
Efficient Multiple Time-Stepping Algorithms of Higher Order

Abdullah Demirela, Jens Niegemannb, Kurt Buschc, Marlis Hochbrucka

aInstitut für Angewandte und Numerische Mathematik, Karlsruher Institut für Technologie, 76128 Karlsruhe, Germany
bETH Zurich, Institute of Electromagnetic Fields (IEF), 8092 Zurich, Switzerland

cHumboldt-Universität zu Berlin, Institut für Physik, AG Theoretische Optik & Photonik, and Max-Born-Institut, 12489
Berlin, Germany

Abstract

Multiple time-stepping (MTS) algorithms allow to efficiently integrate large systems of ordinary
differential equations, where a few stiff terms restrict the timestep of an otherwise non-stiff sys-
tem. In this work, we discuss a flexible class of MTS techniques, based on multistep methods.
Our approach contains several popular methods as special cases and it allows for the easy con-
struction of novel and efficient higher-order MTS schemes. In addition, we demonstrate how
to adapt the stability contour of the non-stiff time-integration to the physical system at hand.
This allows significantly larger timesteps when compared to previously known multistep MTS
approaches. As an example, we derive novel predictor-corrector (PCMTS) schemes specifically
optimized for the time-integration of damped wave equations on locally refined meshes. In a
set of numerical experiments, we demonstrate the performance of our scheme on discontinuous
Galerkin time-domain (DGTD) simulations of Maxwell’s equations.

Keywords: multiple time-stepping (MTS), local time-stepping (LTS), multistep methods,
grid-induced stiffness, exponential integrator, Discontinuous Galerkin time-domain (DGTD),
Maxwell’s equations

1. Introduction

When following a method-of-lines approach, time-dependent partial differential equations (PDEs)
are typically reduced to large systems of coupled ordinary differential equations (ODEs). Often,
such a system of ODEs is then integrated by an explicit ODE solver [1, 2] to obtain the time
evolution of the unknowns. While explicit solvers are easily implemented, this approach has
the well-known problem of conditional stability. In many cases, the system contains only a few
terms which force the entire simulation to take small timesteps. In the following, we assume that
we can split the system of ODEs into stiff terms (which mandate a small timestep) and non-stiff
terms (which permit a larger timestep) as

d
dt

u(t) = f(t,u(t)) + g(t,u(t)), (1)

where f contains the stiff part and g contains the non-stiff part. In particular we assume g to be
Lipschitz continuous.

Such split systems are very common in scientific and technical applications, where the origin
of the stiffness can be vastly different. Possibly the most common reasons are

Preprint submitted to Journal of Computational Physics October 23, 2014

• Algebraic stiffness, which directly stems from large differences in the timescales of the
underlying equations. Some examples are discretized convection-diffusion-reaction equa-
tions [3], molecular dynamics [4] or electrical circuits [5].

• Grid-induced stiffness, which occurs in the spatial discretization of partial differential
equations (PDEs) with non-uniform meshes. Caused by small geometrical features or
due to local refinement, some of the elements may require much smaller timesteps than
the rest of the mesh.

A first mitigation to this problem is to employ solvers specifically designed for stiff systems,
e.g., implicit solvers [6]. Unfortunately, if the number of unknowns is very large, the solution
of large (and possibly nonlinear) systems of equations often is prohibitively expensive. An al-
ternative approach towards a more efficient procedure is to treat f and g with different timesteps,
i.e., carrying out many small timesteps for f and a few large timesteps for g. This approach is
often called multiple time-stepping (MTS) or local time-stepping (LTS). Of course, one still has
to take the coupling between f and g into account which makes the construction of such tech-
niques quite involved. Probably one of the first methods in this direction was published by Rice
in 1960 [7] and started the field of multirate Runge-Kutta schemes. Similar ideas were later also
applied to multistep methods [8]. Another popular approach is to employ coupled implicit (for f)
and explicit (for g) methods, resulting in implicit-explicit (IMEX) schemes. Such schemes have
been constructed for both multistep (see [9] and references therein) and Runge-Kutta methods
[10]. For a brief but very recent review on general LTS techniques, also see [11]. For recent
applications of LTS and IMEX schemes in the context of advection dominated problems, see
[12, 13, 14, 15, 16, 17, 18].

In this paper, we present an alternative and fairly general strategy of constructing MTS meth-
ods. In contrast to most of the commonly used techniques, our approach allows to employ
different time-stepping strategies for the inner (stiff) and the outer (non-stiff) integration. As an
illustration, we will combine a predictor-corrector scheme for the outer integration with a low-
storage Runge-Kutta method for the inner integration. This feature increases the flexibility in the
design of MTS methods and, in certain cases, leads to a significant performance enhancement.
Furthermore, we will show how to tailor the stability domain of the outer multistep integrator
to the underlying physical problem. This can result in a significant increase in the largest stable
timestep and therefore further improves the performance of our method. For certain choices of
the inner integrator, our approach reduces to previously known schemes.

2. Multiple time-stepping methods

In the following, we will assume that the evaluation of the stiff function f is computationally
cheap in comparison to the non-stiff function g. This is usually the case for grid-induced stiffness,
where a few small elements limit the stability of an otherwise large mesh.

2.1. General explicit multiple time-stepping methods

For the construction of our methods we follow an idea presented recently in [19] for semi-
linear problems, where f(t,u(t)) = −Au(t) with a square matrix A of possibly large dimension,
i.e.,

d
dt

u(t) = −Au(t) + g(t,u(t)), u(t0) = u0. (2)

2

A representation of the exact solution of (2) can be obtained from the variation of constants
formula

u(tn+1) = e−hAu(tn) + h

1∫
0

e−(1−θ)hAg(tn + θh,u(tn + θh)) dθ, (3)

where tn := t0 + nh, n ∈ N0. Note that the matrix exponential e−tA is uniformly bounded by one
for all t ≥ 0 if the field of values of A is contained in the right complex half plane, see, e.g., [6,
Section IV.11]. An approximation to u(tn+1) can be obtained by replacing the non-stiff function
g(t,u(t)) in (3) by a local interpolation polynomial as

u(tn+1) ≈ un+1 = e−hAun + h

1∫
0

e−(1−θ)hApn(tn + θh) dθ (4)

and to computing the integral in (4) exactly. The resulting methods are known as exponential
multistep methods of Adams-type. They have been first discussed in [20] and in a more system-
atic way in [21]. A rigorous error analysis was given in [19]. As noted in [19], the approximation
un ≈ u(tn) of an exponential multistep method of Adams type coincides with the exact solution
vn(h) of the following initial value problem

d
dτ

vn(τ) = −Avn(τ) + pn(tn + τ), τ ∈ [0, h], vn(0) = un. (5)

Here, pn(t) is defined as the local interpolation polynomial which approximates g(t,u(t)) on the
time interval [tn, tn+1]. The key idea of these methods is based on the local polynomial approx-
imation of the non-stiff function g(t,u(t)) instead of using a local polynomial approximation of
the complete right-hand side, as in the classical case.

Now, we generalize this approach to fully nonlinear systems of the type given in Eq. (1). Fol-
lowing the same idea, we replace the non-stiff function g(t,u(t)) by a polynomial approximation

pn(tn + θh) =

k−1∑
i=0

gn−k+1+i

p−1∑
j=0

bi, j
θ j

j!
, g j := g(t j,u j), (6)

with as yet unknown coefficients bi, j ∈ R. The resulting initial value problem on each timestep
is then given by

d
dτ

vn(τ) = f(τ, vn(τ)) + pn(tn + τ), τ ∈ [0, h], vn(0) = un. (7)

In contrast to the semilinear case, we are no longer able to compute the exact solution of (7).
Instead, we follow an alternative idea also presented in [19]. Namely, we are using multiple time-
stepping techniques to numerically integrate (7) on each timestep to obtain an approximation of
un+1.

In other words, once we have the k previous function values gn−k+1, . . . , gn available, we can
apply any ODE solver to integrate (7) and obtain an approximation of u(tn+1). The key point is,
that on the right-hand side of (7), we only require the evaluation of the stiff function f

(
τ, y(τ)

)
and the polynomial pn(tn + τ). Due to the stiffness of f, we have to make small timesteps (if we
employ an explicit solver), but the evaluation of f at each timestep is assumed still to be cheap

3

Algorithm 1 General explicit k-step multiple time-stepping (EMTS(k,p)) method
Initialise: n = 0, t = t0, un = u0
if k ≥ 2 then

Compute k starting values u0, . . . ,uk−1 (cf. Ch. 5.2)
Evaluate g0 = g(t0,u0), . . . , gk−1 = g(tk−1,uk−1)
Set n = n + k − 1, t = t + (k − 1)h, un = uk−1

end if
while (t < endTime) do

Employ ODE solver of choice to solve (7) approximately and compute un+1 ≈ v(h)
Evaluate gn+1 = g(tn+1,un+1)
Set n = n + 1, t = t + h

end while
Output: Approximations ui ≈ u(ti) with ti = t0 + ih and i = 1, . . . , n

in comparison to the evaluation of g(t,u). Differently put, we can employ any ODE solver to
integrate our stiff components from time tn to tn+1. Then, once the inner integration is finished,
we evaluate the expensive (but non-stiff) function gn+1 to proceed with the outer integration.

The size of the inner timestep will depend on the scheme used for the inner integration and
there are two basic options: either solve the stiff equation with an explicit scheme using smaller
step sizes (this might be suitable if the ”g-part” constitutes the bottleneck) or using an efficient
implicit method for the stiff equation (this might be interesting, if the structure of the problems
allows to solve the nonlinear equations efficiently). In this work we will mainly focus on the first
option.

For a method which is of order p, we call this algorithm a k-step explicit multiple time-
stepping method

(
EMTS(k,p)

)
and summarize the procedure in Alg. 1. For a practical imple-

mentation, clearly some parts are still missing. Most importantly, we have not yet discussed how
to obtain the coefficients bi, j such that we obtain a certain order p. We will return to this point in
Section 3.

2.2. General predictor-corrector multiple time-stepping methods
For f = 0, the explicit multiple time-stepping method (7) reduces to the classical multistep

method of Adams type. As a consequence, we have to expect that the timestep h of the macro-
step will at least be limited by the same stability criterion as the classical multistep method of
Adams type. Unfortunately, for increasing order p, those methods experience dramatic timestep
restrictions [1, 2]. For classical multistep methods, it is therefore often more efficient to employ
predictor-corrector schemes which allow significantly larger timesteps.

Now, we will show how to extend our explicit multiple time-stepping method to a predictor-
corrector multiple time-stepping scheme (PCMTS) to profit from the larger stability contour for
the macro-step. To keep the discussion brief, we focus on a particular kind of PCMTS schemes,
namely a sequence of prediction, evaluation, correction and evaluation (PECE).

Prediction. Compute a polynomial pn of the form (6). Solve the ODE (7) by a suitable ODE
solver to obtain ûn+1 ≈ vn(h) as an initial approximation of u(tn+1).

Evaluation. Compute

ĝn+1 ≈ g(tn+1, ûn+1). (8)

4

Correction. Construct a polynomial

p̂n(tn + θh) =

k∑
i=1

ĝn−k+1+i

p−1∑
j=0

b̂i, j
θ j

j!
, where ĝ j = g j, j ≤ n, (9)

as a new local polynomial approximation of g
(
tn + θh,u(tn + θh)

)
. Solve the initial value problem

d
dτ

v̂n(τ) = f(τ, v̂n(τ)) + p̂n(tn + τ), τ ∈ [0, h], vn(0) = un. (10)

by a suitable ODE solver to obtain the approximation un+1 ≈ v(h) ≈ u(tn+1).

Evaluation. Finally, evaluate

gn+1 = g(tn+1,un+1). (11)

The PCMTS algorithm is briefly summarized in Alg. 2.

Algorithm 2 General k-step predictor-corrector multiple time-stepping (PCMTS(k,p)) method

Initialise: n = 0, t = t0, un = u0

if k ≥ 2 then
Compute k starting values u0, . . . ,uk−1 (cf. Section 5.2)
Evaluate g0 = g(t0,u0), . . . , gk−1 = g(tk−1,uk−1)
Set n = n + k − 1, t = t + (k − 1)h, un = uk−1

end if
while (t < endTime) do

Solve the predictor equation (7) by a suitable ODE solver to compute ûn+1 ≈ vn(h)
Evaluate ĝn+1 = g(tn+1, ûn+1)
Solve the corrector equation (10) by a suitable ODE solver to compute un+1 ≈ v̂n(h)
Evaluate gn+1 = g(tn+1,un+1)
Set n = n + 1, t = t + h

end while
Output: Approximations ui ≈ u(ti) with ti = t0 + ih and i = 1, . . . , n

Remark 1. For f = 0, the EMTS(k,p) and the PCMTS(k,p) methods reduce to the classical
explicit Adams methods and the classical predictor-corrector methods, if the polynomials pn and
p̂n are chosen as the local interpolation polynomials. Then, the systems of ODEs (7) and (10)
can be integrated exactly and yield the approximations

ûn+1 = un + h
k−1∑
i=0

βi gn−k+1+i, un+1 = un + h
k∑

i=1

β̂i ĝn−k+1+i (12)

with coefficients

βi =

p−1∑
j=0

bi, j

(j + 1)!
and β̂i =

p−1∑
j=0

b̂i, j

(j + 1)!
. (13)

5

Remark 2. Note that the choice of a PCMTS(k,p) scheme with an equal number of steps k
for both the predictor and the corrector was made to keep the discussion compact. The above
procedure can be easily generalized to any predictor-corrector method such as to P(EC)m or
P(EC)mE modes, see [2].

Remark 3. For certain choices of the inner integrator, our schemes reduce to previously known
methods. In particular, when combining EMTS(k,k) with an explicit Adams type integrator for
the inner time-stepping, we recover the LTS-AB schemes discussed in [16]. For the choice of an
implicit multistep method as an inner integrator, we obtain a number of well known multistep
IMEX schemes. For example, using p = k = 2 and the Crank-Nicolson scheme as an inner
integrator, we recover the “Crank-Nicolson Adams-Bashforth” (CNAB) method, see [9] and
references therein.

Remark 4. Since the choice of the ODE solver used to solve (7) and (10) is arbitrary, one can
employ our method recursively by using either an EMTS(k,p) or a PCMTS(k,p)-scheme for the
inner integration.

3. Order conditions

With both, the EMTS(k,p) and the PCMTS(k,p) methods at hand, we now discuss how to find
suitable coefficients bi, j and b̂i, j. As in the case of classical multistep methods, a certain order
p will lead to a set of linear equations for the coefficients bi, j and b̂i, j. To find those conditions,
we return to the semilinear case analyzed in [19]. The complete error analysis for nonlinear
problems of type (1) is a topic of future work.

Similarly to the order conditions of the exponential quadrature methods [22], it is possible
to compute order conditions for general exponential multistep methods. We can conclude from
the results in [22] and [23] that Theorem 5 holds for the order conditions of a general explicit
multiple time-stepping method.

Theorem 5. Let u be the solution of (2) and assume that the function z(t) := g(t,u(t)) is suffi-
ciently smooth. Then, a general explicit multiple time-stepping method is consistent of order p,
if the order conditions

δl, j =

k−1∑
i=0

bi, j(i + 1 − k)l

l!
with j = 0, . . . , p − 1 and δl, j =

1, l = j
0, l , j

(14)

are fulfilled for l = 0, . . . , p − 1.

Proof By definition of consistency order we have to show that u(tk)−uk = O(hp+1) if the numer-
ical approximation uk is computed from exact starting values

u j = u(t j), j = 0, . . . , k − 1.

By using the definition of the ϕ-functions

ϕ j(z) :=

1∫
0

e(1−θ)z θ j−1

(j − 1)!
dθ with ϕ j(0) =

1
j!

and j ∈ N,

6

we obtain the Taylor expansion of the exact solution (3) as

u(tk) = e−hAu(tk−1) + h
p−1∑
l=0

1∫
0

e−(1−θ)hAz(l)(tk−1)
(θh)l

l!
dθ + O(hp+1)

= e−hAu(tk−1) +

p−1∑
l=0

hl+1ϕl+1(−hA)z(l)(tk−1) + O(hp+1).

(15)

For the numerical solution (4) we have

uk = e−hAuk−1 + h
k−1∑
i=0

p−1∑
j=0

bi, jϕ j+1(−hA)z(ti) dθ. (16)

This yields

u(tk) − uk =

p−1∑
l=0

hl+1

ϕl+1(−hA) −
k−1∑
i=0

p−1∑
j=0

bi, j(i + 1 − k)l

l!
ϕ j+1(−hA)

 z(l)(tk−1) + O(hp+1). (17)

The order conditions now follow from the ϕ-functions being linearly independent.
Note that the constants in the O-terms above depend on bounds of the derivatives of z only

but not on ‖A‖.
If the assumptions of this theorem are satisfied, the method converges of order p. This can

be shown exactly as in the proof of [19, Theorem 4.3] for exponential Adams methods.
�

Remark 6. Note that for A = 0, exponential multistep methods reduce to classical multistep
methods. Obviously, the order conditions then reduce to the classical order conditions so that
both schemes are of the same classical (non-stiff) order.

For explicit exponential multistep methods, the order conditions can be written in compact
form as

VB = Ip, (18)

where Ip denotes the p × p identity matrix and

B =


b0,0 . . . b0,p−1
...

...
...

bk−1,0 . . . bk−1,p−1

 and V =
(
Vl,i

)
, Vl,i =

(i − k)l

(l − 1)!
. (19)

For k = p, the Vandermonde matrix V is invertible so that the coefficients of B are uniquely
determined. In the case of k > p, we will show below how the p(k − p) free parameters can be
used to optimize the stability region of the method.

4. Tailoring the Stability Contours

As discussed above, in the absence of stiffness (f = 0) our MTS methods reduce to the
corresponding classical multistep methods. Thus, the timestep of our outer integration is at least

7

limited by the same stability criteria as the classical methods. If we manage to increase the
stability domain of the underlying multistep method, we can expect to also increase the stability
of the resulting MTS scheme.

In [24], the authors increased the stability domain of a PE(CE)m scheme by increasing the
number of correction steps m. Here, we instead increase the number of steps k while maintaining
a given order p. Following a similar optimization procedure as recently employed to low-storage
Runge-Kutta methods [25] allows us to increase the stability domains of multistep methods sig-
nificantly. In the classical case, we have p− k free parameters which can be used to optimize the
stability contour. It is important to note, that in our case an increase of k implies an increased
memory consumption because all k previous steps need to be stored. Therefore, in the following
we will limit the increase to k ≤ 10.

4.1. Stability condition of classical multistep methods of Adams type

For a classical Adams type scheme

un+1 = un + h
k−1∑
i=0

βi gn−k+1+i, (20)

a linear stability analysis [6, Section V.1] yields the difference equation

wk −

k−1∑
i=0

(
δi,k−1 + zβi

)
wi = 0. (21)

Here, we have z = hλ and δi, j denotes the usual Kronecker delta. Now, an Adams type scheme is
linearly stable if and only if for each eigenvalue λ of the Jacobian J = ∂g/∂u the roots wi of (21)
fulfill the following condition:

|wi| ≤ 1, if wi is a single root,
|wi| < 1, if wi is a multiple root.

(22)

4.2. Stability condition of the classical PECE method

For the classical PECE method (12) with a k-step predictor and a k-step corrector a similar
stability analysis [2] yields the difference equation

(
wk − wk−1

) (
1 − ẑβk

)
− z

 k∑
i=1

β̂iwi

 − z2

̂βk

k−1∑
i=0

βiwi

 = 0. (23)

As for the classical Adams type schemes, a classical PECE scheme is linearly stable if and
only if for each eigenvalue λ of the Jacobian J = ∂g/∂u the roots wi of (23) fulfill the condition
(22).

8

4.3. Optimization of the classical stability contours

Following the ideas of [25] we now aim to optimize the classical coefficients βi (and in case
of a PECE scheme also β̂i) such that the stability domain is maximized. To keep the discussion
brief, we only describe the procedure for the Adams type scheme, the optimization of a PECE
method is performed analogously.

To start, we choose a target domain Λ
opt
target which resembles the shape of the convex hull of

the spectrum of A or of the field of values of A. We discretize the boundary of Λ
opt
target with a finite

number of points. Next, we fix the desired order p of the multistep method and pick a number
of steps k > p. Our aim is to determine the coefficients bi, j such that the stability region of the
corresponding multistep method contains the target domain.

This can be stated as the following optimization problem:

Problem 1. Given k, p < k, and Λ
opt
target ⊂ C,

maximize
β1...βk

h

subject to βi fulfill the order conditions to order p,

condition (22) holds for all λ ∈ Λ
opt
target

For the actual optimization, we use the Controlled Random Search with local mutation
(CRS2) method [26] as implemented in the library NLopt [27]. This method is a derivative-
free global optimization technique which was used for similar optimizations in [25]. Typically,
for less than 10 free parameters, a good solution is found within minutes on a standard desktop
computer.

4.4. An Example for Damped Wave Equations

Following the work in [25], as our target spectrum we pick a shifted circular shape given by

Λcircle = {λ ∈ C |Re [λ] ≤ 0 ∧ |λ + λ0| < 1 } . (24)

with shift λ0 = cos
(
sin−1

(
1
2

))
. This target region resembles the spectra of linear hyperbolic

partial differential equations when discretized via a discontinuous Galerkin approach using an
upwind flux [28].

For the optimization we select 50 equidistant points on the contour of Λcircle. We then run a set
of optimizations for different orders p ∈ {3, 4}, for various numbers of steps k ∈ {p + 1, . . . , 10}
and for both, a classical Adams type and a PECE scheme. It should be noted that the PECE
method requires two evaluations of the function g while the Adams type scheme only needs one.
If we assume that those evaluations dominate the computational cost, it makes sense to introduce
an effective timestep heff = h/neval which is normalized by the number of function evaluations.
In Figure 1, we show the largest stable effective timestep found for the classical Adams (dashed
lines) and a PECE method (solid lines) as a function of the number of steps k. Here, the first
point of each line where k = p corresponds to the largest stable timestep of the classical scheme.

As expected, we observe that for the same number of steps k, the PECE schemes allow signif-
icantly larger effective timesteps. Therefore, in the following we will concentrate on predictor-
corrector methods. As can be seen in Figure 1, by increasing k from k = 3 to k = 6, we obtain
roughly a 40% increase in the largest stable heff for the third-order PECE method. Increasing

9

2 4 6 8 10
0

0.2

0.4

0.6

0.8

Number of steps k

L
ar

ge
st

eff
ec

tiv
e

tim
es

te
p

h e
ff

Adams, p=3
Adams, p=4
PECE, p=3
PECE, p=4

Figure 1: Largest stable effective timestep heff found for classical Adams and PECE methods of orders p = 3, 4.

k further does not lead to an additional increase of heff . In the case of p = 4, we find a 65%
increase when using k = 8 instead of the classical method with k = 4. The relative stability
contours of the optimized methods are shown in Figure 2(a) and Figure 2(b) for p = 3 and p = 4,
respectively.

−2 −1.5 −1 −0.5 0
−1

−0.5

0

0.5

1

Re(z)/neval

Im
(z

)/
n e

va
l

(a) 3rd order

−2 −1.5 −1 −0.5 0
−1

−0.5

0

0.5

1

Re(z)/neval

Im
(z

)/
n e

va
l

(b) 4th order

Figure 2: Optimized PECE stability contours for k = 8 (blue) in comparison with the standard (k = p) PECE methods
(red). The stability region of the classical Adams method is sketched in gray.

Again, the contours in Figure 2(a) and Figure 2(b) were normalized by the number of function
evaluations neval per step to allow a fair comparison between the Adams type and the predictor-
corrector schemes.

5. Details of the Implementation

5.1. Generation of Optimized MTS Coefficients
In order to generate MTS schemes, which have optimized stability contours for the outer

integration, we now combine the order conditions (18) with the optimized classical schemes
10

discussed in Section 4. In particular, we use the optimized β-values from the classical Adams
type schemes as an additional constraint to the free parameters in the matrix B.

If k > p we introduce n = k − p and split the matrix equation (18) as

(
V

p×n
left V

p×p
right

)  Bn×p
top

B
p×p
bottom

 = Ip (25)

and solve for Bbottom to find

Bbottom = V−1
right

(
Ip −VleftBtop

)
. (26)

Thus, for a given n× p-matrix Btop, we can easily compute Bbottom and thus obtain the full matrix
B of MTS coefficients. From comparison with the classical order conditions (13), we know that

Bv = [β0, . . . , βp−1]T with v j =
1

(j + 1)!
, j = 0, . . . , p − 1

describes the relation to the classical coefficient βi. Thus, to incorporate an optimized set of
optimized β(opt)-coefficients, we can simply use

(
β

(opt)
0 , . . . , β

(opt)
p−1

)T
as the first column of Btop and

set the remaining entries to zero. Inserting this into (26) then yields Bbottom and the total matrix
B takes the form

B =

β
(opt)
0
...

β
(opt)
p−1

0

Bbottom

.

For a predictor-corrector scheme, the two matrices B and B̂ are constructed independently from
the corresponding coefficients β(opt) and β̂(opt). The coefficient matrices of the PCMTS(6,3) and
PCMTS(8,4) schemes optimized for the damped wave equation are given in the appendix as
(A.1) and (A.2), respectively.

5.2. Computation of starting values

Since our MTS schemes are based on multistep methods, we are facing the problem of ini-
tializing the vectors g0, . . . , gk−1 for the first step. Possibly the simplest solution is to employ a
self-starting method, e.g., a Runge-Kutta scheme, with a sufficiently small timestep to initialize
the starting values. Indeed, this procedure is commonly used in practical implementations be-
cause of its simplicity. However, it is not trivial to properly select the timestep of the self-starting
method to guarantee the required accuracy of the starting values. Therefore, we also present the
alternative initialization from [22] which is based on a construction by Calvo and Palencia in
[29].

11

For the semilinear system (2), we again start from the variation of constants formula

u(tm) = e−mhAu(t0) + h

m∫
0

e−(m−θ)hAg
(
t0 + θh,u(t0 + θh)

)
dθ with m = 1, . . . , k − 1,

and replace the nonlinear function g by a local interpolation polynomial p0 through the points
(t0, g(t0,u0)), . . . , (tk−1, g(tk−1,uk−1)). This leads to a system of coupled equations

u(tm) = e−mhAu(t0) + h

m∫
0

e−(m−θ)hAp0(t0 + θh)dθ for m = 1, . . . , k − 1. (27)

for the unknown vectors um ≈ u(tm) with m = 1, . . . , k − 1. The Lipschitz condition on g and the
boundedness of the matrix exponential implies that the right-hand side of (27) is a contraction for
sufficiently small stepsizes h. Thus, one can use a simple fixpoint iteration to solve the system.
As an initial guess, we use p0 = u0, which corresponds to the application of the exponential
Euler method.

To generalize this procedure to nonlinear ODEs, we follow a similar approach as in Section 2.
We consider a system of auxiliary ODEs

d
dτ

v0(τ) = f(τ, v0(τ)) + p0(t0 + τ), τ ∈ [0, (k − 1)h], v0(0) = u0, (28)

where we again replace the function g corresponding to a non-stiff ODE by the local interpola-
tion polynomial p0 through the points (t0, g0), . . . , (tk−1, gk−1). The starting values um = u(tm),
m = 1, . . . , k − 1 are then found by repeatedly solving (28) with an arbitrary self-starting ODE
solver. As in the semilinear case, we start with p0 = u0 and compute the approximate solu-
tions um ≈ v0(mh). From those values, we construct a new polynomial p0 through the points
(t0, g0), . . . , (tk−1, gk−1) and again solve (28). This procedure is repeated until convergence. Our
initialization routine is summarized in Algorithm 3.

Algorithm 3 Computation of the starting values via MTS

Input: t0, u0, h, tol, k

Set p0 = u0

Employ self-starting ODE solver of choice to solve (28) and compute um ≈ v(mh) for m =

1, . . . , k − 1
while error > tol do

Compute local interpolation polynomial p0 through the points (t j, g j), j = 0, . . . , k − 1
Employ a suitable ODE solver to solve (28) and update um ≈ v(mh) for m = 1, . . . , k − 1

end while

Output: Starting values u1, . . . ,uk−1.

In contrast to the direct computation with a self-starting method, we can use the maximum
of the relative change of the vectors um, m = 1, . . . , k − 1 as an error indicator. By repeating this
procedure until the error is below a specified tolerance for each um, we can ensure the accuracy of
the starting values. In practice we used tol = max{10−10, 10hp} for the maximum of the relative
change of u1,u2, . . . ,uk−1 as a stopping criterion for a method or order p.

12

Remark 7. In case of using a multistep procedure for the micro-step, we also require starting
values for the inner integrator. However, these values can be readily computed by the ODE
solver during the final iteration of the algorithm. We simply need to enforce the computation of
the approximations at the required points.

6. Numerical Verification

6.1. Verification of the Order
In a first experiment, we consider the nonlinear system of ODEs

d
dt

u(t) =
1
u
− v

exp(t2)
t2 − t, (29a)

d
dt

v(t) =
1
v
− exp(t2) − 2t exp(−t2). (29b)

which was also used for a similar purpose in [25, 30]. The analytic solution of this system of
equations for t ≥ 1 and for initial conditions u(1) = 1, v(1) = exp(−1) is given by

u(t) =
1
t
, v(t) = exp(−t2). (30)

In all the following calculations, we numerically integrate (29) from t0 = 1 to tend = 1.4 for
various step sizes h. To study the error of the time-integration, we define the total error after the
simulation as

E = |ũ(tend) − u(tend)| + |ṽ(tend) − v(tend)| , (31)

where ũ and ṽ refer to the numerical results while u and v represent the analytic solutions (30).
To test our MTS schemes, we employ two different splittings of (29):

f1 =

(
1
u
,

1
v

)T

, g1 =

(
−v

exp(t2)
t2 − t,− exp(t2) − 2t exp(−t2)

)T

, (32a)

f2 =

(
1
u
− v

exp(t2)
t2 − t, 0

)T

, g2 =

(
0,

1
v
− exp(t2) − 2t exp(−t2)

)T

. (32b)

It should be noted that for either splitting, f contains nonlinear terms. For the inner integrator we
use an embedded Runge-Kutta(4,5) pair as implemented in the routine ode45 of MATLAB.

The error E as a function of the stepsize h is depicted in Figure 3(a) and Figure 3(b) for
splitting (32a) and splitting (32b), respectively. In all cases, we observe the reduction of the
error with the expected order. This indicates that our schemes maintain their order also for fully
nonlinear problems.

6.2. Finite-Difference Discretization of the 1D Heat Equation
In this second example, we consider the one-dimensional heat equation

∂

∂t
u(x, t) = ∆u(x, t), u(x, t0) = u0(x) = sin

(xπ
6

)
over the domain Ω = [0, 6] with homogeneous Dirichlet boundary conditions and the time inter-
val T = [0,T] with T = 10. Furthermore, the domain Ω is locally refined as shown in Figure 4.

13

10−4 10−3 10−2 10−1

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

1

4

3

1

Stepsize h

To
ta

lE
rr

or
E

EMTS(3,3)
EMTS(4,4)
PCMTS(3,6)
PCMTS(4,8)

(a) Splitting (32a)

10−4 10−3 10−2 10−1

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

1

4

3

1

Stepsize h

To
ta

lE
rr

or
E

EMTS(3,3)
EMTS(4,4)
PCMTS(3,6)
PCMTS(4,8)

(b) Splitting (32b)

Figure 3: Total error E as a function of the outer timestep h for problem (30)

0 3 6

xh xv
h = xh/ν

Figure 4: Locally refined domain Ω = [0, 6], where ν denotes the refinement factor of the element size.

The spatial discretization via finite differences leads to the following semi-discrete problem

d
dt

u(t) = Au(t), u(t0) = u0 = sin
(xπ

6

)
(33)

with a band-diagonal matrix A. The exact solution of (33) can be written as

u(t) = etAu0. (34)

The Laplace operator ∆ and also its discretization A are symmetric negative semidefinite. There-
fore, the spectra of the considered heat equation are real and contained in the interval (−∞, 0].
Due to this fact, it is not ideal to use a method with a circular stability contour as discussed in
Section 4.4. To demonstrate the flexibility of our approach, we instead construct methods with
a rectangular target spectrum of [−6, 0] × [−0.05, 0.05]. In particular, we generate optimized
EMTS(8,4) and PCMTS(8,4) scheme with coefficients given in Appendix A by (A.3) and (A.4).

As a reference solution, we compute the matrix exponential (34) via diagonalization of the
matrix and measure the error in the maximum norm, i.e., we consider the error of the time
integration scheme only. In Fig. 5, we plot this error for EMTS(8,4) (blue) and for PCMTS(8,4)
(red) as a function of the timestep h. From the slope of the error plot, we clearly observe that our
methods are of order four. In both schemes we used the classical Runge-Kutta method of order
four as the inner integrator with stepsize τ = h/(2ν2). For comparison, we also performed the
classical Runge–Kutta method. Due to the CFL condition, it is stable only for the smallest four
stepsizes used in Fig. 5 and then achieves an accuracy of about 10−14. We omitted these results
in the figure for the purpose of readability.

For the analysis of the stability properties, we computed the largest stable stepsize hmax of
these methods via bisection for this particular problem. For comparison, we also computed hmax

14

10−3 10−2 10−1
10−14

10−12

10−10

10−8

10−6

10−4

1

4

Stepsize h

E
rr

or

EMTS(8,4)
PCMTS(8,4)

Figure 5: The logarithmic order plot shows that EMTS(8,4) and PCMTS(8,4) are of order 4. Here, the refinement factor
was chosen as ν = 4.

of the classical and exponential Adams methods of order 4 and the classical and exponential
predictor-corrector methods of order 4 with 4 steps. The exponential versions of the correspond-
ing classical methods can be constructed as described in [19]. Alternatively, the exponential
schemes can also be considered as MTS schemes with an exact inner integrator. The results are
shown in Figure 6.

1 2 4 8

10−4

10−3

10−2

10−1

Refinement factor ν

L
ar

ge
st

st
ab

le
st

ep
si

ze
h m

ax

classical Adams
exponential Adams

EMTS(8,4)
classical PECE44

exponential PECE44
PCMTS(8,4)

Figure 6: Largest stable stepsizes of the classical, exponential and the new MTS multistep methods as a function of the
refinement factor ν = 1, 2, 4, 8.

As expected, for the classical methods we observe a quadratic reduction of hmax with in-
creasing refinement ν. In contrast, the exponential and the optimized MTS schemes maintain a
fixed hmax independently of ν. However, due to the much larger stability contours, the EMTS(8,4)
scheme is almost a factor 6 faster than the exponential Adams method of the same order. Further-
more, the PCMTS(8,4) scheme is approximately a factor 2.5 more efficient than its Adams-type
counterparts. As a consequence, our PCMTS scheme clearly shows the best performance. For
the heat equation with a moderate refinement of ν = 4, our scheme allows timesteps which are
about two orders of magnitude larger than those of classical schemes.

15

6.3. Discontinuous Galerkin Discretization of Maxwell’s Equations
For a more realistic application, we next consider the numerical solution of the three-dimensional

Maxwell equations via a nodal discontinuous Galerkin time-domain (DGTD) method [31, 32,
33]. In this method, Maxwell’s equations are first discretized in space to obtain a large, semi-
discrete system of ODEs

dEk

dt
=

1
εk

[
Dk ×Hk + (Mk)−1F k [

(∆E − n̂(n̂ · ∆E)) + Z+n̂ × ∆H
]
/Z

]
, (35a)

dHk

dt
=

1
µk

[
−Dk × Ek + (Mk)−1F k [

(∆H − n̂(n̂ · ∆H)) − Y+n̂ × ∆E
]
/Y

]
. (35b)

The discontinuous Galerkin approach allows a discretization of arbitrary spatial order pDG. In
the nodal formulation on a tetrahedral grid, the vectors Ek and Hk together contain a total of
Nk = (pDG + 1)(pDG + 2)(pDG + 3) unknown electric and magnetic field values that are associated
with the tetrahedral element k. Furthermore, ∆E and ∆H signify the field discontinuities, i.e., the
jumps across each element’s interface, and n̂ denotes the normal vector of those interfaces. The
definition of the matrices Dk,Mk and F k, as well as details on the material parameters Y and Z
can be found in [34].

To test the performance of our PCMTS algorithm, we consider the time-evolution of an
eigenmode in an empty cubic cavity (see [35, Chapter 8.3]) of edge length a = b = c = 2 with
perfect electric conductor (PEC) boundary conditions. The fields are initialized by the second
eigenmode (n = 2) and each simulation runs for 25 oscillation periods (Tend = 25 2

√
3
≈ 28.87).

The mesh consists of 320 tetrahedra and is depicted in Figure 7(a). Then, in order to introduce
grid-induced stiffness, we shift the center point of the mesh along the x-axis without changing the
connectivity of the mesh. As a consequence, we compress four tetrahedra. Following [32, 33], we

(a) The mesh (b) The 8 inner tetrahedra

Figure 7: The basic mesh used for testing different time-integration methods. To change the stiffness of the system, the
center node of the mesh is shifted along the x-axis, resulting in four compressed tetrahedra.

use the radius of the smallest insphere as a geometric measure for the mesh-dependent part of the
16

Courant-Friedrichs-Lewy (CFL) criterion. Therefore, we expect that the largest stable timestep
hmax scales linearly with the radius of the smallest insphere in our mesh. For the following
numerical experiments, we use six different meshes, where the inradius of the four compressed
tetrahedra is successively reduced by the refinement factor ν = 2n for n = 0 . . . 5.

For comparison, we first run the simulations with the optimized 4th-order 14-stage low-
storage Runge-Kutta integrator LSRK(14,4) proposed in [25]. The maximum stable effective
step sizes heff are plotted over ν for different degrees pDG as dashed lines in Figure 8(a). Indeed
it shows the expected linear behavior for ν > 1.

1 2 4 8 16 32

10−3

10−2

Refinement factor ν

L
ar

ge
st

st
ab

le
h e

ff

pDG = 3
pDG = 4
pDG = 5
pDG = 6

(a) Largest stable timestep

0.003 0.01 0.02
10−4

10−3

10−2

10−1

100

Effective timestep heff

E
m

ax

(b) Convergence

Figure 8: A comparison of the LSRK(14,4)-scheme (black, dashed lines) and the optimized PCMTS(8,4) method (red,
solid lines). In (a) we depict the largest stable timestep for various spatial discretization orders as a function of the
element size ratio. In (b) we plot the error Emax as a function of the effective timestep for ν = 1. The legend is the same
as in (a) and the spatial order pDG = 5 was omitted to improve readability.

For the PCMTS method, we split our total system operator on the element level. This means,
for the inner (stiff) operation f, we employ the right-hand side of (35) for the four small elements
only. The function g simply corresponds to the right-hand side of (35) for the remaining 316
tetrahedra. This splitting was chosen for simplicity, since the action of the right-hand side of
(35) is implemented element-wise in our code (as probably in most production codes). Thus, we
can leave our implementation unchanged and simply call the existing routines with the list of
elements to evaluate. For the actual time-integration we employ the PCMTS(8,4) method with
coefficients (A.2), where the inner integration is performed by the LSRK(14,4) scheme.

As shown in Figure 8(a), without stiffness (ν = 1) we observe almost the same largest stable
heff for LSRK(14,4) and PCMTS(8,4). This shows that our multistep method has roughly the
same effective stability contour as the LSRK(14,4) scheme. However, for increasing stiffness,
the outer stepsize of the PCMTS(8,4) scheme remains constant.

To facilitate a fair comparison, it is important to also investigate the accuracy of the LSRK(14,4)
and the PCMTS(8,4) schemes. To do so, we define Emax as the maximum deviation of the elec-
trical field components from the analytical solution over all points and all timesteps. In Fig. 8(b),
we plot Emax as a function of the effective timestep heff for ν = 1. We find that for order pDG = 3
the error is almost entirely dominated by the spatial discretization. For pDG = 4, we start to
find a small region where we can observe the expected fourth-order convergence of both time
integration schemes until the error is again dominated by the spatial discretization. Only for

17

higher spatial orders, we observe significant error contributions from the time integration. While
the error is slightly larger for the PCMTS(8,4) scheme in comparison the the LSRK(14,4), the
difference can be easily compensated by a very small reduction in h.

For practical applications, it is also interesting to consider the actual CPU time required for
a computation. It is important to note that such numbers are strongly dependent on the actual
implementation and on the computer the code was executed on. In our case, we put significant
effort into the optimization of both, the classical and the multistep formulation. As shown in
Figure 9(a), the difference in computational time depends on both, the spatial order pDG and
the refinement factor ν. We find that for higher spatial discretization orders pDG, the advantage
of our MTS approach becomes more apparent. This is to be expected since the computational
effort of the calculations per element grows as N2

k , while the total time spent on the interpolation
(evaluation of the polynomial) only grows linearly with Nk. Thus, the overhead of the interpola-
tion becomes less important for higher degrees pDG. However, even for lower spatial order such
as pDG = 3, the PCMTS algorithm outperforms an optimized low-storage Runge-Kutta scheme
once the refinement factor is above ν = 4.

Finally, to demonstrate long-time stability, we ran additional calculations where we initialize
all field components of the cavity with uniformly distributed random numbers from the interval
[−1, 1]. For all combinations of ν, k and pDG used above, we then perform the simulations
with the previously determined largest stable timestep until Tend = 106 in our dimensionless
units. This corresponds to between 5 × 106 and 108 timesteps. As expected, all the simulations
remain stable. In Fig. 9(b) we show the spectra from calculations with LSRK(14,4) and with
PCMTS(8,4) for pDG = 4 and ν = 4. As can be seen, all resonances (indicated by the dotted
vertical lines) are accurately reproduced and no spurious resonances can be observed.

1 2 4 8 16 32

101

102

103

Refinement factor ν

C
om

pu
ta

tio
na

lt
im

e
[s

]

pDG = 3
pDG = 4
pDG = 5
pDG = 6

(a) Computational time

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−7

10−6

10−5

10−4

Frequency f

∣ ∣ ∣ Ẽ z(
f)
∣ ∣ ∣

(b) Spectra of randomly initialized cavity

Figure 9: A comparison of the LSRK(14,4)-scheme (black, dashed lines) and the optimized PCMTS(8,4) method (red,
solid lines). In (a) we plot the actual computational time for a corresponding computation. All computations were per-
formed on a single core of an Intel Xeon(R) W3680 processor. In (b) we plot the Fourier transform of the z-component of
the electrical field recorded at position (0.123, 0.213, 0.321) for a cavity initialized with random values. Both calculations
were performed for pDG = 4 and ν = 4. The dotted vertical lines indicate the analytical resonance frequencies of the
cavity.

18

6.4. A realistic, inhomogeneous problem

Finally, we consider a realistic calculation from the field of plasmonics. We again solve the
linear Maxwell equations, discretized by a nodal discontinuous Galerkin approach based on an
upwind flux as in the previous section. However, in this calculation we study a dimer of two
gold nano-spheres of radius r = 80nm with a very narrow gap of g = 1nm between them. The
dispersion of gold is included in the simulation via a Drude-Lorentz model

ε(ω) = ε∞ −
ω2

D

ω(ω − iγD)
+

∆εω2
L

ω2 − ω2
L + iωγL

with parameters ε∞ = 6.21, ωD = 8.79eV, γD = 0.069eV, ∆ε = 1.0, ωL = 2.65eV and γL =

0.38eV. Our system is terminated by basic first-order absorbing boundary conditions as described
in [33]. The dimer is excited by a plane wave with the electric field polarized along the dimer
axis. The wave is injected via a total-field/scattered-field (TF/SF) contour and its temporal profile
is given by a broad-band Gaussian pulse with a wavelength spectrum ranging from 400nm to
1200nm.

The intrinsic symmetries of this system allow to introduce two mirror planes to reduce the
size of the computational domain by a factor four [36]. The actual mesh used for the computa-
tions is shown in Figure 10(a). The same structure was used in [36] for the comparison of several
frequency-domain Maxwell solvers and can be considered as a challenging but typical plasmonic
system.

(a)

1 10 100

100%

10%

1%

0.1%

0.01%

Size relative to smallest element

Pe
rc

en
ta

ge
of

el
em

en
ts

sm
al

le
r

(b)

Figure 10: (a) The mesh used for the plasmonic dimer. Red elements indicate the metallic particle, green elements belong
to the total-field region and blue elements indicate the scattered-field region. (b) Cumulative distribution of the element
size relative to the smallest element. The y-axis shows the number of elements in percent of the total number. The dashed
vertical line indicates the splitting between the small and the large elements.

The critical issue with this structure is the very narrow gap between the sphere and the mirror
wall. Here, the mesh generator has to introduce a few, very small elements. This leads to strong
grid-induced stiffness which leads to very small timesteps for explicit time-domain solvers. In
Figure 10(b) we plot the cumulative size distribution of the insphere radii of all tetrahedra in our
mesh. In this double-logarithmic plot we observe a steep increase of the element count around
a factor of 15. Thus, we decide to split the system at this point. To be precise, we consider the

19

smallest 58 elements as stiff and treat the remaining 4164 tetrahedra as non-stiff. Our splitting is
indicated by the dashed vertical line in Figure 10(b). It should be noted that the exact splitting is
somewhat arbitrary and it is certainly possible to improve the computational time by using more
advanced methods to find the optimal splitting point.

As in the previous section, we perform computations for different spatial orders pDG and with
different time-stepping schemes. Specifically, we use PCMTS(k,4) schemes with k ∈ {4, 6, 8} and
compare them to the LSRK(14,4) method. We again employ bisection to find the largest stable
effective timestep for each scheme.

To assess the accuracy of the PCMTS schemes we compare the temporal evolution of the
x-component of the electric field at the center of the dimer. The results for pDG = 6 are depicted
in Fig. 11(a). We find that the maximum absolute deviation of all PCMTS(k,4) simulations
to the LSRK(14,4) [25] data is below 10−6 and we therefore consider the error introduced by
the time integration to be negligible. This is not surprising since the timestep for the outer
integration is still small compared to the fastest oscillation period (shortest wavelength) excited
in our simulation. In Figure 11(b), we then depict the actual speedup of our PCMTS(k,4) schemes
with k ∈ {4, 6, 8} over the same calculation with the explicit LSRK(14,4) scheme.

0 2 4 6 8 10

−40

−20

0

20

40

Time

E
x

[a
rb

.u
ni

ts
]

LSRK(14,4)
PCMTS(4,4)
PCMTS(6,4)
PCMTS(8,4)

9.5 9.6 9.7 9.8 9.9 10
−0.2

0

0.2

0.4

(a) Time evolution

3 4 5 6
1.5

2

2.5

3

Spatial order pDG

Sp
ee

du
p

ov
er

L
SR

K
(1

4,
4) PCMTS(4,4)

PCMTS(6,4)
PCMTS(8,4)

(b) Computational speedup

Figure 11: (a) The evolution of the x-component of the electric field in the center between two metallic spheres. Spatial
order was pDG = 6 and the inset shows a zoom for late times (b) The speedup in computational time for the simulation
of a plasmonic dimer with a narrow gap.

In total, we find a speedup factor between two and three over the LSRK(14,4) integrator.
As in the previous section, the gain of the MTS methods increases with the order of the spatial
discretization pDG. Unfortunately, we do not observe the full speedup of up to 15 in this example
because of the computational time required for the evaluation of the polynomials (6) and (9). A
profiling of our code reveals that between 70% and 90% of the computational time in the inner
integrator are spent in the matrix-vector products used to evaluate the polynomials. Since this
operation is strongly memory bound, it is not negligible in comparison to the DG kernel used
to evaluate g. As discussed in the previous section, this effect is reduced when using a more
complex g. Still, a speedup of a factor two to three over a highly optimized simulator and for a
realistic simulation represents a significant gain.

20

7. Summary and Outlook

In summary, we have presented a flexible approach to construct efficient multiple time-
stepping algorithms. More specifically, we have demonstrated how a multistep MTS scheme can
be constructed from two ingredients: 1) Any choice of explicit Adams type or predictor-corrector
scheme for the outer (non-stiff) integration and 2) any choice of ODE solver for the inner (stiff)
integration. Exploiting this decoupling allowed us to construct MTS schemes with optimized
stability contours for both the inner and outer integration. In contrast to many other higher-order
LTS schemes, our methods are easily implemented and do not require any modification of exist-
ing codes besides the splitting into a stiff and a non-stiff function. As an example, we constructed
a number of EMTS and PCMTS schemes which allow significantly larger macro-timesteps when
compared to previously known explicit multistep MTS schemes.

In a series of numerical experiments, we demonstrated that our methods are stable and main-
tain their order for inhomogeneous and nonlinear problems. Furthermore, we showed significant
reductions in computational time for realistic numerical simulations.

As an outlook, we believe that our approach can be further generalized by using more gen-
eral extrapolation schemes. In addition, our methods can also be extended to include an error
estimator which would allow for adaptive timestepping. Furthermore, when considering wave
propagation problems with grid-induced stiffness, it might be sufficient to interpolate only a sub-
set of the unknowns around the small elements. This would reduce the memory requirements and
further increase the performance for those kinds of simulations. However, one then has to take
care that the coupling between both parts is stable (which is trivial for the methods considered
in this paper). Finally, from a theoretical point of view, a rigorous stability analysis of the fully
nonlinear system is certainly a worthwhile topic for future research.

Appendix A. Coefficients for the Optimized Schemes

PCMTS(6,3) with circular stability region:

B =



−0.027438448850 0
0.004205433197 0
−0.005757000197 0
−0.074759827110 0
0.287161166273 −1
0.816588676687 1


, B̃ =



0.0246201522600 0 0
−0.0005352246566 0 0
−0.0546888084000 0 0
−0.0789237494604 −1/2 1
1.2009540614472 0 −2
−0.0914264311902 1/2 1


. (A.1)

PCMTS(8,4) with circular stability region:

B =



0.048992366370 0 0
−0.011407158170 0 0
−0.027817310550 0 0
0.006136109166 0 0
−0.023738957620 0 0
−0.545158997856 1/2 1
1.001573369088 −2 −2
0.551420579572 3/2 1


, B̃ =



−0.02689484047 0 0 0
0.02714562621 0 0 0
0.04728737387 0 0 0
0.01190410100 0 0 0
−0.12208325045 1/6 0 −1
−0.02044133663 −1 1 3
1.14846927729 1/2 −2 −3
−0.06538695082 1/3 1 1


. (A.2)

21

EMTS(8,4) with rectangular stability region:

B =



−0.092436748185 0 0 0
−0.034882222033 0 0 0
0.271029601208 0 0 0
0.284302074046 0 0 0
0.085426318875 −1/3 −1 −1
−2.207982370599 3/2 4 3
2.523680051842 −3 −5 −3
0.170863294846 11/6 2 1


. (A.3)

PCMTS(8,4) with rectangular stability region:

B =



0.119290989092 0 0
−0.070763889414 0 0
0.000508218466 0 0
−0.082227604557 0 0
−0.164764495336 0 0
−0.461075501035 1/2 1
1.332360226815 −2 −2
0.326672055969 3/2 1


, B̃ =



−0.12885251374 0 0 0
0.15957818116 0 0 0
0.22581846012 0 0 0
−0.13209979425 0 0 0
−0.41151106644 1/6 0 −1
0.08117743480 −1 1 3
1.41598371535 1/2 −2 −3
−0.21009441700 1/3 1 1


. (A.4)

References

[1] E. Hairer, S. P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems, 2nd Edition,
Vol. 8 of Springer Series in Computational Mathematics, Springer, Berlin, Heidelberg, 1993.

[2] J. C. Butcher, Numerical methods for ordinary differential equations, John Wiley & Sons, New York, 2003.
[3] W. Hundsdorfer, J. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations,

Springer Series in Computational Mathematics, Springer, 2007.
[4] A. R. Leach, Molecular Modelling: Principles and Applications, Pearson Education, Prentice Hall, 2001.
[5] M. Günther, U. Feldmann, J. ter Maten, Modelling and discretization of circuit problems, in: W. Schilders, E. ter

Maten (Eds.), Numerical Methods in Electromagnetics, Vol. 13 of Handbook of Numerical Analysis, Elsevier,
2005, pp. 523 – 659.

[6] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems,
Springer Series in Computational Mathematics, Springer, 2004.

[7] J. R. Rice, Split Runge-Kutta method for simultaneous equations, J. Res. Natl. Bur. Standards 64B (3) (1960)
151–170.

[8] C. W. Gear, Multirate methods for ordinary differential equations, Tech. Rep. UIUCDCS-F-74-880, Department of
Computer Sciences, Universityof Illinois (1974). doi:10.2172/4254117.

[9] U. M. Ascher, S. J. Ruuth, B. T. R. Wetton, Implicit-explicit methods for time-dependent partial differential equa-
tions, SIAM J. Numer. Anal. 32 (3) (1995) 797–823.

[10] U. M. Ascher, S. J. Ruuth, R. J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differen-
tial equations, Appl. Numer. Math 25 (1997) 151–167.

[11] M. J. Gander, L. Halpern, Techniques for locally adaptive timestepping developed over the last two decades, in: Do-
main decomposition methods in science and engineering XX, Vol. 91 of Lect. Notes Comput. Sci. Eng., Springer,
Berlin, 2013, pp. 377–385.

[12] S. Piperno, Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation prob-
lems, Research Report RR-5643, INRIA (2005).

[13] M. A. Botchev, J. G. Verwer, Numerical integration of damped Maxwell equations, SIAM J. Sci. Comput. 31 (1)
(2009) 1322–1346.

[14] V. Dolean, H. Fahs, L. Fezoui, S. Lanteri, Locally implicit discontinuous Galerkin method for time domain elec-
tromagnetics, J. Comput. Phys. 229 (2) (2010) 512–526.

22

[15] S. Descombes, S. Lanteri, L. Moya, Locally implicit time integration strategies in a discontinuous Galerkin method
for maxwells equations, J. Sci. Comput. 56 (1) (2013) 190–218.

[16] M. J. Grote, T. Mitkova, High-order explicit local time-stepping methods for damped wave equations, J. Comput.
Appl. Math. 239 (1) (2013) 270 – 289.

[17] L. Angulo, J. Alvarez, F. Teixeira, M. Pantoja, S. Garcia, Causal-path local time-stepping in the discontinuous
galerkin method for maxwells equations, J. Comput. Phys. 256 (2014) 678 – 695.

[18] M. J. Grote, M. Mehlin, T. Mitkova, Runge-Kutta based explicit local time-stepping methods for wave propagation,
Preprint, University of Basel (2014) 28 pages.

[19] M. Hochbruck, A. Ostermann, Exponential multistep methods of Adams-type, BIT 51 (2011) 889–908.
[20] J. Certaine, The solution of ordinary differential equations with large time constants, in: Mathematical Methods for

Digital Computers, Wiley, New York, 1960, pp. 128–132.
[21] S. P. Nørsett, An A-stable modification of the Adams-Bashforth methods, in: Conf. on Numerical Solution of

Differential Equations (Dundee, 1969), Springer, Berlin, 1969, pp. 214–219.
[22] M. Hochbruck, A. Ostermann, Exponential integrators, Acta Numerica 19 (2010) 209–286.
[23] A. Ostermann, M. Thalhammer, W. M. Wright, A class of explicit exponential general linear methods, BIT 46 (2)

(2006) 409–431.
[24] M. Liu, K. Sirenko, H. Bagci, An efficient discontinuous galerkin finite element method for highly accurate solution

of maxwell equations, Antennas and Propagation, IEEE Transactions on 60 (8) (2012) 3992–3998.
[25] J. Niegemann, R. Diehl, K. Busch, Efficient low-storage Runge-Kutta schemes with optimized stability regions, J.

Comput. Phys. 231 (2012) 364–372.
[26] P. Kaelo, M. M. Ali, Some variants of the controlled random search algorithm for global optimization, J. Optim.

Theory Appl. 130 (2) (2006) 253–264.
[27] S. G. Johnson, The NLopt nonlinear-optimization package.

URL http://ab-initio.mit.edu/nlopt

[28] R. Diehl, K. Busch, J. Niegemann, Comparison of low-storage Runge-Kutta schemes for discontinuous Galerkin
time-domain simulations of Maxwell’s equations, J. Comput. Theor. Nanosci. 7 (2010) 1572–1580.

[29] M. P. Calvo, C. Palencia, A class of explicit multistep exponential integrators for semilinear problems, Numer.
Math. 102 (3) (2006) 367–381.

[30] D. Stanescu, W. G. Habashi, 2N-storage low dissipation and dispersion Runge-Kutta schemes for computational
acoustics, J. Comput. Phys. 143 (2) (1998) 674–681.

[31] J. Hesthaven, T. Warburton, Nodal high-order methods on unstructured grids - I. Time-domain solution of
Maxwell’s equations, J. Comput. Phys. 181 (1) (2002) 186–221.

[32] J. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods, Springer, 2007.
[33] K. Busch, M. König, J. Niegemann, Discontinuous Galerkin methods in nanophotonics, Laser Photon. Rev. 5 (6)

(2011) 773–809.
[34] J. Niegemann, M. König, K. Stannigel, K. Busch, Higher-order time-domain methods for the analysis of nano-

photonic systems, Photon. Nanostruct. Fundam. Appl. 7 (1) (2009) 2.
[35] C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons, 1989.
[36] J. Hoffmann, C. Hafner, P. Leidenberger, J. Hesselbarth, S. Burger, Comparison of electromagnetic field solvers for

the 3d analysis of plasmonic nanoantennas, in: Proc. of SPIE, Vol. 7390, 2009, pp. 73900J–1.

23

