}A)^{-1} \underbrace{(I + \frac{\tau}{2}F)}_{\text{exp. Euler}}$$

to last solution.

Yields approximation $u(n\tau) \approx S^n u_0$

Advantage: A and F separated

Additional Regularity of solution

Additional Regularity of solution

Error bound depending on au

Establish well-posedness by assumptions on

■ initial value u_0 (regularity)

Establish well-posedness by assumptions on

- initial value u_0 (regularity)
- \blacksquare $A + F \rightarrow$ exact solution

Establish well-posedness by assumptions on

- initial value u_0 (regularity)
- \blacksquare $A + F \rightarrow$ exact solution
- lacksquare A and F o numerical solution

Establish well-posedness by assumptions on

- initial value u_0 (regularity)
- \blacksquare $A + F \rightarrow$ exact solution
- \blacksquare A and $F \rightarrow$ numerical solution

Main assumption:

Operators A, F and A + F are maximal dissipative.

Establish well-posedness by assumptions on

- initial value u_0 (regularity)
- \blacksquare $A + F \rightarrow$ exact solution
- lacksquare A and F o numerical solution

Main assumption:

Operators A, F and A + F are maximal dissipative. Then:

Maximal Dissipative

A operator $G: D(G) \mapsto H$ (real HS) is called maximal dissipative if there exists $M[G] \geq 0$ such that

- $\blacksquare R(I \tau G) = H$ for all $\tau > 0$ with $\tau M[G] < 1$
- $(Gu Gv, u v) \le M[G] ||u v||^2 \quad \text{for all } u, v \in D(G)$

Establish well-posedness by assumptions on

- initial value u_0 (regularity)
- \blacksquare $A + F \rightarrow$ exact solution
- A and $F \rightarrow$ numerical solution

Main assumption:

Operators A, F and A + F are maximal dissipative. Then:

numerical solution exists

Establish well-posedness by assumptions on

- initial value u_0 (regularity)
- \blacksquare $A + F \rightarrow$ exact solution
- \blacksquare A and $F \rightarrow$ numerical solution

Main assumption:

Operators A, F and A + F are maximal dissipative. Then:

- numerical solution exists
- $lue{}$ theory of nonlinear contractive semigroups ightarrow exact solution

Main Result

Under certain further assumptions we have the estimate

$$||u(nh) - S^n u_0|| \le \frac{5}{2} \tau^p e^{3/2T(M[A]+M[F])} \sum_{j=0}^p ||A^{p-j} u^{(j+1)}||_{L^1(0,T,H)}$$

for $n\tau \leq T$ where either p=1 or p=2.

Step 1: stability

Recall :
$$S = (I - \frac{\tau}{2}F)^{-1} (I + \frac{\tau}{2}A) (I - \frac{\tau}{2}A)^{-1} (I + \frac{\tau}{2}F)$$

Applying *S n* times:

$$(I + \frac{\tau}{2}F) (I - \frac{\tau}{2}F)^{-1}$$
 and $(I + \frac{\tau}{2}A) (I - \frac{\tau}{2}A)^{-1}$

Step 1: stability

Recall :
$$S = (I - \frac{\tau}{2}F)^{-1} (I + \frac{\tau}{2}A) (I - \frac{\tau}{2}A)^{-1} (I + \frac{\tau}{2}F)$$

Applying S n times:

$$(I + \frac{\tau}{2}F) (I - \frac{\tau}{2}F)^{-1}$$
 and $(I + \frac{\tau}{2}A) (I - \frac{\tau}{2}A)^{-1}$

Obtain (exponential) Lipschitz constants

$$e^{3/2\tau M[A]}$$
 and $e^{3/2\tau M[F]}$

Step 2: local error

Regularity assumptions \rightarrow fundamental theorem of calculus

Step 2: local error

Regularity assumptions \rightarrow fundamental theorem of calculus

Split the remaining term:

- quadrature error
- splitting error

Possible Extensions

Add another operator

Consider

$$u'(t) = (A + B + F)u(t), \quad u(0) = u_0$$

where B might satisfy some stronger assumptions.

$$\tilde{S} = (I - \frac{\tau}{2}F)^{-1} \left(I + \frac{\tau}{2}A\right) \left(I - \frac{\tau}{2}A\right)^{-1} \left(I + \frac{\tau}{2}B\right) \left(I - \frac{\tau}{2}B\right)^{-1} \left(I + \frac{\tau}{2}F\right) ?$$

Possible Extensions

Consider complex Hilbert space

Consider Schrödinger equation $o i\Delta$

Possible Extensions

Consider complex Hilbert space

Consider Schrödinger equation $\rightarrow i\Delta$

 $\downarrow \downarrow$

change condition:

$$Re(Gu - Gv, u - v) \le M[G]||u - v||^2$$
 for all $u, v \in D(G)$

Numerical Example

Numerical Example - Convergence of Lie

Numerical Example - Convergence of Peacemann-Rachford

