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Abstract.

We study time integration methods for equations of mixed quantum-classical molec-
ular dynamics in which Newtonian equations of motion and Schrédinger equations are
nonlinearly coupled. Such systems exhibit different time scales in the classical and
the quantum evolution, and the solutions are typically highly oscillatory. The numer-
ical methods use the exponential of the quantum Hamiltonian whose product with
a state vector is approximated using Lanczos’ method. This allows time steps that
are much larger than the inverse of the highest frequencies. We describe various in-
tegration schemes and analyze their error behaviour, without assuming smoothness of
the solution. As preparation and as a problem of independent interest, we study also
integration methods for Schrodinger equations with time-dependent Hamiltonan.
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1 Introduction.

The inclusion of quantum behaviour in molecular dynamics simulations is a
topic of considerable current interest; see the contributions in the recent vol-
ume [4]. Since a full quantum simulation of molecules is out of question, mixed
quantum-classical models offer feasible alternatives. A widely used model cou-
ples Newtonian equations of motion and Schrodinger equations in the following
way:

(1.1)

My" =Vy (" H(y)v)

W= H(y)v.
Here, y denotes the positions of the classical particles and ¢ represents the wave
functions. M is the mass matrix and H(y) is the Hamilton operator or — as
will be assumed here — its spatial discretization. The typical situation is that
H(y) is a sum of a (discretized) negative Laplacian and a position-dependent
bounded multiplication operator. We refer to [3] for an in-depth discussion of
this quantum-classical molecular dynamics (QCMD) model.

Systems of this form describe largely different physical phenomena, such as
electron-ion interactions and proton transfer in biological molecules. Also the
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computational treatment encompasses widely different situations, ranging from
models with just a few suitably chosen basis functions to represent the wave
functions, to systems with many degrees of freedom arising from a pseudospec-
tral space discretization of the Schrodinger equation. A feature in common is the
presence of widely different time scales for the quantum and the classical evolu-
tion, which leads to particular challenges for the time integration. The different
time scales come from two sources: from the high frequencies of the Laplacian,
and possibly also from a small parameter multiplying the time derivative of the
wave function in (1.1). This parameter is the square root of the ratio of the
masses of light (quantum) and heavy (classical) particles. Tts presence creates
no numerical problems in proton transfer processes, where a typical mass ratio
is 1/16, but it does so in electron-ion interactions, with a mass ratio of 1/2000
or less. In the present paper we will not deal with the additional numerical
difficulties resulting from a very small mass ratio.

Various time integration schemes for the QCMD equations (1.1) have been
proposed in [2, 9, 17, 18, 19, 25]. Starting from the observation that (1.1) is
a Hamiltonian system, most of these papers construct symplectic methods for
(1.1). This appears promising in view of the known strong results on long-time
integration by symplectic methods, which are obtained using a backward error
analysis that interprets the numerical solution as the “almost” exact solution
of a perturbed Hamiltonian system [1, 7, 24]. However, all these theoretical
results break down when the product of the time step with the highest frequen-
cies in the system is not small, which is the computational situation we are
interested in. For example, symplecticness then does not guarantee long-time
near-conservation of the total energy. To our knowledge, there is no theoretical
or numerical evidence that indicates an advantage of symplectic algorithms over
non-symplectic, symmetric methods when such large step sizes are used.

For none of the proposed methods, there exists so far an error analysis on
finite time intervals which applies to step sizes larger than the inverse of the
highest frequencies, and which takes the highly oscillatory behaviour of the wave
functions into account and therefore assumes no bounds on their derivatives.
Such an error analysis is of interest not only from a purely mathematical point
of view but it also gives important insight into relative strengths and weak points
of the methods and shows situations where difficulties are likely to appear. For
oscillatory second-order differential equations, long-time-step error analyses have
been given, for suitable methods that integrate linear systems exactly, in [6] and
[10]. The analysis techniques used in the present paper are related to those
developed in [10].

Here, we study symmetric exponential integrators of the type proposed in [9]
which use, in every time step, the product of the exponential of the quantum
Hamiltonian with a vector. This product can be efficiently computed by Krylov
subspace methods. As a preparation for the numerical treatment of (1.1), and
as a problem of independent interest [23, 27], we begin by analyzing methods
for Schrodinger equations with time-dependent Hamiltonian

(1.2) W = H() .
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In Section 2 we study a simple exponential scheme, which has surprisingly com-
plicated convergence properties, with a convergence order ranging between 1
and 2 depending on possible resonances and spatial regularity. The convergence
analysis does not assume temporal smoothness of the solution which is typically
highly oscillatory. More elaborate schemes for (1.2) are studied in Section 3
where we consider an unconditionally third-order scheme and a method based
on the Magnus expansion [12, 16]. In Section 4 we study methods for the full
QCMD equations (1.1). We discuss a simple and a more elaborate discretization
of the first equation in (1.1) which are combined with methods for (1.2).

Summarizing, this paper deals with the first two of the following problems in
the numerical analysis of QCMD and related equations:

(1) to derive long-time-step methods for QCMD;

(ii) to give a finite-time error analysis of these methods;

(iii) to compare the variety of proposed methods on realistic examples;

(iv) to develop QCMD integrators that are robust in the adiabatic limit of the

mass ratio tending to zero;

(v) to explain the numerically observed satisfactory long-time behaviour, e.g.,

energy conservation.

Detailed numerical experiments and method comparisons on realistic examples
will be reported elsewhere. First preliminary experiments [22] indicate that
the methods studied here are highly competitive, in particular when potential
evaluations dominate the computational cost. We also refer to [19] for some
thoughtful comments on the expected efficiency of different method classes for
different problem scenarios in QCMD simulations.

Concerning (iv), we mention that the more elaborate discretization of the
classical equations of motion proposed in Section 4 has the desired robustness
property, but the discretization of the quantum equations will have to be modi-
fied. Nothing appears to be known about (v) when the product of the time step
with the highest frequencies is not very small.

2 A simple exponential integrator for Schrodinger equations with
time-dependent Hamiltonian.

In this section we study an integration method for (1.2) which uses the expo-
nential of the current Hamiltonian in every time step.
2.1 Assumptions and notation.

We assume that, for every t € [0, T], H(t) is a real symmetric N x N matrix
which can be split as

H()=U+V(1),

where the constant symmetric matrix U may have arbitrarily large norm, and
where V' and its derivatives are assumed to be bounded for ¢ € [0, T]:

(2.1) WO <M, j=0,1,2
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and in Section 3 also for j = 3. Throughout the paper, || - || is the Euclidean
norm (possibly scaled) or its induced matrix norm, the spectral norm.
We assume further that H () has the eigendecomposition

(2.2) H(t)=QWAMQMT ,  A(t) = diag(Ax(1))
with
(2.3 QO < M. .

In the following, let ug denote the eigenvalues of U, ordered such that |u; —
Ak ()| < My. We write
Ae(t) = pur + vi(t).

For the initial state ¢(0) = ¢y we assume
ol =1,

which implies ||¢(t)]| = 1 for all ¢.

2.2 A simple exponential scheme.

We discretize (1.2) using a time step h. For integer n, let ¢, = nh and

loyi/2 = tn + %h A simple symmetric scheme that uses the exponential of
H, = H(ty), recursively produces approximations i, to ¢(¢,) via

U, = eXP(—%th) 1/)71—1/2 )
(2.4) Uny1/2 = exp(—ghHy), .

A variant of this scheme, shifted by a half-step, reads ¢, 41 = exp(—ihH, 41/2)¢n.
For the extension to the QCMD equations, the formulas (2.4) are, however, more
favorable.

We are interested in obtaining error bounds which do not depend on the size
of the eigenvalues of H(t) nor require smoothness of the solution ¢, which in
general is highly oscillatory. The convergence properties of this scheme turn out
to be unexpectedly complex.

THEOREM 2.1. (i) Under the assumptions of Subsection 2.1, the error of the
method (2.4) is bounded by

[¢n = 4(ta)ll < Ch

for 0 <t, <T. Here, C' depends only on My and T'.
(ii) In addition to the assumptions of Subsection 2.1, assume that

(2.5) |hpe — hpyy — 2mm| > a > 0

for all k,1 and for all integers m # 0. Then, the error of the method (2.4) is
bounded by

h2
1 — ()] < &
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for 0 <t, <T. Here, C" depends only on My, My, Ma, M., and T.
(iii) In addition to the assumptions of Subsection 2.1, assume that H(t) is
positive semi-definite and there exists 0 < o < 1 such that

(2.6) IH@O O < Ca
(2.7) IHO*H Oe@0] < Ca

A

for 0 <t <T. Then, the error of the method (2.4) is bounded by
[¥n — ¥(ta)]| < C RIS

for 0 <t, <T. Here, C" depends only on Cy, Mo, My, My, and T'.

In (i) and (iii), the smoothness of the eigendecomposition is not required.

In (ii), the dependence on a in the bound cannot be omitted. The proof shows
that, in general, a second order bound does not hold when hpy — hyy is close to
a multiple of 2.

In (iii), for o = %, the condition (2.6) is just the condition of finite energy,

()" H(t)y(t) < Const.

For higher «, in the typical case that U is a (discretized) multiple of the Lapla-
cian, condition (2.6) imposes higher spatial regularity. Condition (2.7) is then
satisfied if V'(¢) is a (discretized) spatially smooth potential.

The assumption of a positive semi-definite H (¢) is not essential. If the eigen-
values of H(t) are bounded from below by —&, then the result still holds when
H(t) is replaced by H(t) + &I in (2.6) and (2.7).

The proof of Theorem 2.1 is given in Subsection 2.4.

2.8 Implementation.

The scheme (2.4) requires the computation of exp(—iTA)b where A = H,, is a
real symmetric matrix, b is a vector, and 7 is a real scalar. Direct computation
of the matrix exponential by diagonalization becomes prohibitively expensive
unless the dimension of A is small, in particular so because A changes in each
time step.

Fortunately, there are several possibilites to approximate exp(—iTA)b effi-
ciently also for high-dimensional A. Here we discuss in some detail the com-
putation via Lanczos’ method, we mention briefly Chebyshev approximation
and then turn to multiple time-stepping using Strang splitting.

Lanczos’ method. The symmetric Lanczos process [15, 21] generates recursively
an orthonormal basis V;;, = [v1 -+ vy] of the mth Krylov subspace K., (A, b) =
span{b, Ab, ..., A™~1b} such that

The symmetric tridiagonal m x m matrix T,, = V,L AV,, is the orthogonal pro-
jection of A onto Ky, (A, b). This yields the approximation [5, 8, 20, 28]

2.8 exp(—it A)b ~ Vy, exp(—it T )V.L b
(2.8) p( p b,
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where V.Z'b = ||b]|[10 - --0]7. The matrix exponential exp(—irT},) can be com-
puted from the eigendecomposition T, = Q. D QL | with diagonal D, via

exp(—imT) = Qm exp(—it Dy ) QL .
In [11] we proposed to stop the Lanczos process if
Om |[exp(=i7Tm)m,m| |[b]] < tol

where [] m denotes the (m,m) entry of a matrix. This stopping criterion can
be motivated by a generalization of a residual bound which is the most popular
stopping criterion for iterative methods for solving linear systems, see [11] for
details. In extensive numerical tests, this criterion was found to work reliably.
We thus have the following algorithm.

ALGORITHM 2.1. Implementation of one time step of the scheme (2.4):

(i) run the Lanczos process with A = H, and b = tp,_1 /9, yielding Vi, Tpy,
and B, form =1,2,...;

(ii) stop if Bm|lexp(—ih Ty )] m m| < tol;

(iii) compute

1/)71 — Vm eXP(—%hTm)Vn{ﬂ)n—Uz,
Ungryz = Vmexp(—ihTn) V. vy,

The convergence behaviour of the approximation (2.8) is analyzed in [8, The-
orem 4]. According to that result, there is nearly no error reduction for m <
%HTAH, but very rapid, superlinear error decay for m > %HTAH (assuming here
that A is positive semi-definite). These bounds are almost sharp for the worst
possible case that the eigenvalues of A are densely distributed in [0, ]|A]|] and
that the vector b has no prefered eigendirections, but else the convergence may
be considerably faster. If the number m of Lanczos steps i1s not allowed to ex-
ceed a given bound, say m < 64, then this bound may entail a mild step size
restriction || A|| < 100.

The Algorithm 2.1 is clearly norm-preserving. Since V,, depends on ¢,_y/s,
time reversibility is lost although we have ,, = V,, exp(%hTm)Vgﬂ)nH/z. If
maintaining strict time reversibility is considered important, then the tolerance
for the Lanczos process should be chosen rather tight. Because of the superlinear
convergence behaviour, this usually requires only few more Lanczos steps than
for a moderate tolerance.

Chebyshev approzimation to the exponential provides a popular alternative
to Lanczos” method; see, e.g., [14, 26]. Here, one uses a truncated Chebyshev
series expansion of exp(iz) on the interval [0,||7A||]. The dependence of the
error on the truncation order m is exactly as described above for the worst
case in Lanczos’ method. In our numerical experiments, we generally found
Algorithm 2.1 more efficient.
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Multiple time stepping in method (2.4) is obtained by applying a time-stepping
procedure to i) = Ay, ¥(0) = b to approximate exp(—iTA)b. In particular,
when A = U 4+ V where U results from a pseudospectral discretization of the
negative Laplacian (and hence is diagonalized by fast Fourier transforms) and
V' is a diagonal matrix carrying the grid values of a smooth potential, then an
attractive scheme is the Strang splitting

exp(—iTA)b ~ STImb s
where, for 6 = 7/m,

Sy = exp(—%HV) exp(—ifU) exp(—%HV) .

Multiple time stepping with Strang splitting has been advocated in the QCMD
context in [18]. Tts accuracy, or the required step number m, depends strongly
on the spatial regularity of the data b. It is very efficient for smooth data,
but becomes inaccurate for rough data. It is shown in [13] that, for arbitrary

a €0,2],
; m R RTY
lexp(—irA)b = S27,.0] < Cr (=) 1478

when A is positive definite (as can be assumed without loss of generality).

2.4  Proof of Theorem 2.1.

The proof makes repeated use of the variation-of-constants formula applied to
the differential equation for ¢ rewritten, for fixed ¢t and 7 and variable s between
0 and 7, as

iWU—T+$=HUW@—T+Q+(Hu—r+@—ﬂﬁ0¢u—r+@,
This yields
Y(t) =exp(—itH@) Yt — 1) —

(2.9) Z/O exp(—i(r — s)H(t)) (H(t —T45)— H(t))¢(t — T4 s)ds .

It is convenient to prove the error bounds for the half-step errors

Eng1/2 = Uny1y2 — V(tnt1y2) -

The result for ¢, — () then follows immediately from (2.9). By formula (2.9)
with t = ¢, and 7 = :I:%h, we obtain

(2.10) exp(%th) Ent1/2 = exp(—%th) En—1/2+ Un ,

where

0p = —i/_hh/; exp(ian)(H(tn ts) - H(tn))w” +5)ds

h/2
= - z/ exp(isHy,) sH' (tn) exp(—isHy,) ds - () + O(h®) .
—h/2



8 MARLIS HOCHBRUCK AND CHRISTIAN LUBICH

We now prove the stated error bounds in the sequence (i), (iii), (ii).
(1) Since ||¥,]| < %Mlhz, (2.10) yields the stated error bound with C' = %MlT.
(iii) In the defect ¥,,, we write ¢(¢,) = H,, *HZ%(t,). Since

lfexp(—ist,) = H#|| < max| (e = 1)/2%] < CJs]*

we have by condition (2.6)
h/2
/ exp(isHy, ) sH'(t,) (exp(—isHy,) — I)Hy % ds - HXY(t,) = O(h*T%) |
—h/2

and therefore

h/2
3, = —i/ exp(isHy)sds - H' (t,)0(tn) + O(h2+°‘) .
—h/2

Using condition (2.7) and once more the same argument to get rid of the re-
maining factor exp(isf,), we obtain
/2
9, = —i/ sds - H'(t2)0(tn) + O(hF) = O(h™+) |
—h/2

because the integral vanishes. The bound (iii) then follows from (2.10).
(i1) (a) With the orthogonal matrix @, = Q(¢,) that diagonalizes H,, we
transform to

gn+1/2 = Q56n+1/2 ) 571 = Q?; exp(—%th) VA
We then obtain
Enti1/2 = exp(—thA(tn)) Enoqjo + hSnEp_1/2 + U, ;

where the matrix S, is bounded by ||Sy]| < ||@n — @n-1ll/h < M,. With
D = diag (px), we then have

Enq1/2 = exp(—thD) &, _1/o + hRyEy_1/0 + 571 )

where ||Ry|| < My + M., and consequently

n—1 n
Ent1/2=nh Z exp(—i(n — j)hD) Rjy1E511/2 + Zexp(—i(n — j)hD)9; .
j=0 Jj=1

Via a discrete Gronwall inequality, the stated error bound follows if we show
that
C h?

a .

Hiexp(—i(n — j)hD) {)ZH <
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(b) This bound will be proved in the sequel. We have
Uy = W2 B(t,) QL y(t,) + O(h?) |
where, with G(t) = Q)T H'()Q(t), we write
' 1/2
B(t) = —iexp(—%hD)/ exp(i0hD) 6G(t) exp(—ifhD) dl .
~1/2

The (k,l) entry of this matrix is

bt (t) = —ie™ 2" 5 (hywe — hy) gra ()

where

1/2 )
§(x) = / 0e?7do .

1/2
Using the variation-of-constants formula (2.9) with 7 = ¢, we write
U(t) = exp(—itH (1)) p(1)
where .
(2.11) p(t) = o — Z/O exp(isH (t)) (H(s) - H(t))w(s) ds
has a derivative bounded by (2MyT + 1)M1T. We then have

Q)" (t) = exp(—it D)(t)
where
(2.12) 1(t) = exp((=it(A(t) - D)) Q)" p(1)
satisfies

In®I <1, IIn@I<c,

with a constant C' which depends only on My, My, M., and T'. Putting all this
together; we obtain

3, = —hziexp(—%hD) Y(tn) + O(h?)

where the kth component of ¥(t) is given as

() =Y S(hpx — ) ga(t) e o (t)

or equivalently, setting A = (§(hpuy —hjuy))2,_, and denoting by e the entrywise
product of matrices,

7(1) = (A 0 G(1)) exp(—itD) (1) .
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(c) Tt remains to be shown that

& . . C
| expi=itn = prDyae)| < =
=1 “
By partial summation we have, with G; = G(t;),
> exp(ijhD) y(t;) = (En @ Guy1) n(tny1)
j=1
= > (B o Gy) (ntj41) —n(t;)) = >_(Ej e (Giyr = Gy)) nltj1)
Jj=1 Jj=1

where F,, = (e (hpg — h/u))é\fl:l is defined by the function

n

enl(w) =Y e 8(x) = (1 - ¢™7) p(x)

=1
with ¢(z) = é(z) e’®/(1 — €'®). For an arbitrary matrix GG, we can write
EneG =T (G —exp(inhD) (F ¢ () exp(—inhD)

with F' = (o(hpg — h))Y,_,. Since §(2mm) # 0 for integer m # 0, the function
¢ becomes unbounded at nonzero integer multiples of 27. Because of condition
(2.5), we may, however, replace ¢ in the definition of F' by the function f defined
as the continuous function on R which equals ¢ outside a-neighbourhoods of non-
zero integer multiples of 2w, and which is linear within such a-neighbourhoods.
Lemma 2.2 and the bound (2.13) below then yield

C
IFeGl< 26

and hence the desired bound (ii) follows from the above identities. O
In the proof we used the following lemma. R
LEMMA 2.2. Let f : R — C have a Fourier transform f € L*(R). Let
z1,...,xn be arbitrary real numbers, and let F = (f(zy — x))Y,_,. In the
matriz norm induced by the Fuclidean norm, the entrywise product be with an
arbitrary N x N matriz G is then bounded by

1E e Gl < Il - NG

ProOF. We have
f(z) = / e Fe) de
R

and consequently, with D = diag (),

~

FeG= /R exp(i€ D) G exp(~i€D) F(€) de |

which yields the stated bound. O
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We note that the L' norm of fcan be bounded in terms of the L? norms of
f and its derivative by

(2.13) 1A < 7 (@™ HIAZ: +allFlIz)

for arbitrary @ > 0. This follows readily by applying the Cauchy-Schwarz in-

o~

equality to the integral over (14+a?¢%)=1/2.(14-a%¢?)*/?| f(¢)| and using Parseval’s
formula.

3 More elaborate exponential integrators for Schrodinger equations
with time-dependent Hamiltonian.

In this section we describe integration methods which give higher accuracy, at
the price of more costly numerical linear algebra.

3.1 A third-order scheme.

A method of order 3 can be constructed by starting from the variation-of-
constants formula (2.9). For small 7, that formula gives

b(t) = (1 - Z/O exp(—i(r — s)H (1)) (H(t Crgs)— H(t))~
exp(+i(r — s)H (1)) ds) exp(—itTH())w(t — 1)+ O(rh) .

We use this with ¢t = ¢,,, 7 = :I:%h. We let H, = H(t,) and set H) = H'(¢,)
and H!' = H'(t,), or the corresponding difference quotients H! = (Hpy1 —
Hp_1)/(2h) and H!! = (Hyq1 — 2H, + H,—1)/h?. We define

n

1/2
(3.1) JZE :/0 exp(—ifhH,) (0H) + 10°hH]) exp(ifhH,)db .

We note that JF is a Hermitian matrix, and

U(tn) = (I +ih%J7) exp(—EhH,) t(tn_1s2) + O(h®) |
Y(tn) = (I +ih*T)) exp(EhH) Y(tas1sz) + O(hY) |

Hence, the following symmetric and norm-preserving scheme has a local error of
size O(h?): '
Un = exp(ih®J;)) exp(—shHp) ¥n_1)2 ,
Z' . _+
Vpt1/2 = exp(—5hHy) exp(—zhzjn ), .

This yields immediately the first of the following error bounds.

(3.2)
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THEOREM 3.1. (i) Under the assumptions of Subsection 2.1, the error of the
method (3.2) is bounded by

[n = ¥ (ta)| < CR

for 0 <t, <T. The constant C' depends only on My, Ma, Ms, and T

(ii) Consider the method (3.2) where H,, is replaced by U in the definition (3.1)
of J£. In addition to the assumptions of Subsection 2.1, assume that conditions
(2.6), (2.7), and further ||H@)“H" ()¢ (t)|| < Cq hold for some 0 < o < 1.
Then, the error is bounded by

llhn — ¥ (tn)|| < C H*T

for 0 <t, <T. The constant C' depends only on Cy, M1, Ma, Ms, and T.
The proof of (ii) is obtained with the arguments of the proof of Theorem
2.1 (iii).

3.2  Implementation.

When the dimension is sufficiently small to compute the eigendecomposition
of H,, the scheme can be implemented as follows. Diagonalize H, = Q,A,Q%
and let G, = QY H! Q,, and G" = QT H!Q,,. Then,

1/2
JE=Q., /0 exp(—ifhA,)(0G), + L0°hG1) exp(i0hA,) dI QT = Q. ZE QT

with
ZE=A,eG, +hB, G

n

where e denotes the entrywise product of matrices, and
1/2
[An]k,l = / exp(—ib’h(/\k (tn) — /\l (tn))) f do s
0

1/2
[Bn]k,l = %/ exp(—i0h (A (tn) — Ni(tn))) 6% d6 .
0
The integrals are computed explicitly. Then, (3.2) becomes

(3 3) Un = @n eXp(ihZZ;) exp(_%hAn)_l_Qgﬂ)n—l/Z )
1/)n+1/2 = @n eXP(—%hAn) eXp(_ihzzn )Qgﬂjn .
For large dimensions, we cannot, use Krylov subspaces to approximate JF. The
difficulty is that the integral (3.1) defining JF contains not only the matrix H,
but also H/ and H//. If these matrices do not commute, then it does not appear
possible to approximate Jni accurately in a low-dimensional Krylov subspace.
However, the scheme (3.2) can be implemented using Chebyshev approxima-
tions to the exponential. We consider the case that U is a spectrally discretized



QUANTUM-CLASSICAL MOLECULAR DYNAMICS 13

Laplacian, and we take U instead of H, in the definition of Jni (see Theo-
rem 3.1 (ii)). Here we have U = F~1DF where F is the N-dimensional Fourier
transform matrix and D = diag(py,...,pun). For 0 <8 < %, we approximate

exp(i0hl) Z 0) ps (hU),

where pg are shifted and scaled Chebyshev polynomials. This will require m >
%HhUH With Py = diag(px(hy;)), we have pg(hU) = F~'P,F. Inserting this
approximation in (3.1) yields

(3.4) JE~ P! (Z PkF(HT’LF‘l > au P hHIF ZbklPl))F
k l l

where, for k[ =0,...,m—1,

1/2 1/2
ap = / cx(@)ci(0)0do, by =3 / e (0) ci(0) 07 dO .
0 0

This permits to compute matrix-vector products J,, 3 or 7:1/) in a number of
(3m + 2)Nlog N + 2m?N + O(mN) operations, assuming that H'ty) and H"v
are computed in O(N) operations. Since h?JZF is of small norm, exp(ih?J; )¢
and exp(—ih?J +)1/) can be approximated using just a few matrix-vector multi-

plications with J; and Jn, respectively.

We have included the scheme (3.2) mainly to show what a method looks like
which achieves higher order with error bounds that are entirely independent of
the norm of U and of the smoothness of the solution. We are not sure about its
practical usefulness for high-dimensional systems in the implementation (3.4).

3.8 A scheme based on the Magnus expansion.

If we give up the requirement that the error bounds should be completely
independent of the norm of U, then it appears attractive to use a truncated
Magnus series [12, 16, 27]. Here, the solution operator of a non-autonomous
linear system of differential equations is expressed as the exponential of a power
series in the time step, whose coefficients consist of repeated integrals of com-
mutators of the system matrices. Let again H, = H(t,), H, = H'(t,) or
H! = (Hpy1—Hn—1)/(2R), and H! = H"(t,) or H! = (Hp41—2H,+Hp,—1)/h?.
Using the Taylor series expansion of H(t, + ) at ¢, truncating the Magnus se-
ries after the first commutator and dropping terms of formal order 3, we obtain
the approximation

Yty +7) & exp(—iTSn(T))1/)(tn)

with the Hermitian matrix

So(r)=Hn + $7H) + 277 H] + Sr%(H, H) — HL Hy,)
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This suggests the following symmetric and norm-preserving scheme, where we
set Hf = Sn(:t%h):

Yy = eXP(—%hH;)i/)n—l/z ;

3.5 X
(3:5) 1/)n+1/2 = eXp(—%hH:)l/)n .

This scheme can be implemented similarly to the simple scheme (2.4). We now
need to apply the Lanczos process twice in each time step and moreover, each
matrix-vector multiplication with Hf requires two multiplications with H,, two
with H/, and one with H//.

To understand the approximation properties of this method, we consider the
case of particular interest where H () = U+V (t) is obtained from a pseudospec-

tral space discretization of the Schrodinger equation

el

(3.6) s

= —%A\I! +a(z, )T,
posed on [0, 1]¢ with periodic boundary conditions. Here a(z,t) is a continuous
space-periodic scalar function of which we assume that, for every t, it is real-
analytic in # and uniformly bounded in a fixed complex neighbourhood of [0, 1]¢,
of radius larger than p > 0. In this situation, we take U as the spectrally
discretized negative Laplacian, and V(¢) as the diagonal matrix containing the
values of a(z,t) on the equidistant space grid.

THEOREM 3.2. In the above situation, if h?||U|| < ¢, where ¢ is a sufficiently
small constant, the error of the method (3.5) is bounded by

[[thn = ¥(ta)l| < CRP U]

for 0 <t, <T. Here, C' s independent of the smoothness of the solution.

ProoF. The proof rests on the observation that the commutator of the Lapla-
cian with a multiplication operator is a first-order differential operator. In the
discretization, we obtain analogously for the commutators of A(r) = H (¢, + 7),
by tedious calculations with trigonometric series which we omit,

ITA(T), A(@)] || < CRIUIIM? - fr—al <h,
and more generally, for |7;| < &,
1 TA(T), [A(Te-1), [+ [A(m), Alro)] - T < RECp™* ||U* 20

If h||U||*? is sufficiently small, this yields that the Magnus series is convergent
for |7| < h, see [12, Section 2], and the error resulting from the truncation of
this series becomes

exp (=75 (7)) ¥(tn) = Yt +7) + O(T|U]]) -

Therefore, the local error of the scheme (3.5) is O(h*||U]|), and the result follows.
a
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REMARK 3.1. For the pth order Magnus series methods of [12], the same proof
gives the error bound

n = bt < C B U002

3.4  Numerical experiments.

To illustrate the behaviour of the different methods, we consider the simple
example

N (A ISR O

In Figure 3.1 we plot errors at t = 1 versus step sizes for g = 1,107, 10% 10°
for the simple method (2.4), the elaborate scheme (3.2) implemented via (3.3),
and the Magnus-type scheme (3.5). While the error curves of the simple and
the elaborate scheme are nearly independent of 1, the errors of the Magnus-type
scheme deteriorate with increasing .

-2 | 4 —2
10 n=1 0 =10

PN

-12
10 - ; 102 ‘
10 10 107 107

Figure 3.1: Error versus step sizes for the small example: simple scheme x,
third-order scheme x, Magnus-type scheme o.
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As asecond example we consider a one-dimensional Schrodinger equation (3.6)
with the data taken from [23]:

a(z,t) = %xz +sin?(t)x .

This models an atom /molecule interacting with a high intensity CW laser. Semi-
discretization in space is done by a pseudospectral method with N = 256 Fourier
modes on the space interval @ € [—¢, £] for £ = 10 with periodic boundary condi-
tions. This leads to the non-autonomous linear system of differential equations

for 1/) = (¢1a"'ﬁ¢N)T
i = (—3F7ID?F + 1 X7 4 sin® (1) X) 4,

Here, #;(t) is an approximation to ¥(z;,t) at ; = —{+ j?\,—z, X = diag(z;), F
1s the discrete Fourier-transform operator, and

D =iTdiag(0,1,.... 5 -1, -4 -5 4+1,...,-1).

107+ 1 102}

X

107 |

107 |

107 |

107

107

-3 -2 -1

10 10 10

Figure 3.2: Error versus step sizes for the laser example: simple scheme x,
Magnus-type scheme o. Smooth and nonsmooth initial data.

In Figure 3.2 we give precision—step size diagrams at ¢ = 1 for two different
initial values. For the first picture we have chosen ¥(x,0) = e‘x2/2, which corre-
sponds to the eigenstate of the unforced harmonic oscillator to the lowest energy
level. The second picture corresponds to nonsmooth initial data of finite energy
chosen as g = F~1(I —iD)~tv/p, where v is a vector of normally distributed
random numbers, and p is chosen such that ||¢g]| = 1. We implemented the
simple scheme (2.4) and the Magnus-type scheme (3.5), using Algorithm 2.1 in
both cases. Note that both methods use the same number of potential evalua-
tions for the same step size. This is not the dominant computational cost in the
present example, but it is in more complicated problems. We did not implement
the elaborate scheme (3.2) via the Chebyshev approximation (3.4), because it is
considerably more expensive than the Magnus scheme and cannot be expected
to show a much better error behaviour in this example.
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4 Integration methods for the QCMD equations.
In this section we extend the integration schemes of Sections 2 and 3 to the

coupled equations (1.1) of the QCMD model.

4.1  Assumptions and notation.

We assume that (2.2) and (2.3) hold for H () = H(y(t)), and that
(1) INH@I< L, IVHEI <L forall g

We assume that M is symmetric positive definite, with ||[M ~1|| < 1 for simplicity.
We introduce the tensor (pile of matrices)

K(y) :==VH(y)

and define

so that y”’(t) = M~1f(1).

4.2 A simple scheme.
Arguably the simplest method for (1.1) consists of taking

(4.2) M (Ynt1 = 2Un + Yn—1) = —h°05 K (yn)n

and propagating ¢, by (2.4) with H, = H(y,). An appropriate starting step
would then be
(4.3) y1 = Yo + hyh — SR MK (yo)ibo -

Unless the solution of (1.1) has high regularity, the convergence properties of
this scheme are modest.

THEOREM 4.1. Let the assumptions of Section 4.1 hold, and assume in ad-
dition that H(t) = H(y(t)) is positive semidefinite for all t and there erists
0 < a <2 such that

(4.4) IH@O“ PO <Co,  0<t<T .
Then, the error of the method (4.2), (4.3), (2.4) is bounded by
lyn —y(ta)ll < CRT,
llon —w(ta)ll < CRT,

for 0 <t, <T. The constant C' depends only on Cq, ||y’ (0)||, L1, L2, and T.
Concerning condition (4.4), we refer to the remarks after Theorem 2.1.
The proof, which is deferred to the end of this section, gives strong indication
that the stated order of convergence cannot be improved without assuming more
regularity of the solution.
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4.3 A more elaborate scheme.

To derive a more accurate method, we note that the exact solution of (1.1)
satisfies

ylt+h) = 29(0) + y(t — h) = A(h—ﬂ@%rwﬂ+¢u—ﬂ>w

= M7 [ e ) S )

This motivates the following symmetric integration scheme:

=2t = M [ (b= 7 () 4 (o) dr
(45) In (T) = —¢n (T)* K, ¢n(7—)
én(T) = exp(—itHp) ¥y ,

where Hy, = H(yn), Kn = K(yn), and ), is defined via (2.4) or (3.2) or (3.5).

A suitable starting value is given by

h
(4.6) y1=yo—|—hy6—|—M_1/ (h=7)fo(r)dr .
0
THEOREM 4.2. Under the assumptions of Section 4.1, the method (4.5), (4.6),
and (3.2) satisfies
C h?,
C h?,

lyn — y(tn)]]
l[tn — ¥ (tn)]|

for 0 <t, <T. The constant C' depends only on ||y (0)||, L1, La, My, and T.

The proof is given in Subsection 4.5.

REMARK 4.1. If, instead of (3.2), the simpler method (2.4) is taken for the
quantum propagation, then the error bound is O(h), O(h?/a), or O(R***) in the
situations (i), (ii), (iii) of Theorem 2.1, respectively.

This follows without new difficulty by combining the proofs of Theorems 2.1
and 4.2.

In the combination of (4.5) with the methods (3.2) and (3.5), the symmetric
finite difference approximations of the time derivatives of H using the values
Hov1, Hn, Hp—1 give a symmetric method that is implicit in y,41. A way
to avoid this implicitness and nevertheless to preserve the symmetry, is to use
the first formula of (4.5) in addition with %h instead of h to generate half-step
approximations y,11/2. With the help of these intermediate values, we can
obtain difference approximations to H/ and H/ that use only known y-values.
We explain this in more detail for the Magnus series method (3.5): Given yj,
Yn—1/2, Yn—1, and ¥, _q/5, we first compute ¥, by the first formula of (3.5),
lh

2

<
<

where we use, for 7 = ,

Hy = Ho+ 3r(H)™ + Sr2000) " + 357 (Ha(H)) ™ = (1)) H,)
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with
(H)” = —(3H,—2H,_ 12+ 5Hn 1)/7
(H!)™ = (Hn—2H, 12+ Hu_1)/77 .

We then compute y,41 by (4.5) and y,, 1/ by the same formula with %h instead
of h and y,_y/2 instead of y,_1. Finally we compute ¥,41/2 by the second
formula of (3.5), where H.} is defined like H,;, but with 7 = %h and n — %, n—1
replaced by n + %, n + 1, respectively. This gives a symmetric method which
requires two evaluations of H and one evaluation of K per time step. The error
is bounded by O(h? + h3||U]||) in the combined situation of Theorems 3.2 and
4.2.

4.4 Implementation using Lanczos’ method.

The implementation of the simple scheme (4.2) combined with (2.4) is straight-
forward, using Algorithm 2.1. We just remark that it is favorable to use the
one-step velocity formulation of the scheme:

1 1
Upt1/2 =Vn + 5han , Yng1 =yn +hvpqi/a, Vngl = Ungiy2 + 5hang

with ap, = —M =17 K (yn )n -

We now discuss the combination of the schemes (4.5) and (2.4). Using the no-
tation of Section 2.3, we approximate the function ¢, (7) in the Krylov subspace
created for approximating v, and ¥y,41,2, hence

(1) & Vip Qm exp(—iT Dy, ) %ng)n

with the diagonal matrix D, = diag (w1, ...,wm). We insert this approximation
in (4.5). With the projected tensor

(4.7) G = Qi Vi K (90) Vin @

whose computation requires O(m?N) operations in the typical case that the
y—dependent part of H(y) is a diagonal N x N matrix, we obtain

fa(T) & =) Vi Qum, exp(i7 Dy )Gy exp(—i7Diy) %ng)n .
Defining
1
(4.8) [Fnlki = 2Re / (1 —0) exp(i@h(wy —w;)) do
0

finally yields

h
= D Ul + (7)) dr e =KV Qu (0 G )@V

The only approximation is for ¢, (7). The accuracy of this approximation can
be controlled via the stopping criterion of the Lanczos process.
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ALGORITHM 4.1. Implementation of one time step of the scheme (4.5) with
(2.4), starting from yn_1, Yn, and Yy _q/5:

(i) run the Lanczos process with A = H(y,) and b = t,,_1 /5 providing Vp,,
T, and By, form=1,2,...;

stop if B |[exp(=2ih T )]m m| < tol;
diagonalize Ty, Ty = QmDmQF ;

)
)
(iv) compute the tensor Gy, defined in (4.7) and the matriz Fy, from (4.8);
) compute Y, and Y, 410 via Step (i) of Algorithm 2.1;

)

compule yny1 from
M (Y41 = 20 + Yn=1) = =0 Vin Qo (Frn @ Gin) @, Vi Yon -

In Step (ii), the stopping criterion taken over %h ensures that ¢, () is approx-
imated accurately enough for all 0 < 7 < h involved in the integral in (4.5).

In Step (vi), it is again preferable to work with the one-step formulation of
the scheme. We omit the obvious modification.

Alternatively, the method (4.5) could be implemented using Chebyshev ap-
proximations to the exponential similarly to Section 3.2.

4.5  Proof of Theorem 4.2.
For simplicity, we write
H{) =Hyw) and K0 = Ky)

and similarly for V'(¢) and Q(¢). Using this notation, by (4.1) we have the bounds
(2.1) and

where M; and M} depend only on ||y'(0)||, L1, L2, because a bound of y" is
available from the differential equation (1.1). Let us denote those quantities in

(4.5) which are computed from exact solutions ¢(t,), H(¢,), and K(t,), by On,

fn, L.,

(49 Fule) = —ale) K (1) ()
(410) ¢n(7—) = ¢eXp (_iTH(tn)) 1/)(tn) :

LEMMA 4.3. The defect d,, defined by

K@l < Mg, |

K@l <M, |

K"(D)]] < My

4 = /Oh(h ) () = Fltn +7) + Fal=7) = Fltn = 7)) dr
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1s of the form
dy = W3 E(1) (A 0 G(t0))E(tn) + T,

wh:“@ ) = QW)Tv(Y), Gt) = QU)TK'(1)Q(t), and A = (§(hpuk — hpu))i =
wit

() :/0 (1 —0)0(e™ —e="7) do.

The remainder term is bounded by ||ry|| < Ch*.
PRrROOF. We begin by noting that

(4.11) Yty +71) = qgn(r) +d,(r)  with |[9,(7)]| < My7%,
which follows from the variation-of-constants formula (2.9). Next we show
Fa(P) = fltn +7) = 705(7)K (tn)on(7) + 5n(7)
(4.12) with ||s,(7)|] < CT? .
From (4.11) we obtain immediately
1Fa(7) = Ftn +7) = GH(T)E (tn +7) — K ()]0 (7))
2l (I + 119 (7)IP) Mg
T2+ MyT%) My M.

Since ||[K(th + 7) — K(tn) — 7K' (tn)]| < %TzMé, we obtain (4.12).
Now, by (4.12) we have

IA A

g = — / (= 7 a7 K (1) ()
(=) K ()3 (=7 dT + g0 |
where .
lanll < [ =) (D1 + s (=) < Cr
Inserting
gn(r) = Q) exp(—irA(tn)) E(tn) = Q(tn) exp(—iTD) E(ty) + O(R)

with D = diag(py) completes the proof. O

We have the following error recursions.

LEMMA 4.4. For n > 1, the errors e, = yn — y(tn) and ep = ¥, — ¥(ts)
satisfy

llenll < llen—1y2ll + chllen]| + CR?
llensr2ll < llenll + chllen]| + CR?
lensill < nller —eol [+ [lexll +ch® Y (n —j + 1)(Ilegl| + lle;)

j=1

> -+,
j=1
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ProoF. The first two inequalities follow immediately from (3.2) and the Lip-
schitz constants (4.1). To prove the last inequality, similar to Lemma 4.3 we

define
e = / (h—7) (Fa(7) = Fltn + 1) + fa=7) = Fltn — 7)) dr .

so that the error satisfies ep41 — 2e + €1 = M~*'e,. Hence, for n >1

ent1 = nler —eg)+e1— Mt Z(n —J+ 1d;
j=1

— MY (=G 1)(e —dy)

j=1

It remains to bound ||ep, — dp||. From ||¢(¢,)|| = 1 and the Lipschitz bound (4.1)
we obtain

160 (7) = Sn (Pl = lle™ (1) — e 7Hn |
<™ T (1) = T THR ()| 4 e T (tn) = Ty |
< thllenll +lenll

using the variation-of-constants formula

(e—iTH(tn) _ e—iTHn) 1/)(tn) — —i/ e—i(r—cr)Hn (H(tn)—Hn)e_wH(t")1/)(tn) do.
0

Finally,
1£2(7) = Fa (P = 1160 (1) Kndn(7) = 60 (7) K (1) 60 (7)]]
= [[6n(T) Knén(r) = 6n(7)Kndn (7)+
S (7) K6 (7) = 6 (T) K (1) 6 (7))
< Laflenll + 2L1][(7) = (7)]]
< (27LY + Lo)llenl| + 2L1len|
yields

llen = dnll < CR*(llenll + llenll) |

where ' depends only on Ly, Ly, and T'. O
It remains to show that the last sum in Lemma 4.4 does not exceed Ch2.
LemMa 4.5. For 0 <t, <T we have

HZ(n—j—l— 1)de < Ch? .
j=1
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ProoF. The proof is similar to parts (b) and (c) of the proof of Theo-
rem 2.1 (ii). As in that proof, we have

£(t) = Q) (1) = exp(=itD) (t) ,
where 7(t) defined by (2.12) and (2.11) satisfies

@O <1, '@l <c.

We write

n n m

dtn—j+1)di=>">"d;,

j=1 m=1j=1

and from Lemma 4.3 we know
dj = hPn(t;) e P (A o G(t;))e ™" P n(t;) + 7

with Z?:l(n —j+ 1)||r;]| < Ch*. We introduce the matrix

(4.13) By = (e (hp — hpu) 1=
with €,(x) = Zeijxé(l‘) =(1—e™)p(x) ,

where p(z) = §(z)e'®/(1 — '®). Partial summation yields, with n; = n(t;) and
Gj = G(t),

Zn* it; D )e_itanj

m—1

= 1 (Em @ G (77]+1 o Gipa)nyr —1; (Ej @ Gj)m') :

=1

.,

By Lemma 4.6 we have ||E,, ¢ G)p|| < C' and

||77;+1( i Gip1)nj+1 — ( ;o Gyl
< ||(77]+1 ;)" (Ej @ Gipa)nj+l|
+n5 (Ej o (Gi41 = G5))njll
+[75 (Ej © Gj)(nj41 — )|
< Ch.

Combining these estimates completes the proof of the lemma. 0O
LEMMA 4.6. There is a constant C' such that the entrywise product of E,,
defined by (4.13), with an arbitrary complexr N x N matriz G is bounded by

1En 0 G| < CJIG]| -
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Proor. We introduce the matrix I = (¢(hpr — hp))i =, and note that
EnpeG=F e G —exp(inhD)(F o G) exp(—inhD) .

Since §(2mm) = 0 for all integers m, the function ¢ and its derivative are square
integrable over R. Thus it follows from Lemma 2.2 and (2.13) (with a = 1) that
IF o Gll < ClIG|. T

The error bound of Theorem 4.2 now follows from Lemmas 4.4 and 4.5 via a
discrete Gronwall inequality.

4.6 Proof of Theorem 4.1.

We consider the method (4.2) as a perturbation of (4.5). We begin with an
analogue of Lemma 4.3.

LEMMA 4.7. The defect b,, defined by
h
bn - h2 n)— h— A;L A;l - d ’
)= [ =) (Rt + Fol=m)) ar

with ﬁl(r) defined by (4.9), is of the form

by = h* E(Ln)* (A(tn) @ G(tn))E(tn) |
where £(1) = QUTU(), Gl) = QUTKMQ), and Alt) = (B(hA(t) —
hX ()R 1=y with

1
dx)=1 —/ (1—0)(e"" + ) do .
0
Under condition (4.4), with 0 < o < 2, we have
[ball < CRZF2

We remark that §(x) = O(2?) as  — 0, but §(2mm) # 0 for integer m # 0, in
contrast to Lemma 4.3.

ProoF. The formula for b, follows directly from the definitions of the quan-
tities involved. To prove the bound, we begin by noting that H(#)*¢(t) =
Q()A(t)*E(t). Let first 0 < a < 1. As in the proof of Theorem 2.1 (iii), we use

lexp(iTA)¢ =&l < CIr[* ||A%¢]]
which gives, for A, ¢ and G evaluated at ¢,,,
1
b, = h2*GE— hz/ (1-10) ((exp(iﬁh/\)&’)*Gexp(iﬁh/\)é’ +
i (exp(—i6hA)E) "G exp(—iahA)g) do
1
= h*1-2[ (1-0)df) - GE+ O(R**
(1-2 [ 1-0a) -G+ 007+
O(h*tey .
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Let now 1 < a < 2. Here we use
[lexp(iTA)E — (I +arA)E|| < Cfr|* [[A%]|

to obtaln

by = h2E*GE — h? /1(1 —0) (1 +i6h0)8) G (I +i0hA)E +
((I = 6hA)E) G — i0RA)E) dO + O(h*+*)
= O(h2+a) )

where the last bound follows by multiplying out. O

To complete the proof of Theorem 4.1, we recall that the local error of (2.4)
is O(h?), and the truncation error of (4.2) is b, + d, = O(h**%), since d,, of
Lemma 4.3 is bounded by d,, = O(h3+t% 4 h*) under condition (4.4), as is shown
in the same way as for b, above. The error propagation 1s still as in Lemma 4.4,
with b, + d, in place of d,,. A Gronwall-type inequality then gives the error
bound stated in Theorem 4.1.

Acknowledgement. C.L. thanks Syvert Ngrsett for discussions about Magnus
series while enjoying the hospitality of the Mittag-Leffler Institute.

REFERENCES

1. G. Benettin and A. Giorgilli, On the Hamiltonian interpolation of near to
the identity symplectic mappings with application to symplectic integration
algorithms, J. Statist. Phys., 74 (1994), pp. 1117-1143.

2. S. R. Billeter and W. F. van Gunsteren, A modular molecular dynam-

ics/quantum dynamics program for non-adiabatic proton transfers in solu-
tion, Comp. Phys. Comm., 107 (1997), pp. 61-91.

3. F. A. Bornemann, P. Nettesheim, and Ch. Schiutte, Quantum-classical molec-
ular dynamics as an approzimation to full quantum dynamics, J. Chem.

Phys., 105 (1996), pp. 1074-1083.

4. P. Deuflhard, J. Hermans, B. Leimkuhler, A. Mark, S. Reich, and R. D.
Skeel, eds., Computational Molecular Dynamics: Challenges, Methods, Ideas,
Lecture Notes in Computational Science and Engineering 4, Springer, 1999.

5. V. L. Druskin and L. A. Knizhnerman, Krylov subspace approzimations of
etgenpairs and matriz functions in exact and computer arithmetic, Numer.

Lin. Alg. Appl., 2 (1995), pp. 205-217.

6. B. Garcia-Archilla, J.M. Sanz-Serna and R. Skeel, Long-time-step meth-
ods for oscillatory differential equations, STAM J. Sci. Comput., 20 (1999),
pp- 930-963.

7. E. Hairer and Ch. Lubich, The life-span of backward error analysis for nu-
merical integrators, Numer. Math., 76 (1997), pp. 441-462.

8. M. Hochbruck and Ch. Lubich, On Krylov subspace approzimations to the
matriz exponential operator, STAM J. Numer. Anal., 34 (1997), pp. 1911-
1925.

9. M. Hochbruck and Ch. Lubich, A bunch of time integrators for quan-
tum/classical molecular dynamics, in [4], 1999, pp. 421-432.



26

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

MARLIS HOCHBRUCK AND CHRISTIAN LUBICH

M. Hochbruck and Ch. Lubich, A Gautschi-type method for oscillatory
second-order differential equations, Numer. Math., 1999. To appear.

M. Hochbruck, Ch. Lubich, and H. Selhofer, Ezponential integrators for large
systems of differential equations, STAM J. Sci. Comput., 19 (1998), pp. 1552
1574.

A. Iserles and S. P. Ngrsett, On the solution of linear differential equations
wn Lie groups, Phil. Trans. Royal Soc. A, 1999, to appear.

T. Jahnke, Splittingverfahren fur Schrodingergleichungen, Diploma Thesis,
Univ. Tubingen, 1999.

R. Kosloff, Propagation methods for quantum molecular dynamics, Annu.

Rev. Phys. Chem., 45 (1994), pp. 145-178.

C. Lanczos, An iteration method for the solution of the eigenvalue problem
of linear differential and wntegral operators, J. Res. Nat. Bureau Standards,

45 (1950), pp. 255-281.

W. Magnus, On the exponential solution of differential equations for a linear
operator, Comm. Pure Appl. Math., 7 (1954), pp. 649-673.

P. Nettesheim, F. A. Bornemann, B. Schmidt, and Ch. Schitte, An explicit
and symplectic integrator for quantum-classical molecular dynamaics, Chem-

ical Physics Letters, 256 (1996), pp. 581-588.

P. Nettesheim and S. Reich, Symplectic multiple-time-stepping integrators for
quantum-classical molecular dynamics, in [4], 1999, pp. 412-420.

P. Nettesheim and Ch. Schitte, Numerical integrators for quantum-classical
molecular dynamics, in [4], 1999, pp. 396—411.

T. J. Park and J. C. Light, Unitary quantum time evolution by iterative
Lanczos reduction, J. Chem. Phys., 85 (1986), pp. 5870-5876.

B. N. Parlett, The Symmetric Figenvalue Problem, Prentice-Hall, Englewood
Chiffs, N.J., 1980.

M. Paule, Integratoren fir das QCMD Modell, Diploma Thesis, Univ.
Tubingen, 1998.

U. Peskin, R. Kosloff, and N. Moiseyev, The solution of the time depen-
dent Schrédinger equation by the (t,t') method: The use of global polynomial
propagators for time dependent Hamiltonians, J. Chem. Phys., 100 (1994),
pp. 8849-8855.

S. Reich, Dynamuical systems, numerical integration, and exponentially small
estimates, Habilitation Thesis, FU Berlin, 1998.

S. Reich, Multiple time-scales in classical and quantum-classical molecular
dynamucs, J. Comp. Phys., to appear.

H. Tal-Ezer and R. Kosloff, An accurate and efficient scheme for propagat-
ing the time-dependent Schrédinger equation, J. Chem. Phys., 81 (1984),
pp. 3967-3971.

H. Tal-Ezer, R. Kosloff, and C. Cerjan, Low-order polynomial approzimation

of propagators for the time-dependent Schrodinger equation, J. Comp. Phys.,
100 (1992), pp. 179-187.

Y. Saad, Analysis of some Krylov subspace approximations to the matriz
exponential operator, STAM J. Numer. Anal., 19 (1992), pp. 209-228.



