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Last year: UA scheme for KG equations

Error constant comparison w.r.t. τ :
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Last year: UA scheme for KG equations

Limit convergence:
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Model problem

Consider the Klein-Gordon-Schrödinger (KGS) system:

c−2∂ttz(t, x)−∆z(t, x) + c2z(t, x) = |n(t, x)|2,
i∂tn(t, x) + ∆n(t, x) = −n(t, x)z(t, x),

with initial conditions

z(0, x) = z0(x), ∂tz(0, x) = c2z1(x), n(0, x) = n0(x),

and periodic boundary conditions.

Numerical Challenge:
Highly oscillatory (non-relativistic) limit regime, i.e. c � 1.

Goal: Search numerical approx. zn ≈ z(tn), nn ≈ n(tn) with tn = nτ .
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Numerical methods

1.) Gautschi-type method:

Gautschi-type method for oscillatory second-order differential
equations by Hochbruck/Lubich (1998)

Here: Gautschi-type method by Bao/Dong/Zhao (2013):
Exponential wave integrator pseudospectral (EWI-PS) method

Idea: Discretize Duhamel’s formula (variation of constants formula).
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Gautschi-type methods

KGS equation
(
〈∇〉c :=

√
−∆ + c2

)
:

∂ttz(t) = −c2〈∇〉2cz(t) + c2
∣∣n(t)

∣∣2,
i∂tn(t) = −∆n(t)− n(t)z(t).

Problem: large derivative ∂tz = O(c2) .
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0
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∣∣2+O(s ∂t n)

ds,
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∫ τ

0
ei∆(τ−s)n(tn + s)z(tn + s)︸ ︷︷ ︸
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Gautschi-type methods

Gautschi-type method applied to KGS system at tn = 0.6:

0.4

0
x ∈ [0, 2π]

c = 1c = 1c = 1
0.2

0

−0.5
x ∈ [0, 2π]

c = 10c = 10c = 10

−0.3

0

0.3

x ∈ [0, 2π]

c = 50c = 50c = 50

Figure: blue line: reference solution of z (τref ≈ 10−5),
red line: numerical approximation of z (τ ≈ 10−2).

Problem: Time step restriction for large c!
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Limit approximation

2.) Limit system

Idea:
Instead of solving full system, take limit approximation and solve only the
non-oscillatory limit system.
Multiscale expansion yields decoupled free Schrödinger limit system

∂tu∞(t, x) = − i
2 ∆u∞(t, x), u∞(0) = z0 − iz1,

∂tn∞(t, x) = i∆n∞(t, x), n∞(0) = n0,

such that (for sufficiently smooth solutions)

z =
1
2

(
u∞eic2t + c.c.

)
+O(c−2).

Advantage:
Non-oscillatory limit system can be solved exactly in Fourier space!
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Limit approximation

Limit approximation vs. reference solution at tn = 0.7:
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Figure: blue line: reference solution of z (τref ≈ 10−5),
red line: limit approximation of z (τ ≈ 10−2).

Problem: Good approximation only for c � 1!
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Uniformly accurate scheme

3.) Uniformly accurate (UA) scheme by B./Kokkala/Schratz (2017)

Aim: Scheme that works well for small AND large c.

Idea:

Derive Duhamel’s formula in “twisted variables”

Integrate the highly-oscillatory phases exactly

Other UA scheme:
Bao/Zhao 2013: only linear convergence rate O(τ) for all c ∈ [1,∞)
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Uniformly accurate scheme

KGS as first-order system in time with z = 1
2 (u + u)

i∂tu = −c〈∇〉cu + c〈∇〉−1
c |n|2,

i∂tn = −∆n − 1
2

n (u + u) .

Twisted variable u∗(t) = e−ic2tu(t) with Ac := c〈∇〉c − c2 satisfies

i∂tu∗ = −Acu∗ + c〈∇〉−1
c |n|2,

i∂tn = −∆n − 1
2

n
(
eic2tu∗ + e−ic2tu∗

)
Ac and c〈∇〉−1

c are uniformly bounded in c:

‖Acu‖2
r ≤

1
2
‖u‖2

r+2, ‖c〈∇〉−1
c u‖r ≤ ‖u‖r .

Advantage:
All operators uniformly bounded in c  ∂tu∗ uniformly bounded in c!
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Uniformly accurate scheme
A first-order UA scheme

Duhamel’s formula yields
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Uniformly accurate scheme
A first-order UA scheme

Duhamel’s formula yields

u∗(tn + τ) = eiτAc u∗(tn)− ic〈∇〉−1
c eiτAc

∫ τ

0
e−isAc︸ ︷︷ ︸

=1+s·“nice”

e−ic2(tn+s) |n(tn + s)|2︸ ︷︷ ︸
=|n(tn)|2+s·“nice”

ds,

n(tn + τ) = eiτ∆n(tn) +
i

2
eiτ∆

∫ τ

0
e−is∆︸ ︷︷ ︸

=1+s·“nice”

[
eic2(tn+s) u∗(tn + s)︸ ︷︷ ︸

=u∗(tn)+s·“nice”

+c.c.
]

n(tn + s)︸ ︷︷ ︸
=n(tn)+s·“nice”

ds.
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n(tn + τ) = eiτ∆n(tn) +
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eiτ∆

∫ τ

0
e−is∆︸ ︷︷ ︸

=1+s·“nice”

[
eic2(tn+s) u∗(tn + s)︸ ︷︷ ︸

=u∗(tn)+s·“nice”

+c.c.
]

n(tn + s)︸ ︷︷ ︸
=n(tn)+s·“nice”

ds.

Use
e−isAc = 1 +O(s∆), u∗(tn + s) = u∗(tn) +O (s ∂tu∗)

e−is∆ = 1 +O(s∆), n(tn + s) = n(tn) +O (s ∂tn) .
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Uniformly accurate scheme
A first-order UA scheme

Duhamel’s formula yields

u∗(tn + τ) = eiτAc u∗(tn)− ic〈∇〉−1
c eiτAc

∫ τ

0
e−isAc︸ ︷︷ ︸

=1+s·“nice”

e−ic2(tn+s) |n(tn + s)|2︸ ︷︷ ︸
=|n(tn)|2+s·“nice”

ds,

n(tn + τ) = eiτ∆n(tn) +
i

2
eiτ∆

∫ τ

0
e−is∆︸ ︷︷ ︸

=1+s·“nice”

[
eic2(tn+s) u∗(tn + s)︸ ︷︷ ︸

=u∗(tn)+s·“nice”

+c.c.
]

n(tn + s)︸ ︷︷ ︸
=n(tn)+s·“nice”

ds.

We obtain:

u∗(tn + τ) = eiτAc u∗(tn)− ic〈∇〉−1
c eiτAc

∫ τ

0
e−ic2(tn+s)|n(tn)|2ds +O(τ 2),

n(tn + τ) = eiτ∆n(tn) +
i

2
eiτ∆

∫ τ

0

[
eic2(tn+s)u∗(tn) + c.c.

]
n(tn)ds +O(τ 2).
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Uniformly accurate scheme
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Duhamel’s formula yields
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e−ic2(tn+s) |n(tn + s)|2︸ ︷︷ ︸
=|n(tn)|2+s·“nice”

ds,

n(tn + τ) = eiτ∆n(tn) +
i

2
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∫ τ

0
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=1+s·“nice”

[
eic2(tn+s) u∗(tn + s)︸ ︷︷ ︸

=u∗(tn)+s·“nice”

+c.c.
]

n(tn + s)︸ ︷︷ ︸
=n(tn)+s·“nice”

ds.

We obtain:

u∗(tn + τ) = eiτAc u∗(tn)− ic〈∇〉−1
c eiτAc

∫ τ

0
e−ic2(tn+s)|n(tn)|2ds +O(τ 2),

n(tn + τ) = eiτ∆n(tn) +
i

2
eiτ∆

∫ τ

0

[
eic2(tn+s)u∗(tn) + c.c.

]
n(tn)ds +O(τ 2).

Now we integrate the highly-oscillatory phases e±ic2(tn+s) exactly.
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First-order UA scheme

Yields first-order UA scheme:

un+1
∗ = eiτAc un

∗ − iτe−ic2tnϕ1(−iτc2)c〈∇〉−1
c eiτAc |nn|2,

nn+1 = eiτ∆nn +
i
2
τeiτ∆

[
eic2tnϕ1(ic2τ)un

∗n
n + e−ic2tnϕ1(−ic2τ)un

∗n
n
]

with

u0
∗ = z0 − ic−1〈∇〉−1

c z1,

n0 = n0,

and ϕ1(x) := ex−1
x .
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First-order UA scheme
Asymptotic convergence to the limit scheme

Iteration scheme for the limit system

un+1
∞ = e−

iτ
2 ∆un

∞,

nn+1
∞ = ei∆τnn

∞.
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First-order UA scheme
Asymptotic convergence to the limit scheme

Iteration scheme for the limit system

un+1
∞ = e−

iτ
2 ∆un

∞,

nn+1
∞ = ei∆τnn

∞.

First-order uniformly accurate scheme

un+1
∗ = eiτAc un

∗ − iτe−ic2tnϕ1(−iτc2)c〈∇〉−1
c eiτAc |nn|2, e−

iτ
2 ∆

nn+1 = eiτ∆nn +
i
2
τeiτ∆

[
eic2tnϕ1(ic2τ)un

∗n
n + e−ic2tnϕ1(−ic2τ)un

∗n
n
]
.
i
2
e−∆

]
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First-order UA scheme
Asymptotic convergence to the limit scheme

Iteration scheme for the limit system

un+1
∞ = e−

iτ
2 ∆un

∞,

nn+1
∞ = ei∆τnn

∞.

First-order uniformly accurate scheme

un+1
∗ = eiτAc un

∗ − iτe−ic2tnϕ1(−iτc2)c〈∇〉−1
c eiτAc |nn|2, e−

iτ
2 ∆

nn+1 = eiτ∆nn +
i
2
τeiτ∆

[
eic2tnϕ1(ic2τ)un

∗n
n + e−ic2tnϕ1(−ic2τ)un

∗n
n
]
.
i
2
e−∆

]
With ‖Ac + 1

2 ∆‖r = O(c−2)

Update and introduction UA scheme for the KGS system Numerical experiments UA scheme for the KGZ system Outlook

Simon Baumstark – Uniformly accurate methods for KGS and KGZ systems October 12, 2017 17/31



First-order UA scheme
Asymptotic convergence to the limit scheme

Iteration scheme for the limit system

un+1
∞ = e−

iτ
2 ∆un

∞,

nn+1
∞ = ei∆τnn

∞.

First-order uniformly accurate scheme

un+1
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iτ
2 ∆un

∗ − iτe−ic2tnϕ1(−iτc2)c〈∇〉−1
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iτ
2 ∆|nn|2, e−

iτ
2 ∆
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i
2
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First-order UA scheme
Asymptotic convergence to the limit scheme

Iteration scheme for the limit system

un+1
∞ = e−

iτ
2 ∆un

∞,

nn+1
∞ = ei∆τnn

∞.

First-order uniformly accurate scheme

un+1
∗ = e−

iτ
2 ∆un

∗ − iτe−ic2tnϕ1(−iτc2)c〈∇〉−1
c e−

iτ
2 ∆|nn|2, e−

iτ
2 ∆

nn+1 = eiτ∆nn +
i
2
τeiτ∆

[
eic2tnϕ1(ic2τ)un

∗n
n + e−ic2tnϕ1(−ic2τ)un

∗n
n
]
.
i
2
e−∆

]
With ‖τϕ1(ilc2τ)‖r = O(c−2), for l 6= 0
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First-order UA scheme
Asymptotic convergence to the limit scheme

Iteration scheme for the limit system

un+1
∞ = e−

iτ
2 ∆un

∞,

nn+1
∞ = ei∆τnn

∞.

First-order uniformly accurate scheme

un+1
∗ = e−

iτ
2 ∆un

∗ +O(c−2), e−
iτ
2 ∆

nn+1 = eiτ∆nn +O(c−2).
i
2
e−∆

]

Update and introduction UA scheme for the KGS system Numerical experiments UA scheme for the KGZ system Outlook

Simon Baumstark – Uniformly accurate methods for KGS and KGZ systems October 12, 2017 17/31



First-order UA scheme
Asymptotic convergence to the limit scheme

Iteration scheme for the limit system

un+1
∞ = e−

iτ
2 ∆un

∞,

nn+1
∞ = ei∆τnn

∞.

First-order uniformly accurate scheme

un+1
∗ = un+1

∞ +O(c−2), e−
iτ
2 ∆

nn+1 = nn+1
∞ +O(c−2).

i
2
e−∆

]
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First-order UA scheme
Theorem (Convergence bound for the first-order UA scheme)

Fix r > d/2 and assume that

sup
0≤t≤T

‖u∗(t)‖r+2 + ‖n∗(t)‖r+2 ≤ M.

For u∗ defined in the first-order scheme we set

zn :=
1
2

(
eic2tn un

∗ + e−ic2tn un
∗

)
.

Then, there exists a Tr > 0 and τ0 > 0 such that for τ ≤ τ0 and tn ≤ Tr

we have for all c > 0 that

‖z(tn)− zn‖r + ‖n(tn)− nn‖r ≤ τKr ,tn,M ,

where the constant Kr ,tn,M can be chosen independently of c.
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Numerical experiments

Order plot: First-order UA scheme:
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Simulation on x ∈ [0, 2π], t ∈ [0, 0.125], τref ≈ 10−7 and M = 256.
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Numerical experiments

Order plot: Second-order UA scheme:
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Numerical experiments

Limit approximation:
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Simulation on x ∈ [0, 2π], t ∈ [0, 1], τref ≈ 10−6 and M = 256.
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Klein-Gordon-Zakharov system

Work in progress
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Model problem

Consider the Klein-Gordon-Zakharov (KGZ) system:

c−2∂ttz −∆z + c2z = −nz,

α−2∂ttn −∆n = ∆|z|2

with initial conditions

z(0) = z0, ∂tz(0) = c2z1,

n(0) = n0, ∂tn(0) = αn1,

in the non-singular limit regime, i.e. α = γc, γ ∈ R+.

Derivation: We want to follow the procedure for the KGS system
analogously
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The twisting

KGZ as first-order system in time with z = 1
2 (u + u) and n = < (h)

i∂tu = −c〈∇〉cu − 1
2

c〈∇〉−1
c < (h) (u + u),

i∂th = −α〈∇〉0h − 1
4
α〈∇〉0|u + u|2.

Ansatz from MFE:

u∗ = e−ic2tu, h∗ = e−iα〈∇〉0th
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The twisting

KGZ as first-order system in time with z = 1
2 (u + u) and n = < (h)

i∂tu = −c〈∇〉cu − 1
2

c〈∇〉−1
c < (h) (u + u),

i∂th = −α〈∇〉0h − 1
4
α〈∇〉0|u + u|2.

Ansatz from MFE:

u∗ = e−ic2tu, h∗ = e−iα〈∇〉0th

First-order system in u∗, h∗

i∂tu∗ = Acu∗ −
1
2

c〈∇〉−1
c <

(
eiα〈∇〉0th∗

)(
u∗ + e−2ic2tu∗

)
i∂th∗ = − α

4
〈∇〉0e−iα〈∇〉0t(2|u∗|2 + e2ic2tu2

∗ + e−2ic2tu∗2)
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Problem

i∂th∗ = −α
4
〈∇〉0e−iα〈∇〉0t(2|u∗|2 + e2ic2tu2

∗ + e−2ic2tu∗2)

Integrating:

h∗(tn + τ) = h(tn)

+
iα

4
〈∇〉0

∫ τ

0
e−iα〈∇〉0(tn+s)

(
2|u∗(tn + s)|2 + e2ic2(tn+s)u2

∗(tn + s) + c.c.
)
ds

Taylor expansion and integrating the high oscillatory phases exactly

hn+1
∗ = hn

∗ +
iα
4
〈∇〉0e−iα〈∇〉0 tn

[
2τϕ1

(
− iα〈∇〉0τ

)
|un
∗|2

+ e2ic2 tnτϕ1
(
i(−α〈∇〉0 + 2c2)τ

)
(un
∗)

2 + c.c.
]
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Problem

hn+1
∗ = hn

∗ +
iα
2
〈∇〉0e−iα〈∇〉0tnτϕ1

(
− iα〈∇〉0τ

)
︸ ︷︷ ︸

=:I1

|un
∗|2

+
iα
4
〈∇〉0e−iα〈∇〉0tn

(
e2ic2tnτϕ1

(
i(−α〈∇〉0 + 2c2)τ

)
(un
∗)

2 + c.c.
)
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iα
4
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(
e2ic2tnτϕ1

(
i(−α〈∇〉0 + 2c2)τ

)
(un
∗)

2 + c.c.
)

For I1 we have

I1 =
iα
2
〈∇〉0e−iα〈∇〉0tnτ

e−iα〈∇〉0τ − 1
−iα〈∇〉0τ

=
1
2

(
e−iα〈∇〉0tn − e−iα〈∇〉0tn+1

)
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UA scheme for the KGZ system

First-order uniformly accurate scheme

un+1
∗ = e−iAcτu∗(tn) +

i
2

c〈∇〉−1
c eiτAc

[
In
1 − In

2

]
,

hn+1
∗ = hn

∗ +
1
2

(
e−iα〈∇〉0 tn − e−iα〈∇〉0 tn+1

)
|un
∗|2

+
1
4
〈∇〉0

e−i(α〈∇〉0+2c2)τ − 1
−(〈∇〉0 + 2cγ−1)

e−i(α〈∇〉0+2c2)tn un
∗

2

+
1
4
〈∇〉0

ei(−α〈∇〉0+2c2)τ − 1

−〈∇〉0 + 2cγ−1
ei(−α〈∇〉0+2c2)tn(un

∗)
2,

with

In
1 =

1

2

[
eiα〈∇〉0 tnτϕ1

(
iα〈∇〉0τ

)
+ e−iα〈∇〉0 tnτϕ1

(
− iα〈∇〉0τ

)]
<(hn
∗)
(

un
∗ + e−2ic2 t un

∗

)
,

In
2 =

1

2i

[
eiα〈∇〉0 tnτϕ1

(
iα〈∇〉0τ

)
− e−iα〈∇〉0 tnτϕ1

(
− iα〈∇〉0τ

)]
=(hn
∗)
(

un
∗ + e−2ic2 t un

∗

)
.
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First numerical experiments (γ = 1)

Order plot:

10−4 10−1

10−1

10−2

10−3

10−5

10−6

10−7

τ

E
rr

or
z c, α = 0.11

c, α = 0.51
c, α = 1.1
c, α = 5.1
c, α = 10.1
c, α = 50.1
c, α = 100.1
c, α = 500.1
c, α = 1000.1
c, α = 5000.1
c, α = 10000.1
O(τ)

10−4 10−1

10−2

10−3

10−6

10−7

10−8

τ
E

rr
or

n

Simulation on x ∈ [0, 2π], t ∈ [0, 1], τref ≈ 10−6 and M = 256.
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UA scheme for the KGZ system

Questions:

Right twisting of h?

Right calculation of the UA scheme?

Convergence to the numerical scheme of the limit system?
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UA schemes for KGS and KGZ systems

Remark

Derivation of the schemes for the KGZ equation also works for
z ∈ C, i.e. z = 1

2 (u + v).

Generalization to higher order schemes:
Insert Duhamel’s formula for u∗(tn + s) into u∗(tn + τ) and go on
analogously to the derivation of the first-order scheme.

For KGS also the second-order schemes converge in the limit to the
corresponding second-order numerical method for the limit equation.
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Outlook

Work-precision plots for KGS and KGZ.

Error analysis of the first-order scheme for the KGZ system.

Construct higher-order methods for the KGZ system.

Error analysis of the higher-order methods.

Can we twist (KG, KGS, KGZ) such that ∂ttu∗∗ = O(1)?
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