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Problem
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consider semilinear stiff problem

u′(t) = Au(t) + g
(
u(t)

)
, u(0) = u0

A matrix of large norm or A differential operator (unbounded) s.t.
∥∥∥etA

∥∥∥ ≤ C, t ≥ 0

w.l.o.g. C = 1 (for C > 1 use ‖v‖? = supt≥0

∥∥etAv
∥∥)

g “nice”

applications: (discretizations of) pdes
heat equation, convection diffusion equation, etc
(nonlinear) Schrödinger equation, Maxwell equations



Lawson methods, 1967: key idea
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u′(t) = Au(t) + g
(
u(t)

)
, u(0) = u0

transformation of variables

w(t) = e−tAu(t)

differentiation yields (hopefully) nonstiff ode for w

w ′(t) = e−tA(−Au + u′) = e−tAg(u)= e−tAg
(
etAw

)

Lawson method:
solve ode for w with explicit Runge–Kutta method
transform back to original u variables



Lawson methods
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s-stage Runge–Kutta method given by aij ,bi , ci

Ui = eci hAu0 + h
i−1

∑
j=1

aije(ci−cj )hAg(Uj ), i = 1, . . . , s

u1 = ehAu0 + h
s

∑
i=1

bie(1−ci )hAg(Ui )

example: Lawson-Euler method:

u1 = ehAu0 + hehAg(u0)



Lawson methods
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s-stage Runge–Kutta method given by aij ,bi , ci

Ui = eci hAu0 + h
i−1

∑
j=1

aije(ci−cj )hAg(Uj ), i = 1, . . . , s

u1 = ehAu0 + h
s

∑
i=1

bie(1−ci )hAg(Ui )

discussion:
if c1 ≤ . . . ≤ cs, then scheme is suited for parabolic and hyperbolic
problems (excludes Dopri, etc.)
otherwise, we need

∥∥etA
∥∥ ≤ 1 for all t ∈ R

requires evaluation or approximation of ehAv
special case of exponential integrator (using only exponentials)



Failure of Lawson methods
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consider scalar ivp

u′(t) = Au(t) + 1, u(0) = u0 = −A−1, A < 0

with solution u(t) = u(0) = −A−1

exponential Euler method is exact:

u1 = ehAu0 + hϕ1(hA) = u0, ϕ1(z) =
ez − 1

z

Lawson Euler method

u1 = ehAu0 + hehA = ehA(−A−1 + h)

gives reasonable results only in nonstiff case hA→ 0

convergence analysis: H., Ostermann, 2005



Success of Lawson methods

7 October 2014 Marlis Hochbruck - Lawson methods and trees Karlsruhe Institute of Technology

KIT

in
Kassam, Trefethen, 2005 (integrated factor method):
KdV, Burgers, Kuramoto-Sivashinsky, Allen-Cahn, periodic b.c.
Cano, Gonzáles-Pachón, 2014:
nonlinear Schrödinger equation, periodic b.c.
Balac, Fernandez, Mahé, Méhats, Texier-Picar, 2014:
generalized nonlinear Schrödinger equation in optics

full order of convergence is observed numerically

aim of this talk:
explain this behavior theoretically:

If the solution is sufficiently regular, then the Lawson method
converges with the same order as the underlying Runge–Kutta
method.
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Classical order of RK methods
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reminder: how to prove error estimates for RK methods

consider autonomous ivp

y ′ = f (y), y(0) = y0,

with f sufficiently smooth

Taylor’s theorem

y(h) =
p

∑
k=0

y(k)(0)
hk

k !
+ O(hp+1), h→ 0

higher derivatives of y obtained by repeated differentiation of the ode



Trees
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Taylor expansion of exact solution
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order $(τ) = number of nodes of τ

elementary differential D(τ) defined recursively by
D(•)(y) = f (y),

D(τ)(y) = f (k)(y)
[
D(τ1)(y), . . . ,D(τk )(y)

]
for τ =

τ1
τ2

τk

Theorem (Butcher, 1963; Hairer, Wanner, 1974; . . . )

The solution of y ′ = f (y), y(0) = y0 satisfies

y(k)(0) = ∑
τ∈T

$(τ)=k

α(τ)D(τ)(y0), k = 1,2,3, . . .

for certain coefficients α(τ), which are independent of the ode.



Taylor expansion of numerical solution
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for y ′ = f (y)

y1 = y0 + h
s

∑
i=1

bi f (Yi ), Yi = y0 + h
s

∑
j=1

aij f (Yj )

Theorem (Hairer, Wanner, 1974, . . . )

The numerical solution y1 ≈ y(h) satisfies

y(k)
1 (0) = ∑

τ∈T
$(τ)=k

φ(τ)α(τ)D(τ)(y0), k = 1,2,3, . . .

with the same coefficients α(τ) as for the exact solution.

conclusion: RK method is of order p if φ(τ) = 1 for all τ with $(τ) ≤ p



RK methods vs Lawson methods
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Runge–Kutta method

for y ′ = f (y), y(0) = y0

y1 = y0 + h
s

∑
i=1

bi f (Yi ),

Yi = y0 + h
i−1

∑
j=1

aij f (Yj )

exact solution

y(h) = y0 +
∫ h

0
f
(
y(σ)

)
dσ

Lawson method

for u′ = Au + g(u), u(0) = u0

u1 = ehAu0 + h
s

∑
i=1

bie(1−ci )hAg(Ui ),

Ui = eci hAu0 + h
i−1

∑
j=1

aije(ci−cj )hAg(Uj )

exact solution

u(h) = ehAu0 +
∫ h

0
e(h−σ)Ag

(
u(σ)

)
dσ



Iterated v.o.c. formula
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notation:

gη = g
(
eηhAu0

)
, g(k)

η = g(k)(eηhAu0
)
, k ≥ 1

u(h) = ehAu0 + h
∫ 1

0
e(1−σ)hAg

(
u(σh)

)
dσ

= ehAu0 + h
∫ 1

0
e(1−σ)hAg

(
eσhAu0 + h

∫ σ

0
e(σ−η)hAg

(
u(ηh)

)
dη
)

dσ

= ehAu0 + h
∫ 1

0
e(1−σ)hAgσdσ

+ h2
∫ 1

0
e(1−σ)hAg′σ

∫ σ

0
e(σ−η)hAgηdηdσ

+O(h3)

Lubich, Jahnke, 2000; Thalhammer, 2008; Lubich, 2008



Iterated v.o.c. formula, cont’d
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notation:

gη = g
(
eηhAu0

)
, g(k)

η = g(k)(eηhAu0
)
, k ≥ 1

up to order four:

u(h) = ehAu0 + h
∫ 1

0
e(1−σ)hAgσdσ

+ h2
∫ 1

0
e(1−σ)hAg′σ

∫ σ

0
e(σ−η)hAgηdηdσ

+ h3
∫ 1

0
e(1−σ)hAg′σ

∫ σ

0
e(σ−η)hAg′η

∫ η

0
e(η−ξ)hAgξdξdηdσ

+ 1
2h3

∫ 1

0
e(1−σ)hAg′′σ

[∫ σ

0
e(σ−η)hAgηdη,

∫ σ

0
e(σ−ξ)hAgξdξ

]
dσ

+O(h4)
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Elementary integrals
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Definition

For τ ∈ T and 0 ≤ ζ ≤ 1 we define Gζ(τ) recursively as:

Gζ(•)(v) =
∫ ζ

0
e(ζ−σ)hAg

(
eσhAv

)
dσ

for τ =
τ1

τ2
τk

set

Gζ(τ)(v) =
∫ ζ

0
e(ζ−σ)hAg(k)(eσhAv

)[
Gσ(τ1)(v), . . . ,Gσ(τk)(v)

]
dσ.

G(τ) = G1(τ); F (τ) denotes integrand of G(τ).

G(τ) is $(τ)-fold multivariate integral, F (τ) is function of $(τ) variables.



Expansion of exact solution
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Theorem

The solution of u′ = Au + g(u), u(0) = u0 satisfies

u(h) = ehAu0 + ∑
τ∈T

h $(τ)γ(τ)G(τ)(u0)

with certain coefficients γ(τ) which are independent of the differential
equation.

Proof. Isomorphism τ ' D(τ) ' G(τ)



Expansion of numerical solution
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u1 = ehAu0 + h
s

∑
i=1

bie(1−ci )hAgci

+ h2
s

∑
i=1

bie(1−ci )hAg′ci

i−1

∑
j=1

aije(ci−cj )hAgcj

+ h3
s

∑
i=1

bie(1−ci )hAg′ci

i−1

∑
j=1

aije(ci−cj )hAg′cj

j−1

∑
k=1

ajke(cj−ck )hAgck

+ 1
2h3

s

∑
i=1

bie(1−ci )hAg′′ci

[i−1

∑
j=1

aije(ci−cj )hAgcj ,
i−1

∑
k=1

aike(ci−ck )hAgck

]

+O(h4)
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u1 = ehAu0 + h
s

∑
i=1

bie(1−ci )hAgci •

+ h2
s

∑
i=1

bie(1−ci )hAg′ci

i−1

∑
j=1

aije(ci−cj )hAgcj

+ h3
s

∑
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i−1

∑
j=1

aije(ci−cj )hAg′cj
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∑
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2h3

s

∑
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bie(1−ci )hAg′′ci

[i−1

∑
j=1
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+O(h4)



Elementary quadrature formulas
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Definition

For τ ∈ T we define Ĝ(τ) recursively as:

Ĝ(•)(v) =
s

∑
i=1

bie(1−ci )hAgci , Ĝi (•)(v) =
i−1

∑
j=1

aije(ci−cj )hAgcj

for τ =
τ1

τ2
τk

we set

Ĝ(τ)(v) =
s

∑
i=1

bie(1−ci )hAg(k)
ci

[
Ĝi (τ1)(v), . . . , Ĝi (τk)(v)

]

Ĝi (τ)(v) =
i−1

∑
j=1

aije(ci−cj )hAg(k)
cj

[
Ĝj (τ1)(v), . . . , Ĝj (τk)(v)

]



Expansion of numerical solution
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Theorem

The Lawson approximation satisfies

u1 = ehAu0 + ∑
τ∈T

h $(τ)γ(τ)Ĝ(τ)(u0)

with the same coefficients γ(τ) as for the exact solution.

Proof. Isomorphism τ ' D(τ) ' G(τ) ' Ĝ(τ)
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Example: methods of order one
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u1 = ehAu0 + h
s

∑
i=1

bie(1−ci )hAg
(
eci hAu0

)
+O(h2) •

u(h) = ehAu0 + h
∫ 1

0
e(1−σ)hAg

(
eσhAu0

)
dσ +O(h2) •

hence u1 − u(h) = O(h2) if

Ĝ(•)(u0)−G(•)(u0) = O(h)

well known:

Ĝ(•)(u0)−G(•)(u0) = h
∫ 1

0
κp(σ)F ′(•)(σ)dσ

order only depends on bounds on F ′(•)



Convergence
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Theorem

A Lawson method is of order p if

Ĝ(τ)(u0)−G(τ)(u0) = O(hp+1−$(τ)), for all τ ∈ T , $(τ) ≤ p

Proof. Follows directly from expansion of exact and numerical solution.

Theorem

If
F (τ) ∈ Cp+1−$(τ) for all τ ∈ T , $(τ) ≤ p

and if the underlying the Runge–Kutta method is of order p, then the
Lawson method is of order p.



Main result
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Theorem

If
F (τ) ∈ Cp+1−$(τ) for all τ ∈ T with $(τ) ≤ p and
underlying Runge–Kutta method is of order p
0 < h ≤ h0

then the Lawson method converges with order p, i.e.

‖u(tn)− un‖ ≤ Chp, tn = nh ≤ T ,

where C and h0 are independent of n, h, and A.



Sketch of proof

25 October 2014 Marlis Hochbruck - Lawson methods and trees Karlsruhe Institute of Technology

KIT

expand F (τ)(σ1, . . . , σ$(τ)) into a Taylor polynomial of degree
p + 1− $(τ)

underlying RK method is of order k, hence multivariate quadrature
formula is exact for all polynomials of degree p + 1− $(τ)

stability
Lady Windermere’s fan
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Linear problems
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u′ = Au + Bu, u(0) = u0, B bounded

integrands of elementary integrals

F (•)(v)(σ) = e(1−σ)hABeσhAv

F ( )(v)(σ) = e(1−σ1)hABe(σ1−σ2)hABeσ2hAv

F ( )(v)(σ) = e(1−σ1)hABe(σ1−σ2)hABe(σ2−σ3)hABeσ3hAv

order one: F (•) ∈ C1

F ′(•)(v) = e(1−σ)hA[B,A]eσhAv , [B,A] = BA− AB

same regularity condition as for splitting methods
(Jahnke, Lubich, 2000; Thalhammer, 2008; Lubich, 2008)



Linear problems – order two
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order two: F (τ) ∈ C3−$(τ), $(τ) ≤ 2

F ′′(•)(v)(σ) =e(1−σ)hA[A, [A,B]]eσhAv

F ′( )(v)(σ) =
[
e(1−σ1)hA[B,A]e(σ1−σ2)hABeσ2hAv ,

e(1−σ1)hABe(σ1−σ2)hA[B,A]eσ2hAv
]



Summary
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Lawson methods for u′ = Au + g(u)

expansion of exact and numerical solution based on iterated v.o.c.
formula

interprete Lawson methods as multivariate quadrature formulas

convergence result showing exactly the required regularity
assumptions

for linear problems: same assumptions as for splitting methods

for semilinear problems: additional terms, not just commutators

generalization to nonlinear v.o.c. formula possible
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