

A case study of the use of discrete gradient methods in image processing

Volker Grimm (joint work with R. McLachlan, D. McLaren, G. R. W. Quispel, C.-B. Schönlieb)

Institute for Applied and Numerical Mathematics 1

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Outline

Gradient flows Gradient flow in Hilbert spaces

Discrete gradient methods Discrete gradients

Nonlinear problems in image processing Total variation deblurring Multichannel TV denoising

Gradient flow in Hilbert spaces

Let *H* be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and let $V : H \to \mathbb{R}$ be a differentiable functional.

The gradient of V at $x \in H$ is the unique element $\nabla V(x)$ satisfying

$$\langle \nabla V(x), v \rangle = \left. \frac{d}{dt} V(x+tv) \right|_{t=0}$$
 for all $v \in H$.

A gradient flow is the solution of the initial value problem

$$\dot{x} = -
abla V(x)$$
, $x(0) = x_0$

with decay

$$\frac{d}{dt}V(x(t)) = -\|\nabla V(x(t))\|^2 \le 0.$$

Gradient systems in image processing

- TV regularisation
- time-marching schemes (e.g. find solution of Tikhonov regularisation)
- Perona-Malik model and many variants
- Sobolev gradient flows, general metrics
- enhancing of images (smoothing, sharpening,...)
- registration of two and more images
- super resolution
- snakes
- level sets
- nonlinear diffusion filters
- diffusion process as regularisation

Discrete gradients

<

Let $V : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable.

Then $\overline{\nabla} V : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ is a discrete gradient of *V* iff it is continuous and

$$\begin{cases} \langle \overline{\nabla} V(x, x'), (x' - x) \rangle &= V(x') - V(x), \\ \overline{\nabla} V(x, x) &= \nabla V(x) \end{cases} \quad \text{for all} \quad x, x' \in \mathbb{R}^n.$$

Capel, Celledoni, Cohen, Furihata, Gonzales, Hairer, Lubich, Matsuo, McLaren, McLachlan, O'Neale, Owren, Quispel, Robidoux, Schönlieb, Stuart, Turner, Wright, ...

Discrete gradients

midpoint discrete gradient / Gonzales discrete gradient ($x \neq x'$)

$$\overline{\nabla}_{1} V(x, x') = \nabla V\left(\frac{x'+x}{2}\right) + \frac{V(x') - V(x) - \left\langle \nabla V\left(\frac{x'+x}{2}\right), (x'-x) \right\rangle}{\|x-x'\|^{2}} (x'-x)$$

mean value discrete gradient

$$\overline{\nabla}_2 V(x, x') = \int_0^1 \nabla V((1-s)x + sx') \, ds$$

Discrete gradient method

For the gradient flow

$$\dot{x} = -\nabla V(x), \qquad x(0) = x_0,$$

every discrete gradient $\overline{\nabla} V$ leads to an associated discrete gradient method

$$x_{n+1}-x_n=-\tau_n\overline{\nabla}V(x_n,x_{n+1}).$$

Preservation of decay

$$V(x_{n+1}) - V(x_n) = \langle \overline{\nabla} V(x_n, x_{n+1}), (x_{n+1} - x_n) \rangle$$

= $-\tau_n \|\overline{\nabla} V(x_n, x_{n+1})\|^2$
 ≤ 0

Convergence to minimizers

Theorem

Let ∇V stem from a functional *V* which is bounded from below, coercive and continuously differentiable. If $\{x_n\}_{n=0}^{\infty}$ is a sequence generated by the discrete gradient method with time steps $0 < c \le \tau_n \le M < \infty$.

- If V is in addition convex, then a minimizer exists and any accumulation point of the sequence {x_n}[∞]_{n=0} is a minimizer.
- If V is in addition strictly convex, then

$$\lim_{n\to\infty}x_n=x_*,\qquad V(x_*)=\min_x V(x).$$

Since V is bounded from below

$$C \le V(x_{n+1}) \le V(x_n) \le \cdots \le V(x_0), \qquad n = 1, 2, 3, \dots$$

and hence the limit

$$\lim_{n\to\infty}V(x_n)=V_*$$

exists. From the definition of the discrete gradient we find

$$\begin{aligned} \tau_n \|\overline{\nabla} V(x_{n+1}, x_n)\|^2 &= -\langle \overline{\nabla} V(x_{n+1}, x_n), x_{n+1} - x_n \rangle = V(x_n) - V(x_{n+1}) \\ &= \frac{1}{\tau_n} \langle -\tau_n \overline{\nabla} V(x_{n+1}, x_n), x_{n+1} - x_n \rangle \\ &= \frac{1}{\tau_n} \|x_{n+1} - x_n\|^2 \ge 0 \end{aligned}$$

By summing these equations from *n* to m - 1, m > n, we obtain

$$\sum_{k=n}^{m-1} \tau_k \left\| \overline{\nabla} V(x_{k+1}, x_k) \right\|^2 = \sum_{k=n}^{m-1} \frac{1}{\tau_k} \left\| x_{k+1} - x_k \right\|^2 \le V(x_0) - V_*$$

and thus

$$\sum_{k=0}^{\infty} \left\| \overline{\nabla} V(x_{k+1}, x_k) \right\|^2 \leq \frac{V(x_0) - V_*}{c} < \infty$$
$$\sum_{k=0}^{\infty} \|x_{k+1} - x_k\|^2 \leq M(V(x_0) - V_*) < \infty$$

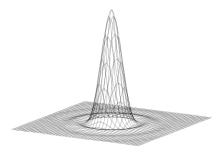
and therefore

$$\lim_{n\to\infty}(x_{n+1}-x_n)=\lim_{n\to\infty}\overline{\nabla}\,V(x_{n+1},x_n)=0\,.$$

Total Variation (TV) deblurring

Functional

$$T_{\alpha}(u) = \frac{1}{2} \int_{\Omega} \left((\mathbf{K}u)(x, y) - u_0(x, y) \right)^2 d(x, y) + \alpha \mathsf{TV}(u)$$



Total Variation (TV) deblurring

Functional

$$T_{\alpha}(u) = \frac{1}{2} \int_{\Omega} \left((\mathbf{K}u)(x, y) - u_0(x, y) \right)^2 d(x, y) + \alpha \mathsf{TV}(u)$$

TV functional

$$\mathsf{TV}(u) = \int_{\Omega} \sqrt{\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 + \beta} \, d(x, y)$$

Parabolic gradient system

$$u_t = -\nabla T_{\alpha}(u) = \alpha \nabla \cdot \left[\frac{\nabla u}{|\nabla u|_{\beta}} \right] - \mathcal{K}^*(\mathcal{K}u - u_0) \quad \text{with} \quad \left. \frac{\partial u}{\partial \mathbf{n}} \right|_{\partial \Omega} = 0$$

Discretised Energy

Discretised functional

$$V_{\alpha}(u) = \frac{1}{2} \Delta x \Delta y \left\| \tilde{K} u - u_0 \right\|^2 + \alpha J(u)$$

Discretised TV functional

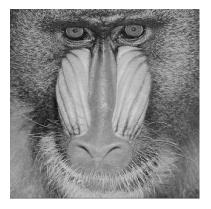
$$J(u) = \Delta x \Delta y \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} \psi \left((D_{ij}^x u)^2 + (D_{ij}^y u)^2 \right),$$

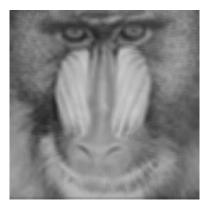
where $\psi(t) = \sqrt{t+eta}$ and

$$D_{ij}^{x}u = \frac{u_{i,j} - u_{i-1,j}}{\Delta x}, \qquad D_{ij}^{y}u = \frac{u_{i,j} - u_{i,j-1}}{\Delta y}$$

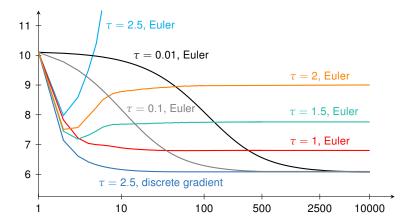
TV deblurring

Original image and blurred image





Functional decay



TV deblurring with discrete gradient method

Large step sizes

- Newton method in inner iteration
- exact Jacobian
- preconditioned CG method

Small step sizes

- fixed-point iteration
- explicit method

Multichannel TV functional

$$\mathsf{TV}_{2}[u] = \left(\sum_{i=1}^{p} (\mathsf{TV}[u_{i}])^{2}\right)^{1/2} = \left(\sum_{i=1}^{p} \left(\int_{\Omega} |Du_{i}| \, d(x, y)\right)^{2}\right)^{1/2}$$

Multichannel functional, p channels

$$T_{\alpha}(u) = lpha \mathsf{TV}_{2}[u] + \frac{1}{2} \int_{\Omega} \|u - u_{0}\|^{2} d(x, y).$$

With the global constants

$$c_i[u] = rac{\mathsf{TV}[u_i]}{\mathsf{TV}_2[u]} \geq 0, \qquad i = 1, \dots, p$$

we have the gradient system

$$\frac{d}{dt}u_i = \alpha \cdot c_i[u] \nabla \cdot \left[\frac{\nabla u_i}{|\nabla u_i|_{\beta}}\right] - (u_i - u_{0,i}) = 0, \quad \frac{\partial u_i}{\partial \mathbf{n}}\Big|_{\partial \Omega} = 0, \quad i = 1, \dots, p.$$

Macro photography

Karlsruhe Institute of Technology

Picture data

- Canon MP-E 65mm macro lens
- extremely low depth-of-field
- Canon EOS 550D
- hand-held in full sunlight
- exposure time 1/250
- f-stop number 14
- 3x magnification
- film speed ISO 6400

Problem: High film speed produces a lot of noise due to amplification of the signal from the charge-coupled device (CCD) image sensor.

Original image

Denoised image

Detail of original image

Detail of denoised image

Conclusion

Discrete gradient (DG) methods

- DG methods form a broad class of methods
- DG methods preserve gradient structure

DG methods in image processing

- DG method allows for larger step sizes
- DG methods applicable to nonlinear problems
- DG works where other implicit methods do not work
- DG more reliable, even for small step sizes
- **D**G in real world problems, only α needs to be tuned
- DG methods better for automatic application