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Problem ﬂ(“.

Karlsruhe Institute of

consider semilinear stiff problem

u'(t) = Au(t) +g(u(t)),  u(0) =up

® A matrix of large norm or A differential operator (unbounded) s.t.
RIS

w.l.o.g. C =1 (for C > 1 use ||v||, = sup;> ||e®V]|)
a g “nice”

applications: (discretizations of) pdes
m heat equation, convection diffusion equation, etc
a (nonlinear) Schrédinger equation, Maxwell equations
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Lawson methods, 1967: key idea

u'(t) = Au(t) + g(u(t)),  u(0) = uo

m transformation of variables
w(t) = e Au(t)
m differentiation yields (hopefully) nonstiff ode for w
W (t) = e A(—Au+ ) = e Ag(u)= eftAg(etAW)

Lawson method:
m solve ode for w with explicit Runge—Kutta method
m transform back to original u variables
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Lawson methods ﬂ(“.

s-stage Runge—Kutta method given by aj, b;, ¢;

U—eC'hAu0+hZaeC' ¢)hA a(y)), i=1,....s
j=1
S
uy = ehAUO +h Z b,-e“_cf')hAg(U,-)
i=1
example: Lawson-Euler method:

w = e™ug + heg(uo)
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Lawson methods ﬂ(“.

s-stage Runge—Kutta method given by aj, b;, ¢;

i—1
U,:ec"hAuo—|—h2a,-je(°"_"/)h’4g(le), i=1,...,8
j=1

s
uy = ehAUO +h 2 b,-e“’c")hAg(U,-)
i—1

discussion:

m if ¢ <... < cg, then scheme is suited for parabolic and hyperbolic
problems (excludes Dopri, etc.)

m otherwise, we need |[e?|| < 1 forall t € R
m requires evaluation or approximation of e™v
m special case of exponential integrator (using only exponentials)
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Failure of Lawson methods ﬂ(“'

Karlsruhe Institute of

consider scalar ivp

U(t)=Au(t)+1, u0)=uw=-A"  A<O0
with solution u(t) = u(0) = —A~"
m exponential Euler method is exact:

e’ —1

uy = eMuy + hey (hA) = o, p1(z) = Z

® Lawson Euler method
ug = ehAUO + hehA = ehA(—A_‘1 + h)

gives reasonable results only in nonstiff case hA — 0

convergence analysis: H., Ostermann, 2005
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Success of Lawson methods

m Kassam, Trefethen, 2005 (integrated factor method):
KdV, Burgers, Kuramoto-Sivashinsky, Allen-Cahn, periodic b.c.

m Cano, Gonzales-Pachén, 2014:
nonlinear Schrédinger equation, periodic b.c.

m Balac, Fernandez, Mahé, Méhats, Texier-Picar, 2014:
generalized nonlinear Schrédinger equation in optics

full order of convergence is observed numerically

aim of this talk:
m explain this behavior theoretically:

If the solution is sufficiently regular, then the Lawson method
converges with the same order as the underlying Runge—Kutta
method.
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2. Outdoor excursion
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Classical order of RK methods ﬂ(“'

reminder: how to prove error estimates for RK methods

consider autonomous ivp
y'=1y), y(0)=xn,
with f sufficiently smooth

Taylor's theorem

p K
y(h)y =Y, y(k)(O)% + O(hPH), h— 0

higher derivatives of y obtained by repeated differentiation of the ode
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Taylor expansion of exact solution AT

m order ¢o(7) = number of nodes of T
m elementary differential D(7) defined recursively by
w D(e)(y) = f(y),

Theorem (Butcher, 1963; Hairer, Wanner, 1974; ...)
The solution of y' = f(y), y(0) = yy satisfies

yRO) = Y «(1)D(t)(o), k=1,23,...
Q(Tfe)zk

for certain coefficients a(t), which are independent of the ode.
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Taylor expansion of numerical solution AT
fory’ = f(y)

S S
yi=Yo+h)_ bif(Y)), Yi=yo+h)_ af(V)
i= =

Theorem (Hairer, Wanner, 1974, ...)

The numerical solution y1 ~ y(h) satisfies

y(0) = L ¢@s@DD06). k=123,
oDk

with the same coefficients «(t) as for the exact solution.

conclusion: RK method is of order p if ¢(7) = 1 for all T with o(7) < p
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RK methods vs Lawson methods ﬂ(“'

Runge—Kutta method
for y" = f(y), y(0) = yo
S
yi=Yo+h)_ bif(Yy),
i=1
i—1
Yi=yo+h)_ af(V))
j=1

exact solution

h
y(m = o+ [ 1(y(0))do
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Lawson method
for v/ = Au+ g(u), u(0) = up
s :
up =eMug+hY bel' Mgy,
i=1

i—1
U= ecthU() +h Z a,-/-e(c"*c/)hAg(Uj)
j=1

exact solution

h \
u(h) = ehAqur/o e=94g(u(o))de
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lterated v.o.c. formula ﬂ(“'

notation:
gy = g(e’7hAuo), g}(yk) _ g(k) (e}IhAUO), k> 1

;
u(h) = euy + h/o eI=Mg(u(oh))de
1 o
=eMug + h/o e“*”)hAg(e‘ThAuo + h/o e(af’f)hAg(u(iyh))dﬂda
1 :
=eMug + h/o el1=0Mg do

+h2/ (1—0)hA // (01 hAg dydo
0

+O(h®)

Lubich, Jahnke, 2000; Thalhammer, 2008; Lubich, 2008
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lterated v.o.c. formula, cont’d AT
notation:

g9y = g(e’7”A o), g;(yk) _ g(k) (e”hAuo), k> 1
up to order four:

]
u(h) = eMuy + h/ (1= g do
1
+h2/0 o(1-0)hA // (c— ””Ag,]dqda
—|—h3/0 o1 a)hAgLIT/ (c— )hAg]// (q—g)hAgédgdﬂda

1 o
+%h3/0 e(1=)hA gy [/0 e(a—iy)hAngﬂv/o e(a—g)hAngg}dU

+O(h
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Iterated v.o.c. formula, cont’'d ﬂ(“'
notation:
gy = g(eUhA ) g;(yk) _ g(k) (ethUO)’ k> 1
up to order four:
;
u(h) = eMuy + h/ e1=9Mg ds
0
;
/ +h2/0 o(1=0)hA // (c— r]hAgldﬂdo,
+h3/ (1—0)hA // (c—1)hA // (- ghAggdgdnda

+%h3/0 e(1-0)hA gy [/0 e hAg dy, / hAgédg}
+O(h
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Iterated v.o.c. formula, cont’d ﬂ(“'

notation:
g =0(ew), g =g" (M), k=1
up to order four:

;
u(h) = eMuy + h/ 1=y do o
0

/ +h2/ (1-0)hA // (=mhAg dydo
0
> +h3/ 1UhA// (7'7’7'4’/ (=0 g, dzdnde

+%h3/0 el1=0)hA gy [/0 e hAg dy, / hAggdg}
+O(h
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Iterated v.o.c. formula, cont’d ﬂ(“'

notation:
g =0(ew), g =g" (M), k=1
up to order four:

]
u(h) = eMuy + h/o 1=y dg o

+h2/0 (1 —0)hA // (o— thgidUdo_

+h3/ (1-0)hA // (c=n)hA ’/ (-0 g.dgdyde

+%h3/0 e(1-0)hA gy [/0 e hAg dy. / hAg5d€:|
+O(hY

<\/\
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Elementary integrals Q(IT

Definition
Fort € 7 and 0 < ¢ < 1 we define G;(7) recursively as:

m Gy(e)(v) = /Oge@_")hAg(e“hAv)da

(%

T Tk
a fort = V set

4
Gy (T)(v) = /0 eE=MAGK) (TMAV) (G, (1) (V), ... ., Go(Tk) (V)] do.
® G(1) = G4(71); F(1) denotes integrand of G(1).
G(7) is o(7)-fold multivariate integral, F(7) is function of ¢(t) variables.
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Expansion of exact solution Q(IT

Karlsruhe Ins

Theorem
The solution of u' = Au+ g(u), u(0) = ug satisfies

u(h) = eMuy + Y- heDy (1) G(T) (up)
TeT

with certain coefficients v(t) which are independent of the differential
equation.

Proof. Isomorphism T ~ D(t) ~ G(7)
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Expansion of numerical solution

1—C,')hA

s
u = ehAUo + h Z b,‘e( o

i=1

S i—1
+ h2 2 bie(1_ci)hAg/ci 2 aije(C,'—Cj)hAgcj
i=1 j:1

s
+h32b;e(1 hA/Zaec, c/hA/Za/

i=1

AT

—cyx)hA
k ng

473 b IMG [ apel Mg, T ayeloIMg,
j=1 k=1

i=1
+ O(h*)
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Expansion of numerical solution ﬂ(“'

s
ug = ehAUO +h Z b/e(1_C’)hAgc, o
i—1

s i—1
/ + 1Y bell=emg ¥ g ele—alnay

G
=1

S
> + " Zbie(1_c' hAgél 2 aje (ci—¢j)hA J 2 aje —ck hAng

S i—1
NS IR Y bel Mgy [2 ayel®~ Mgy, ¥, aelooMge
=1

i=1
+ O(h)
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Elementary quadrature formulas Q(IT

Definition
For T € T we define G(t) recursively as:
Y S
w G(o)(v) = ) bel' Mg, (o)(v) = Z aje(=a)"
i=1

T2

T Tk
m fort= V we set

B(r)(v) = ¥ b =gk By (r) (). ..., Bi(m) (V)]
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Expansion of numerical solution

Theorem
The Lawson approximation satisfies

ur =eMug+ Y he@ (1) G(T) (uo)
TeT

with the same coefficients v(t) as for the exact solution.

Proof. Isomorphism T ~ D(1) ~ G(7) ~ G(7)
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3. Order and convergence
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Example: methods of order one

s
u = ehAUO +h Z b,-e(1_cf)hAg(eC"hAuo) + O(hz)
i=1

.
u(h) = eMuy + h/o e(1_‘7)hAg(e”hAuo)da+ O(H?)

hence uy — u(h) = O(K?) if

G(e)(uo) — G(e)(uo) = O(h)

well known:

~

B()(to) — G(o) (1) = h [ kp(o)F' (o) (0)de

order only depends on bounds on F'(e)

October 2014 Marlis Hochbruck - Lawson methods and trees

Karlsruhe Institute of Technology

Karlsruhe Institute of Technology



Convergence Q(IT

Theorem
A Lawson method is of order p if

G(7) () — G(1)(up) = O(PPH =2y forallte T, o(t)<p

Proof. Follows directly from expansion of exact and numerical solution.

Theorem

If
F(t) e cPH1—e®) forallteT, o(t)<p

and if the underlying the Runge—Kutta method is of order p, then the
Lawson method is of order p.
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Main result ﬂ(“.
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Theorem

If

m F(t) € cPt1=2 forallt € T with o(t) < p and
m underlying Runge—Kutta method is of order p
ma0<h<hg

then the Lawson method converges with order p, i.e.
|u(tn) —un|| < CHP,  th=nh<T,

where C and hg are independent of n, h, and A.
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Sketch of proof ﬂ(“.

m expand F(t)(oy,..., Ty(r)) into a Taylor polynomial of degree
p+1—o(7)

m underlying RK method is of order k, hence multivariate quadrature
formula is exact for all polynomials of degree p+ 1 — o(7)

m stability

m Lady Windermere’s fan
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4. Example: Linear problems
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Linear problems ﬂ(“.

v = Au+ Bu, u(0) = u, B bounded
integrands of elementary integrals
F(e)(v)(o) = el1=0)hABerhAy,

) = 8(1 —0 )hABe((71 —(Tz)hABeaghAv

F( > )(V) ((7) — e(17r71)hABe(rf17172)hABe(r727173)hABea3hAv

P
\
S
o

m order one: F(e) € C'
F'(e)(v) =e"=9MA[B, Ale”y,  [B,A] = BA— AB

m same regularity condition as for splitting methods
(Jahnke, Lubich, 2000; Thalhammer, 2008; Lubich, 2008)
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Linear problems — order two AT
m ordertwo: F(t) € €327, (1) < 2

F"(o)(v)(0) =e"=MA[A, A, B]|e"™v
F'(/")(v)(o) :[e(um)hA[B, Alel71—02) A garzhA,

e(1 —0q )hABe(c71 faz)hA[B, A]eazhA V}
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Summary =Ny

m Lawson methods for v/ = Au+ g(u)

m expansion of exact and numerical solution based on iterated v.o.c.
formula

m interprete Lawson methods as multivariate quadrature formulas

m convergence result showing exactly the required regularity
assumptions

m for linear problems: same assumptions as for splitting methods
m for semilinear problems: additional terms, not just commutators

m generalization to nonlinear v.o.c. formula possible
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