

On Lawson methods and trees

Marlis Hochbruck

joint work with Alexander Ostermann, Innsbruck

Karlsruhe Institute of Technology

$$y^{(4)}(0) = (f'''[f, f, f])(y_0) + 3(f''[f'f, f])(y_0)$$

+ $(f'f''[f, f])(y_0) + (f'f'f'f)(y_0)$
 \downarrow

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Outline

- 1. Lawson methods
- 2. Outdoor excursion
- 3. Order and convergence
- 4. Example: Linear problems

Outline

1. Lawson methods

2. Outdoor excursion

3. Order and convergence

4. Example: Linear problems

Problem

consider semilinear stiff problem

$$u'(t) = Au(t) + g(u(t)), \qquad u(0) = u_0$$

A matrix of large norm or A differential operator (unbounded) s.t.

$$\left| \mathrm{e}^{t \mathsf{A}} \right| \leq C, \qquad t \geq 0$$

w.l.o.g.
$$C = 1$$
 (for $C > 1$ use $||v||_{\star} = \sup_{t \ge 0} ||e^{tA}v||$)
q "nice"

applications: (discretizations of) pdes

- heat equation, convection diffusion equation, etc
- (nonlinear) Schrödinger equation, Maxwell equations

3

Lawson methods, 1967: key idea

$$u'(t) = Au(t) + g(u(t)), \qquad u(0) = u_0$$

transformation of variables

$$w(t) = \mathrm{e}^{-t\mathsf{A}}u(t)$$

differentiation yields (hopefully) nonstiff ode for w

$$\mathbf{w}'(t) = \mathrm{e}^{-t\mathbf{A}}(-\mathbf{A}u + u') = \mathrm{e}^{-t\mathbf{A}}g(u) = \mathrm{e}^{-t\mathbf{A}}g(\mathrm{e}^{t\mathbf{A}}\mathbf{w})$$

Lawson method:

- solve ode for w with explicit Runge–Kutta method
- transform back to original u variables

Lawson methods

s-stage Runge–Kutta method given by a_{ij} , b_i , c_i

$$U_{i} = e^{c_{i}hA}u_{0} + h\sum_{j=1}^{i-1} a_{ij}e^{(c_{i}-c_{j})hA}g(U_{j}), \qquad i = 1, \dots, s$$
$$u_{1} = e^{hA}u_{0} + h\sum_{i=1}^{s} b_{i}e^{(1-c_{i})hA}g(U_{i})$$

example: Lawson-Euler method:

$$u_1 = \mathrm{e}^{hA}u_0 + h\mathrm{e}^{hA}g(u_0)$$

Lawson methods

s-stage Runge–Kutta method given by *a_{ij}*, *b_i*, *c_i*

$$U_{i} = e^{c_{i}hA}u_{0} + h\sum_{j=1}^{i-1} a_{ij}e^{(c_{i}-c_{j})hA}g(U_{j}), \qquad i = 1, \dots, s$$
$$u_{1} = e^{hA}u_{0} + h\sum_{i=1}^{s} b_{i}e^{(1-c_{i})hA}g(U_{i})$$

discussion:

- if c₁ ≤ ... ≤ c_s, then scheme is suited for parabolic and hyperbolic problems (excludes Dopri, etc.)
- otherwise, we need $\|e^{tA}\| \leq 1$ for all $t \in \mathbb{R}$
- requires evaluation or approximation of $e^{hA}v$
- special case of exponential integrator (using only exponentials)

Failure of Lawson methods

consider scalar ivp

$$u'(t) = Au(t) + 1$$
, $u(0) = u_0 = -A^{-1}$, $A < 0$

with solution $u(t) = u(0) = -A^{-1}$

exponential Euler method is exact:

$$u_1 = e^{hA}u_0 + h\varphi_1(hA) = u_0, \qquad \varphi_1(z) = \frac{e^2 - 1}{z}$$

Lawson Euler method

$$u_1 = e^{hA}u_0 + he^{hA} = e^{hA}(-A^{-1} + h)$$

gives reasonable results only in nonstiff case hA
ightarrow 0

convergence analysis: H., Ostermann, 2005

Success of Lawson methods

in

- Kassam, Trefethen, 2005 (integrated factor method):
 KdV, Burgers, Kuramoto-Sivashinsky, Allen-Cahn, periodic b.c.
- Cano, Gonzáles-Pachón, 2014: nonlinear Schrödinger equation, periodic b.c.
- Balac, Fernandez, Mahé, Méhats, Texier-Picar, 2014: generalized nonlinear Schrödinger equation in optics

full order of convergence is observed numerically

aim of this talk:

explain this behavior theoretically:

If the solution is sufficiently regular, then the Lawson method converges with the same order as the underlying Runge–Kutta method.

Outline

1. Lawson methods

2. Outdoor excursion

3. Order and convergence

4. Example: Linear problems

Classical order of RK methods

reminder: how to prove error estimates for RK methods consider autonomous ivp

$$y' = f(y), \qquad y(0) = y_0,$$

with *f* sufficiently smooth

Taylor's theorem

$$y(h) = \sum_{k=0}^{p} y^{(k)}(0) \frac{h^{k}}{k!} + O(h^{p+1}), \qquad h \to 0$$

higher derivatives of y obtained by repeated differentiation of the ode

Taylor expansion of exact solution

 τ_2

order *q*(*τ*) = number of nodes of *τ* elementary differential *D*(*τ*) defined recursively by

$$D(\bullet)(y) = f(y),$$

•
$$D(\tau)(y) = f^{(k)}(y) \Big[D(\tau_1)(y), \dots, D(\tau_k)(y) \Big]$$
 for $\tau = \frac{\tau_1}{\tau_1} \frac{\tau_2}{\tau_1} \frac{\tau_k}{\tau_k}$

Theorem (Butcher, 1963; Hairer, Wanner, 1974; ...) The solution of y' = f(y), $y(0) = y_0$ satisfies

$$y^{(k)}(0) = \sum_{\substack{\tau \in \mathcal{T} \\ \varrho(\tau) = k}} \alpha(\tau) D(\tau)(y_0), \qquad k = 1, 2, 3, \dots$$

for certain coefficients $\alpha(\tau)$, which are independent of the ode.

Taylor expansion of numerical solution

for y' = f(y)

$$y_1 = y_0 + h \sum_{i=1}^{s} b_i f(Y_i), \qquad Y_i = y_0 + h \sum_{j=1}^{s} a_{ij} f(Y_j)$$

Theorem (Hairer, Wanner, 1974, ...)

The numerical solution $y_1 \approx y(h)$ satisfies

$$y_1^{(k)}(\mathbf{0}) = \sum_{\substack{\tau \in \mathcal{T} \\ \varrho(\tau) = k}} \phi(\tau) \alpha(\tau) D(\tau)(y_0), \qquad k = 1, 2, 3, \dots$$

with the same coefficients $\alpha(\tau)$ as for the exact solution.

conclusion: RK method is of order p if $\phi(\tau) = 1$ for all τ with $\varrho(\tau) \leq p$

RK methods vs Lawson methods

Runge–Kutta method for y' = f(y), $y(0) = y_0$

$$y_1 = y_0 + h \sum_{i=1}^{s} b_i f(Y_i),$$

 $Y_i = y_0 + h \sum_{j=1}^{i-1} a_{ij} f(Y_j)$

exact solution

13

$$y(h) = y_0 + \int_0^h f(y(\sigma)) d\sigma$$

Lawson method for u' = Au + g(u), $u(0) = u_0$ $u_1 = e^{hA}u_0 + h\sum_{i=1}^{s} b_i e^{(1-c_i)hA}g(U_i)$, $U_i = e^{c_ihA}u_0 + h\sum_{j=1}^{i-1} a_{ij}e^{(c_i-c_j)hA}g(U_j)$

exact solution

$$u(h) = e^{hA}u_0 + \int_0^h e^{(h-\sigma)A}g(u(\sigma))d\sigma$$

Iterated v.o.c. formula

notation:

$$g_{\eta} = g(e^{\eta hA}u_{0}), \qquad g_{\eta}^{(k)} = g^{(k)}(e^{\eta hA}u_{0}), \qquad k \ge 1$$
$$u(h) = e^{hA}u_{0} + h \int_{0}^{1} e^{(1-\sigma)hA}g(u(\sigma h))d\sigma$$
$$= e^{hA}u_{0} + h \int_{0}^{1} e^{(1-\sigma)hA}g(e^{\sigma hA}u_{0} + h \int_{0}^{\sigma} e^{(\sigma-\eta)hA}g(u(\eta h))d\eta)d\sigma$$
$$= e^{hA}u_{0} + h \int_{0}^{1} e^{(1-\sigma)hA}g_{\sigma}d\sigma$$
$$+ h^{2} \int_{0}^{1} e^{(1-\sigma)hA}g'_{\sigma} \int_{0}^{\sigma} e^{(\sigma-\eta)hA}g_{\eta}d\eta d\sigma$$
$$+ \mathcal{O}(h^{3})$$

Lubich, Jahnke, 2000; Thalhammer, 2008; Lubich, 2008

notation:

$$g_{\eta} = g(\mathrm{e}^{\eta h A} u_0), \qquad g_{\eta}^{(k)} = g^{(k)}(\mathrm{e}^{\eta h A} u_0), \qquad k \geq 1$$

$$\begin{split} u(h) &= \mathrm{e}^{hA} u_0 + h \int_0^1 \mathrm{e}^{(1-\sigma)hA} g_{\sigma} \mathrm{d}\sigma \\ &+ h^2 \int_0^1 \mathrm{e}^{(1-\sigma)hA} g_{\sigma}' \int_0^{\sigma} \mathrm{e}^{(\sigma-\eta)hA} g_{\eta} \mathrm{d}\eta \mathrm{d}\sigma \\ &+ h^3 \int_0^1 \mathrm{e}^{(1-\sigma)hA} g_{\sigma}' \int_0^{\sigma} \mathrm{e}^{(\sigma-\eta)hA} g_{\eta}' \int_0^{\eta} \mathrm{e}^{(\eta-\xi)hA} g_{\xi} \mathrm{d}\xi \mathrm{d}\eta \mathrm{d}\sigma \\ &+ \frac{1}{2} h^3 \int_0^1 \mathrm{e}^{(1-\sigma)hA} g_{\sigma}'' \Big[\int_0^{\sigma} \mathrm{e}^{(\sigma-\eta)hA} g_{\eta} \mathrm{d}\eta, \int_0^{\sigma} \mathrm{e}^{(\sigma-\xi)hA} g_{\xi} \mathrm{d}\xi \Big] \mathrm{d}\sigma \\ &+ \mathcal{O}(h^4) \end{split}$$

notation:

$$g_{\eta} = g(\mathrm{e}^{\eta h A} u_0), \qquad g_{\eta}^{(k)} = g^{(k)}(\mathrm{e}^{\eta h A} u_0), \qquad k \geq 1$$

$$\begin{split} u(h) &= \mathrm{e}^{hA} u_0 + h \int_0^1 \mathrm{e}^{(1-\sigma)hA} g_\sigma \, \mathrm{d}\sigma \quad \bullet \\ &+ h^2 \int_0^1 \mathrm{e}^{(1-\sigma)hA} g_\sigma' \int_0^\sigma \mathrm{e}^{(\sigma-\eta)hA} g_\eta \, \mathrm{d}\eta \, \mathrm{d}\sigma \\ &+ h^3 \int_0^1 \mathrm{e}^{(1-\sigma)hA} g_\sigma' \int_0^\sigma \mathrm{e}^{(\sigma-\eta)hA} g_\eta' \int_0^\eta \mathrm{e}^{(\eta-\xi)hA} g_{\xi} \, \mathrm{d}\xi \, \mathrm{d}\eta \, \mathrm{d}\sigma \\ &+ \frac{1}{2} h^3 \int_0^1 \mathrm{e}^{(1-\sigma)hA} g_\sigma'' \Big[\int_0^\sigma \mathrm{e}^{(\sigma-\eta)hA} g_\eta \, \mathrm{d}\eta, \int_0^\sigma \mathrm{e}^{(\sigma-\xi)hA} g_{\xi} \, \mathrm{d}\xi \Big] \, \mathrm{d}\sigma \\ &+ \mathcal{O}(h^4) \end{split}$$

notation:

$$g_{\eta} = g(\mathrm{e}^{\eta h A} u_0), \qquad g_{\eta}^{(k)} = g^{(k)}(\mathrm{e}^{\eta h A} u_0), \qquad k \geq 1$$

$$\begin{split} u(h) &= \mathrm{e}^{hA} u_0 + h \int_0^1 \mathrm{e}^{(1-\sigma)hA} g_{\sigma} \mathrm{d}\sigma & \bullet \\ &+ h^2 \int_0^1 \mathrm{e}^{(1-\sigma)hA} g_{\sigma}' \int_0^{\sigma} \mathrm{e}^{(\sigma-\eta)hA} g_{\eta} \mathrm{d}\eta \mathrm{d}\sigma \\ &+ h^3 \int_0^1 \mathrm{e}^{(1-\sigma)hA} g_{\sigma}' \int_0^{\sigma} \mathrm{e}^{(\sigma-\eta)hA} g_{\eta}' \int_0^{\eta} \mathrm{e}^{(\eta-\xi)hA} g_{\xi} \mathrm{d}\xi \mathrm{d}\eta \mathrm{d}\sigma \\ &+ \frac{1}{2} h^3 \int_0^1 \mathrm{e}^{(1-\sigma)hA} g_{\sigma}'' \Big[\int_0^{\sigma} \mathrm{e}^{(\sigma-\eta)hA} g_{\eta} \mathrm{d}\eta, \int_0^{\sigma} \mathrm{e}^{(\sigma-\xi)hA} g_{\xi} \mathrm{d}\xi \Big] \mathrm{d}\sigma \\ &+ \mathcal{O}(h^4) \end{split}$$

notation:

$$g_{\eta} = g(\mathrm{e}^{\eta h A} u_0), \qquad g_{\eta}^{(k)} = g^{(k)}(\mathrm{e}^{\eta h A} u_0), \qquad k \geq 1$$

$$\begin{split} u(h) &= \mathrm{e}^{hA} u_0 + h \int_0^1 \mathrm{e}^{(1-\sigma)hA} g_{\sigma} \mathrm{d}\sigma & \bullet \\ &+ h^2 \int_0^1 \mathrm{e}^{(1-\sigma)hA} g_{\sigma}' \int_0^{\sigma} \mathrm{e}^{(\sigma-\eta)hA} g_{\eta} \mathrm{d}\eta \mathrm{d}\sigma \\ & \searrow &+ h^3 \int_0^1 \mathrm{e}^{(1-\sigma)hA} g_{\sigma}' \int_0^{\sigma} \mathrm{e}^{(\sigma-\eta)hA} g_{\eta}' \int_0^{\eta} \mathrm{e}^{(\eta-\xi)hA} g_{\xi} \mathrm{d}\xi \mathrm{d}\eta \mathrm{d}\sigma \\ &+ \frac{1}{2} h^3 \int_0^1 \mathrm{e}^{(1-\sigma)hA} g_{\sigma}'' \Big[\int_0^{\sigma} \mathrm{e}^{(\sigma-\eta)hA} g_{\eta} \mathrm{d}\eta, \int_0^{\sigma} \mathrm{e}^{(\sigma-\xi)hA} g_{\xi} \mathrm{d}\xi \Big] \mathrm{d}\sigma \\ &+ \mathcal{O}(h^4) \end{split}$$

notation:

$$g_{\eta} = g(\mathrm{e}^{\eta h A} u_0), \qquad g_{\eta}^{(k)} = g^{(k)}(\mathrm{e}^{\eta h A} u_0), \qquad k \geq 1$$

$$\begin{split} u(h) &= \mathrm{e}^{hA} u_0 + h \int_0^1 \mathrm{e}^{(1-\sigma)hA} g_{\sigma} \mathrm{d}\sigma & \bullet \\ &+ h^2 \int_0^1 \mathrm{e}^{(1-\sigma)hA} g_{\sigma}' \int_0^\sigma \mathrm{e}^{(\sigma-\eta)hA} g_{\eta} \mathrm{d}\eta \mathrm{d}\sigma \\ & \to h^3 \int_0^1 \mathrm{e}^{(1-\sigma)hA} g_{\sigma}' \int_0^\sigma \mathrm{e}^{(\sigma-\eta)hA} g_{\eta}' \int_0^\eta \mathrm{e}^{(\eta-\xi)hA} g_{\xi} \mathrm{d}\xi \mathrm{d}\eta \mathrm{d}\sigma \\ & \bullet + \frac{1}{2} h^3 \int_0^1 \mathrm{e}^{(1-\sigma)hA} g_{\sigma}'' \Big[\int_0^\sigma \mathrm{e}^{(\sigma-\eta)hA} g_{\eta} \mathrm{d}\eta, \int_0^\sigma \mathrm{e}^{(\sigma-\xi)hA} g_{\xi} \mathrm{d}\xi \Big] \mathrm{d}\sigma \\ & + \mathcal{O}(h^4) \end{split}$$

Elementary integrals

Definition

For $\tau \in \mathcal{T}$ and $0 \leq \zeta \leq 1$ we define $G_{\zeta}(\tau)$ recursively as:

•
$$G_{\zeta}(\bullet)(v) = \int_0^{\zeta} e^{(\zeta - \sigma)hA} g(e^{\sigma hA}v) d\sigma$$

for
$$\tau = \tau_1^{\tau_2} \cdots \tau_k$$
 set

$$G_{\zeta}(\tau)(\mathbf{v}) = \int_{0}^{\zeta} e^{(\zeta-\sigma)h\mathbf{A}} g^{(k)} (e^{\sigma h\mathbf{A}} \mathbf{v}) [G_{\sigma}(\tau_{1})(\mathbf{v}), \dots, G_{\sigma}(\tau_{k})(\mathbf{v})] d\sigma.$$

• $G(\tau) = G_1(\tau)$; $F(\tau)$ denotes integrand of $G(\tau)$.

 $G(\tau)$ is $\varrho(\tau)$ -fold multivariate integral, $F(\tau)$ is function of $\varrho(\tau)$ variables.

Expansion of exact solution

Theorem

The solution of u' = Au + g(u), $u(0) = u_0$ satisfies

$$u(h) = e^{hA}u_0 + \sum_{\tau \in \mathcal{T}} h^{\varrho(\tau)}\gamma(\tau)G(\tau)(u_0)$$

with certain coefficients $\gamma(\tau)$ which are independent of the differential equation.

Proof. Isomorphism $\tau \simeq D(\tau) \simeq G(\tau)$

Expansion of numerical solution

$$\begin{aligned} u_{1} &= e^{hA}u_{0} + h\sum_{i=1}^{s} b_{i}e^{(1-c_{i})hA}g_{c_{i}} \\ &+ h^{2}\sum_{i=1}^{s} b_{i}e^{(1-c_{i})hA}g_{c_{i}}'\sum_{j=1}^{i-1} a_{ij}e^{(c_{i}-c_{j})hA}g_{c_{j}} \\ &+ h^{3}\sum_{i=1}^{s} b_{i}e^{(1-c_{i})hA}g_{c_{i}}'\sum_{j=1}^{i-1} a_{ij}e^{(c_{i}-c_{j})hA}g_{c_{j}}'\sum_{k=1}^{j-1} a_{jk}e^{(c_{j}-c_{k})hA}g_{c_{k}} \\ &+ \frac{1}{2}h^{3}\sum_{i=1}^{s} b_{i}e^{(1-c_{i})hA}g_{c_{i}}'\left[\sum_{j=1}^{i-1} a_{jj}e^{(c_{i}-c_{j})hA}g_{c_{j}}, \sum_{k=1}^{i-1} a_{ik}e^{(c_{i}-c_{k})hA}g_{c_{k}}\right] \\ &+ \mathcal{O}(h^{4}) \end{aligned}$$

l

Expansion of numerical solution

$$u_{1} = e^{hA}u_{0} + h\sum_{i=1}^{s} b_{i}e^{(1-c_{i})hA}g_{c_{i}} \quad \bullet$$

$$+ h^{2}\sum_{i=1}^{s} b_{i}e^{(1-c_{i})hA}g'_{c_{i}}\sum_{j=1}^{i-1} a_{jj}e^{(c_{i}-c_{j})hA}g_{c_{j}}$$

$$+ h^{3}\sum_{i=1}^{s} b_{i}e^{(1-c_{i})hA}g'_{c_{i}}\sum_{j=1}^{i-1} a_{jj}e^{(c_{i}-c_{j})hA}g'_{c_{j}}\sum_{k=1}^{i-1} a_{jk}e^{(c_{j}-c_{k})hA}g_{c_{k}}$$

$$+ \frac{1}{2}h^{3}\sum_{i=1}^{s} b_{i}e^{(1-c_{i})hA}g''_{c_{i}}\left[\sum_{j=1}^{i-1} a_{jj}e^{(c_{i}-c_{j})hA}g_{c_{j}}, \sum_{k=1}^{i-1} a_{ik}e^{(c_{i}-c_{k})hA}g_{c_{k}}\right]$$

$$+ \mathcal{O}(h^{4})$$

٩.

18

Elementary quadrature formulas

Definition

For $\tau \in \mathcal{T}$ we define $\widehat{\mathbf{G}}(\tau)$ recursively as:

$$\widehat{G}(\bullet)(v) = \sum_{i=1}^{s} b_i e^{(1-c_i)hA} g_{c_i}, \qquad \widehat{G}_i(\bullet)(v) = \sum_{j=1}^{i-1} a_{ij} e^{(c_i-c_j)hA} g_{c_j}$$

$$\widehat{G}(\bullet)(v) = \sum_{j=1}^{i-1} a_{jj} e^{(c_j-c_j)hA} g_{c_j}$$

$$\widehat{G}(\bullet)(v) = \sum_{j=1}^{i-1} a_{jj} e^{(c_j-c_j)hA} g_{c_j}$$

$$\widehat{G}(\tau)(\mathbf{v}) = \sum_{i=1}^{s} b_{i} e^{(1-c_{i})hA} g_{c_{i}}^{(k)} [\widehat{G}_{i}(\tau_{1})(\mathbf{v}), \dots, \widehat{G}_{i}(\tau_{k})(\mathbf{v})]$$

$$\widehat{G}_{i}(\tau)(\mathbf{v}) = \sum_{j=1}^{i-1} a_{ij} e^{(c_{i}-c_{j})hA} g_{c_{j}}^{(k)} [\widehat{G}_{j}(\tau_{1})(\mathbf{v}), \dots, \widehat{G}_{j}(\tau_{k})(\mathbf{v})]$$

Expansion of numerical solution

Theorem

The Lawson approximation satisfies

$$u_{1} = e^{hA}u_{0} + \sum_{\tau \in \mathcal{T}} h^{\varrho(\tau)}\gamma(\tau)\widehat{G}(\tau)(u_{0})$$

with the same coefficients $\gamma(\tau)$ as for the exact solution.

Proof. Isomorphism $\tau \simeq D(\tau) \simeq G(\tau) \simeq \widehat{G}(\tau)$

20

Outline

1. Lawson methods

2. Outdoor excursion

3. Order and convergence

4. Example: Linear problems

Example: methods of order one

$$u_{1} = e^{hA}u_{0} + h\sum_{i=1}^{s} b_{i}e^{(1-c_{i})hA}g(e^{c_{i}hA}u_{0}) + \mathcal{O}(h^{2})$$

$$u(h) = e^{hA}u_0 + h \int_0^1 e^{(1-\sigma)hA}g(e^{\sigma hA}u_0)d\sigma + \mathcal{O}(h^2) \qquad \bullet$$

hence $u_1 - u(h) = \mathcal{O}(h^2)$ if

$$\widehat{G}(\bullet)(u_0) - G(\bullet)(u_0) = \mathcal{O}(h)$$

well known:

$$\widehat{G}(\bullet)(u_0) - G(\bullet)(u_0) = h \int_0^1 \kappa_p(\sigma) F'(\bullet)(\sigma) \mathrm{d}\sigma$$

order only depends on bounds on $F'(\bullet)$

Convergence

Theorem

A Lawson method is of order p if

$$\widehat{G}(\tau)(u_0) - G(\tau)(u_0) = \mathcal{O}(h^{p+1-\varrho(\tau)}), \quad \text{for all } \tau \in \mathcal{T}, \quad \varrho(\tau) \le p$$

Proof. Follows directly from expansion of exact and numerical solution.

Theorem

lf

$$F(\tau) \in C^{p+1-\varrho(\tau)}$$
 for all $\tau \in \mathcal{T}$, $\varrho(\tau) \leq p$

and if the underlying the Runge–Kutta method is of order p, then the Lawson method is of order p.

Main result

Theorem

lf

- $F(\tau) \in C^{p+1-\varrho(\tau)}$ for all $\tau \in \mathcal{T}$ with $\varrho(\tau) \leq p$ and
- underlying Runge–Kutta method is of order p
- $0 < h \le h_0$

then the Lawson method converges with order p, i.e.

$$\|u(t_n)-u_n\|\leq Ch^p, \qquad t_n=nh\leq T,$$

where C and h_0 are independent of n, h, and A.

Sketch of proof

- expand $F(\tau)(\sigma_1, \dots, \sigma_{\varrho(\tau)})$ into a Taylor polynomial of degree $p + 1 \varrho(\tau)$
- underlying RK method is of order k, hence multivariate quadrature formula is exact for all polynomials of degree p + 1 ρ(τ)
- stability
- Lady Windermere's fan

Outline

1. Lawson methods

2. Outdoor excursion

3. Order and convergence

4. Example: Linear problems

Linear problems

$$u' = Au + Bu$$
, $u(0) = u_0$, *B* bounded

integrands of elementary integrals

$$F(\bullet)(\mathbf{v})(\sigma) = e^{(1-\sigma)hA}Be^{\sigma hA}\mathbf{v}$$

$$F(\checkmark)(\mathbf{v})(\sigma) = e^{(1-\sigma_1)hA}Be^{(\sigma_1-\sigma_2)hA}Be^{\sigma_2hA}\mathbf{v}$$

$$F(\checkmark)(\mathbf{v})(\sigma) = e^{(1-\sigma_1)hA}Be^{(\sigma_1-\sigma_2)hA}Be^{(\sigma_2-\sigma_3)hA}Be^{\sigma_3hA}\mathbf{v}$$

• order one: $F(\bullet) \in C^1$

$$F'(\bullet)(v) = e^{(1-\sigma)hA}[B, A]e^{\sigma hA}v, \qquad [B, A] = BA - AB$$

 same regularity condition as for splitting methods (Jahnke, Lubich, 2000; Thalhammer, 2008; Lubich, 2008)

Linear problems – order two

• order two:
$$F(\tau) \in C^{3-\varrho(\tau)}, \, \varrho(\tau) \leq 2$$

$$F''(\bullet)(\mathbf{v})(\sigma) = e^{(1-\sigma)hA}[A, [A, B]]e^{\sigma hA}\mathbf{v}$$

$$F'(\checkmark)(\mathbf{v})(\sigma) = \left[e^{(1-\sigma_1)hA}[B, A]e^{(\sigma_1-\sigma_2)hA}Be^{\sigma_2hA}\mathbf{v}, e^{(1-\sigma_1)hA}Be^{(\sigma_1-\sigma_2)hA}[B, A]e^{\sigma_2hA}\mathbf{v}\right]$$

Summary

- Lawson methods for u' = Au + g(u)
- expansion of exact and numerical solution based on iterated v.o.c. formula
- interprete Lawson methods as multivariate quadrature formulas
- convergence result showing exactly the required regularity assumptions
- for linear problems: same assumptions as for splitting methods
- for semilinear problems: additional terms, not just commutators
- generalization to nonlinear v.o.c. formula possible