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Gradient flow in Hilbert spaces
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Let H be a Hilbert space with inner product 〈· , ·〉 and
let V : H → R be a differentiable functional.

The gradient of V at x ∈ H is the unique element ∇V (x) satisfying

〈∇V (x), v〉 = d
dt

V (x + tv)

∣∣∣∣
t=0

for all v ∈ H.

A gradient flow is the solution of the initial value problem

ẋ = −∇V (x), x(0) = x0

with decay
d
dt

V (x(t)) = −‖∇V (x(t))‖2 ≤ 0.



Gradient systems in image processing
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TV regularisation

time-marching schemes (e.g. find solution of Tikhonov regularisation)

Perona-Malik model and many variants

Sobolev gradient flows, general metrics

enhancing of images (smoothing, sharpening,...)

registration of two and more images

super resolution

snakes

level sets

nonlinear diffusion filters

diffusion process as regularisation



Discrete gradients
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Let V : Rn → R be continuously differentiable.

Then ∇V : Rn ×Rn → Rn is a discrete gradient of V
iff it is continuous and

{
〈∇V (x, x ′), (x ′ − x)〉 = V (x ′)− V (x),

∇V (x, x) = ∇V (x)
for all x, x ′ ∈ Rn.

Capel, Celledoni, Cohen, Furihata, Gonzales, Hairer, Lubich, Matsuo,
McLaren, McLachlan, O’Neale, Owren, Quispel, Robidoux, Schönlieb,
Stuart, Turner, Wright, . . .



Discrete gradients
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midpoint discrete gradient / Gonzales discrete gradient (x 6= x ′)

∇1V (x, x ′) = ∇V
(

x ′ + x
2

)

+
V (x ′)− V (x)−

〈
∇V

(
x ′+x

2

)
, (x ′ − x)

〉
‖x − x ′‖2 (x ′ − x)

mean value discrete gradient

∇2V (x, x ′) =
∫ 1

0
∇V ((1− s)x + sx ′) ds



Discrete gradient method
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For the gradient flow

ẋ = −∇V (x), x(0) = x0,

every discrete gradient ∇V leads to an associated
discrete gradient method

xn+1 − xn = −τn∇V (xn, xn+1) .

Preservation of decay

V (xn+1)− V (xn) = 〈∇V (xn, xn+1), (xn+1 − xn)〉

= −τn‖∇V (xn, xn+1)‖2

≤ 0



Convergence to minimizers
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Theorem
Let ∇V stem from a functional V which is bounded from below, coercive
and continuously differentiable. If {xn}∞

n=0 is a sequence generated by
the discrete gradient method with time steps 0 < c ≤ τn ≤ M < ∞.

1 If V is in addition convex, then a minimizer exists and any
accumulation point of the sequence {xn}∞

n=0 is a minimizer.

2 If V is in addition strictly convex, then

lim
n→∞

xn = x∗, V (x∗) = min
x

V (x) .
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Since V is bounded from below

C ≤ V (xn+1) ≤ V (xn) ≤ · · · ≤ V (x0), n = 1,2,3, . . .

and hence the limit
lim

n→∞
V (xn) = V∗

exists. From the definition of the discrete gradient we find

τn‖∇V (xn+1, xn)‖2 = −〈∇V (xn+1, xn), xn+1 − xn〉 = V (xn)− V (xn+1)

=
1
τn
〈−τn∇V (xn+1, xn), xn+1 − xn〉

=
1
τn
‖xn+1 − xn‖2 ≥ 0
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By summing these equations from n to m− 1, m > n, we obtain

m−1

∑
k=n

τk
∥∥∇V (xk+1, xk)

∥∥2
=

m−1

∑
k=n

1
τk
‖xk+1 − xk‖2 ≤ V (x0)− V∗

and thus

∞

∑
k=0

∥∥∇V (xk+1, xk)
∥∥2 ≤ V (x0)− V∗

c
< ∞

∞

∑
k=0
‖xk+1 − xk‖2 ≤ M (V (x0)− V∗) < ∞

and therefore

lim
n→∞

(xn+1 − xn) = lim
n→∞

∇V (xn+1, xn) = 0 .



Total Variation (TV) deblurring
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Functional

Tα(u) =
1
2

∫
Ω

(
(Ku)(x, y)− u0(x, y)

)2
d(x, y) + αTV(u)



Total Variation (TV) deblurring
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Functional

Tα(u) =
1
2

∫
Ω

(
(Ku)(x, y)− u0(x, y)

)2
d(x, y) + αTV(u)

TV functional

TV(u) =
∫

Ω

√(
∂u
∂x

)2

+

(
∂u
∂y

)2

+ β d(x, y)

Parabolic gradient system

ut = −∇Tα(u) = α∇ ·
[
∇u
|∇u|β

]
− K ∗(Ku− u0) with

∂u
∂n

∣∣∣∣
∂Ω

= 0



Discretised Energy

12 06.10.2015 - Discrete gradient methods in image processing Institute for Applied and Numerical
Mathematics 1

KIT

Discretised functional

Vα(u) =
1
2

∆x∆y
∥∥K̃ u− u0

∥∥2
+ αJ(u)

Discretised TV functional

J(u) = ∆x∆y
Nx

∑
i=1

Ny

∑
j=1

ψ
(
(Dx

ij u)
2 + (Dy

ij u)
2
)
,

where ψ(t) =
√

t + β and

Dx
ij u =

ui,j − ui−1,j

∆x
, Dy

ij u =
ui,j − ui,j−1

∆y



TV deblurring
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Original image and blurred image



Functional decay
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τ = 2.5, discrete gradient
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τ = 1, Euler
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τ = 2, Euler
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TV deblurring with discrete gradient method
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Large step sizes

Newton method in inner iteration

exact Jacobian

preconditioned CG method

Small step sizes

fixed-point iteration

explicit method



Multichannel TV denoising
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Multichannel TV functional

TV2[u] =

(
p

∑
i=1

(TV[ui ])
2

)1/2

=

(
p

∑
i=1

(∫
Ω
|Dui | d(x, y)

)2
)1/2

Multichannel functional, p channels

Tα(u) = αTV2[u] +
1
2

∫
Ω
‖u− u0‖2 d(x, y) .

With the global constants

ci [u] =
TV[ui ]

TV2[u]
≥ 0, i = 1, . . . ,p ,

we have the gradient system

d
dt

ui = α · ci [u]∇·
[
∇ui

|∇ui |β

]
− (ui −u0,i ) = 0,

∂ui

∂n

∣∣∣∣
∂Ω

= 0, i = 1, . . . ,p .



Macro photography
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Picture data
Canon MP-E 65mm macro lens
extremely low depth-of-field
Canon EOS 550D
hand-held in full sunlight
exposure time 1/250
f-stop number 14
3x magnification
film speed ISO 6400

Problem: High film speed produces a lot of noise due to amplifica-
tion of the signal from the charge-coupled device (CCD)
image sensor.



TV denoising
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Original image



TV denoising
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Denoised image



TV denoising
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Detail of original image



TV denoising
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Detail of denoised image



Conclusion
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Discrete gradient (DG) methods

DG methods form a broad class of methods
DG methods preserve gradient structure

DG methods in image processing

DG method allows for larger step sizes
DG methods applicable to nonlinear problems
DG works where other implicit methods do not work
DG more reliable, even for small step sizes
DG in real world problems, only α needs to be tuned
DG methods better for automatic application
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