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Summary We study a numerical method for second-order differential
equations in which high-frequency oscillations are generated by a linear
part. For example, semilinear wave equations are of this type. The numeri-
cal scheme is based on the requirement that it solves linear problems with
constant inhomogeneity exactly. We prove that the method admits second-
order error bounds which are independent of the product of the step size
with the frequencies. Our analysis also provides new insight into the molli-
fied impulse method of Garcı́a-Archilla, Sanz-Serna, and Skeel. We include
results of numerical experiments with the sine-Gordon equation.
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1 Introduction

In this paper we study a numerical method for the solution of systems of
second-order differential equationsy00 = �Ay + g(y) ; y(0) = y0 ; y0(0) = y00 ; (1)

whereA is a symmetric and positive semi-definite real matrix of arbitrarily
large norm. We are interested in using step sizes that are notrestricted by
the frequencies ofA, neither for stability nor for accuracy.

Garcı́a-Archilla, Sanz-Serna and Skeel [3] recently proposed and ana-
lyzed a method for oscillatory differential equations, which they called the
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mollified impulse method. They obtained error bounds for numerical solu-
tions of (1) which do not deteriorate when the product of the step size with
the frequencies becomes large or, what is potentially worse, is close to mul-
tiples of�. Their method is based on the splittingu00 = �Au, v00 = g(v).

Here we study a method which is instead based on the requirement that
it reduces to anexact solver for linear equations(1) with constant inho-
mogeneityg. Such a method, which is simple to construct, can be traced
back to an old paper of Gautschi [5], cf. also Hersch [6]. Morerecently,
in [8] we found methods of this type numerically promising incombina-
tion with Krylov subspace techniques for approximating theproduct of the
matrix exponential, or related matrix functions, with a vector. Our positive
numerical experience called for a rigorous error analysis of such methods.

The error analysis developed here gives very detailed information about
the structure of the error. The error is of second order uniformly in the fre-
quencies. It turns out to be largely determined by a scalar function of two
variables which accounts for the mixing of frequencies by the numerical
method. As a practical consequence, this can be used for the construction
of a suitable filter function which appears in the scheme. Ourerror and sta-
bility analysis provides also new insight for the mollified impulse method.

The methods considered in this paper require, in every time step, the
computation of the product'(h2A)v of analytic functions' of the matrixA scaled by the square of the step sizeh, with a vector. This is easy if the
eigendecompositionofA is available, most notably in pseudospectral meth-
ods for nonlinear wave equations. Otherwise (or possibly incombination
with a partial eigendecomposition), such matrix-functionvector products
can be computed with Krylov subspace methods [2,7]. A further alterna-
tive, which appears however less favourable in the present context, is to
solve in every time step a linear initial value problem, which is associated
with the matrix function in question, by a standard numerical integrator
with smaller step sizes.

The paper is organized as follows: In Section 2 we present thenumerical
method and some of its variants, and an extension to more general equationsy00 = f(y)+g(y). Section 3 develops the error analysis for Eq. (1), with the
main result stated in Theorem 1. A major technical difficultyin this paper
is to bound the Schur multiplier norm of matrices composed ofvalues of
the error function. Such bounds are derived in Section 4. They depart from
optimality only by logarithmic terms. Section 5 deals with the fixed-step-
size stability of the method for linear problems (1) withg(y) = �By for
positive semi-definiteB. Section 6 gives some suitable filter functions. In
Section 7 we discuss relationships and differences to the mollified impulse
method. Section 8 concludes the paper with numerical experiments on the
sine-Gordon equation.
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For a recent survey article on existing numerical approaches to oscilla-

tory differential equations we refer to [9].

2 The integration scheme

Our starting point is the variation-of-constants formula for the solution of
(1), y(t+ �) = cos �
 � y(t) + 
�1 sin �
 � y0(t) +Z �0 
�1 sin(� � s)
 � g(y(t+ s)) ds : (2)

Here and in the following we write
 = A1=2 :
For an equation (1) withconstantinhomogeneityg, (2) shows thaty(t+ h)� 2y(t) + y(t� h) = h2�(h2A)(�Ay(t) + g) ; (3)

where the function� is given by�(x2) =  sin 12x12x !2 = 2 1� cos xx2 = 2 Z 10 x�1 sin(1� �)x d� : (4)

In the general case of (1), formula (3) suggests to replaceg(y(t)) by a
suitable constant vectorgn over a time step, and to consider the numerical
integration scheme with step sizeh,yn+1 � 2yn + yn�1 = h2�(h2A)(�Ayn + gn) ; (5)

whereyn is an approximation toy(tn) at timetn = nh. The obvious choice
would be to setgn = g(yn), in which case (5) can be considered as belong-
ing to a class of methods introduced by Gautschi [5, p. 392f.]. However,
like in [3], it turns out to be favourable to take instead a modified argument
in g. We set gn = g(�(h2A)yn) ; (6)

where thefilter function� is a suitably chosen real function whose purpose
is to filter out resonant frequencies. We assume�(0) = 1 ; �(k2�2) = 0 ; k = 1; 2; 3; : : : (7)

We assume throughout, without further mention, that� and its first two
derivatives are bounded on the positive half-line. It is reasonable to assume
also j�(x)j � 1 ; x � 0 : (8)
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Examples for possible choices of� will be given in Section 6.

To obtain a second starting value for the recursion (5), we sety1 = cos h
 � y0 + 
�1 sin h
 � y00 + 12h2�(h2A) g0 : (9)

Like for the Störmer/Verlet/leapfrog method, there is a one-step version
of the scheme (5):vn+1=2 = vn + 12h�(h2A) (�Ayn + gn)yn+1 = yn + h vn+1=2 (10)vn+1 = vn+1=2 + 12h�(h2A) (�Ayn+1 + gn+1) :
This scheme yieldsvn = (yn+1 � yn�1)=(2h), which can be interpreted as
an approximation to anaveragedvelocityv(t) = 12h Z h�h y0(t+ �) d� :
The method (10) is mathematically equivalent to (5) with (9)if v0 is taken
as v0 =  (h2A) y00 ; (11)

where (x2) = sin x=x. The interpretation of this expression as an approx-
imated time average comes once more from (2). In case that approximations
to the velocities themselves are of interest, they can be obtained by post-
processing viay0n+1 = y0n�1 + 2h (h2A)(�Ayn + gn) : (12)

These values would again be exact wheng is constant. This can be seen by
differentiating (2) with respect to� .

The above method can be viewed as a special case, forf(y) = �Ay, of
a method for more general differential equationsy00 = f(y) + g(y) :
Givenyn andy0n, one computes a suitable averaged valueyn and the solu-
tion of u00 = f(u) + g(yn) ; u(0) = yn; u0(0) = y0n : (13)

Then,yn+1 andy0n+1 are computed fromyn+1 � 2yn + yn�1 = u(h)� 2u(0) + u(�h) ;y0n+1 � y0n�1 = u0(h)� u0(�h) ; (14)

or from the averaged-velocity version that corresponds to (10). When (13)
is solved approximately by a numerical method with smaller time steps,
then this becomes a symmetric multiple-time-stepping scheme.
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3 Finite-time error analysis

We make no smoothness assumption about the (highly oscillatory) solution
and impose instead, as in [3], a finite-energy condition:12y0(t)Ty0(t) + 12y(t)TAy(t) � 12K2 : (15)

The following result shows second-order convergence ofyn in the Eu-
clidean norm and first-order convergence in the energy norm.The Eu-
clidean norm and its induced matrix norm are both denoted byk�k through-
out the paper.

Theorem 1 In Eq. (1), let A be a symmetric and positive semi-definiteN �N matrix, and assume thatg; gy; gyy are bounded in the Euclidean
norm or its induced norms byM0;M1;M2, respectively. Let the solution
satisfy the finite-energy condition(15) for 0 � t � T . Then, the error of
the numerical method of Section2 is bounded for0 � nh � T bykyn � y(tn)k � h2 � CeLtn(M1Ktn +M2K2t2n +M1M0t2n) `(n;N) ;
whereC is a constant which depends only on the filter function�, L =pM1, and`(n;N) � log(n+ 1) log(N + 1) and alsò (n;N) � pN . A
bound of the same type holds forhk
(yn � y(tn))k + hkvn � v(tn)k +hky0n � y0(tn)k.
The proof provides much more detailed information about thestructure of
the error. This will be made explicit at the end of this section. The logarith-
mic term `(n;N) comes from our technique of estimating the entrywise
product of the Jacobiangy with certain matrices depending on the numer-
ical scheme and the frequencies ofA. We conjecture that this logarithmic
term can be omitted in the estimate.

We note that condition (15) impliesk
y(t)k � K ; ky0(t)k � K ;
which are the conditions we will actually work with. In the case of higher
regularityk
2y(t)k � K,k
y0(t)k � K, our analysis would yield second-
order bounds also forky0n � y0(tn)k.

The proof of Theorem 1 proceeds via a series of lemmas. In the fol-
lowing,C always denotes a constant which depends only on the choice of
the filter function�, and which takes on different values on different occur-
rences.
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Lemma 1 The truncation errordn = y(tn+1)�2y(tn)+y(tn�1)�h2�(h2A)(�Ay(tn)+g(�(h2A)y(tn)))
is of the form dn = h3Ln
y(tn) + h4zn ;
where the matrixLn, given by(16) below, is bounded bykLnk � CM1,
andkznk � C(M2K2 +M0M1).
Proof By the variation-of-constants formula (2) fory(tn � h), we obtaindn = R h0 
�1 sin(h� �)
 ��g(y(tn + �))� 2g(�(h2A)y(tn)) + g(y(tn � �))�d� :
By assumption (15), we haveky(tn � �)� y(tn)k � Z �0 ky0(tn � s)k ds � K� :
This gives us, withGn = gy(y(tn)),g(y(tn��))�g(y(tn)) = Gn(y(tn��)�y(tn))+r�n ; kr�n k �M2K2�2:
Since(1� �(x2))=x is bounded forx > 0, we havek(I��(h2A))y(tn)k � h k(I��(h2
2)) (h
)�1k �k
y(tn)k � hCK ;
using again (15) in the last inequality. This yieldsg(y(tn))� g(�(h2A)y(tn)) = Gn (I � �(h2A))y(tn) + sn ;ksnk �M2C2K2h2 :
Using the variation-of-constants formula (2) fory(tn � �) and definingLn = 2 Z 10 (h
)�1 sin(1� �)h
 �Gn � (cos�h
��(h2
2))(h
)�1 d� ;

(16)
we thus obtain the desired result.

Lemma 2 The errorsen = yn � y(tn) satisfyen+1 = �Wn�1e0 +Wne1 + nXj=1Wn�j(h2Fjej � dj)
withWn = (sin(n+ 1)h
) (sinh
)�1, and with matricesFj bounded bykFjk �M1.
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Proof By definition of the truncation error, we haveen+1 � 2en + en�1 =h2�(h2A)(�Aen + g(�(h2A)yn)� g(�(h2A)y(tn)))� dn :
Since�(h2A)(g(�(h2A)yn)� g(�(h2A)y(tn))) = Fnen with the matrixFn = �(h2A) Z 10 gy(�(h2A)(y(tn) + �en))d� � �(h2A) ;
which is bounded byM1, and since2� h2�(h2A)A = 2 cosh
, the error
equation becomesen+1 � 2 cosh
 en + en�1 = h2Fnen � dn ;
or in one-step form,� en+1en � = R� enen�1 �+ �h2Fnen � dn0 � ;
with R = � 2 cosh
 �II 0 � :
Clearly then,� en+1en � = Rn � e1e0 �+ nXj=1Rn�j � h2Fjej � dj0 � :
The result now follows from verifying that(Rn)11 = Wn and(Rn)12 =�Wn�1. For example, this can be done using the block Schur decomposi-
tion R = U � eih
 X0 e�ih
 �U� ; U = 1p2 � eih
 �II e�ih
 �
withX = �2e�ih
 cos h
, noting thatRn = U � einh
 Wn�1X0 e�inh
 �U� :
Lemma 3 We have nXj=1Wn�j dj � h2 � C(M1Ktn +M2K2t2n +M1M0t2n) `(n;N)
with `(n;N) � min(log(n+ 1) log(N + 1);pN).
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Proof In view of Lemma 1 and the variation-of-constants formula (2) fort = 0 and� = tj , we writenXj=1Wn�jdj = h2(an + bn + cn)
with an = h nXj=1Wn�j Lj (cos tj
 �
y0 + sin tj
 � y00)bn = h nXj=1Wn�j Lj Z tj0 sin(tj � s)
 � g(y(s)) dscn = h2 nXj=1Wn�j zj :
We studyan; bn; cn in parts (a),(b),(c) of the proof, respectively.

(a) Let!k be thekth eigenvalue of
, and letQ be the orthogonal matrix
of eigenvectors, so thatQT
Q = diag(!k). We writean = tn(Un
y0 + Vn y00)
and denote the matrix entries in the eigenbasis representation as(�k`n ) = QTUnQ ; (�k`n ) = QTVnQ ; (k`n ) = QTGnQ :
For fixedk; `, we omit the superscripts in the matrix entries and write� =h!k , � = h!`. We have��n�n � = 1n n�1Xj=0 �j(�; �) n�j � cos(n � j)�sin(n� j)� � ;
where�j(�; �) = 2 sin(j + 1)�sin� Z 10 sin(1��)�� (cos �� � �(�2))d�� : (17)

To estimate the above sum, we use partial summation. Let"n(�; �) = 1n n�1Xj=0 �j(�; �) e�ij� : (18)

We then have�n + i�n = n�1Xj=0 1n �j(�; �) e�ij� � n�j � ein�= �"n(�; �) 0+ n�1Xj=0 j + 1n "j+1(�; �) (n�j � n�j�1)�ein� :
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Recall thatj is the (k; `) component ofbGj = QTGjQ, whereGj =gy(y(tj)). LettingEn = ("n(h!j ; h!k))Nj;k=1 andDn = diag(einh!k ), we
thus havean = tn ReQ�En � bG0 + n�1Xj=0 j + 1n Ej+1 � ( bGn�j � bGn�j�1)� �DnQT (
y0 � iy00) ;
where� denotes the entrywise product of matrices. Sincek bGjk �M1 ; k bGj � bGj�1k �M2Kh ; (19)

Lemma 5 below gives us thatkank � tn C`(n;N) (M1+M2Ktn) 2K :
(b) We set rn = Z tn0 e�is
g(y(s)) ds :

In terms of the eigencomponents(bkn) = QT bn and(rkn) = QT rn we then
have bkn = h Im n�1Xj=0 X̀ �j(h!k; h!`) e�ijh!` � k`n�jrǹ�j � einh!` :
Partial summation gives us (note thatr0̀ = 0)bkn = tn Im n�1Xj=0 X̀ j + 1n "j+1(h!k ; h!`) ��k`n�jrǹ�j � k`n�j�1rǹ�j�1� � einh!` ;
and with Lemma 5 we concludekbnk � tnC`(n;N) n�1Xj=0� k bGn�j � bGn�j�1k � krn�jk+k bGn�j�1k � krn�j � rn�j�1k� :
From the variation-of-constants formula (2) and its differentiated version
we obtain with (15)krjk = keitj
rjk � 4K. Together withkrj�rj�1k �M0h and (19) we therefore obtainkbnk � t2n C `(n;N) (4M2K2 +M1M0) :

(c) Finally, Lemma 1 and the boundkWnk � n + 1 give uskcnk � CM2K2t2n :
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Proof of Theorem 1. For the errors in the starting values we havee0 = 0
and by (9)ke1k = Z h0 
�1 sin(h� �)
 � (g(y(�))� g(�(h2
2)y0))d�� CM1K h3 :
Moreover, for the matrices in Lemma 2 we havekWnk � n + 1. With the
estimate of Lemma 3, the stated bound forkenk now follows from a discrete
Gronwall inequality [3, Lemma 2] applied to the recursion ofLemma 2.

The error bound forh(vn � v(tn)) = en � en�1 is then immediate, and
the bound forh
 en follows with Lemma 2, since alsokh
Fjk � 2M1
andkh
 e1k � CM1Kh3, and because we getkPnj=1Wn�jh
djk =O(h2) as in Lemma 3. Finally, to obtain the bound fore0n = y0n�y0(tn) we
note that (12) impliese0n+1 = e0n�1 � 2
 sin h
 � en + O(h2) :
Sincek sinh
 �Wnk � 1 andkenk = O(h2), we see from Lemma 2 that,
on a fixed time interval,sin h
 � en+1 = h2 sin h
 (an + bn) + O(h3) ; (20)

wherean andbn are those of the proof of Lemma 3, and theO(h3) re-
mainder term,sn say, is such that
sn = O(h2). Inserting this formula in
the recursion fore0n, it can be shown as in the proof of Lemma 3 that this
implieske0nk = O(h), where the constant in theO-symbol is of the same
type as before. We omit the details for this last estimate.

Formula (20) makes explicit the dominant error term for the eigencom-
ponents corresponding to those frequencies for whichh!k is bounded away
from an integer multiple of�. Recall thatan andbn are determined by the
error function"n(�; �), which is studied in Section 4.

4 Properties of the error function

Lemma 4 The error functions"n(�; �) defined by(17), (18)are uniformly
bounded for all�; � � 0 andn � 0, andlimn!1 "n(�; �) = 0 if ��� 6=2k� and� 6= k� with integerk.

Proof The tools of this proof are trigonometric identities and repeatedly the
mean value theorem. It is in this proof that condition (7) comes into play.
Let ein�"n(�; �) = 1n�Sn(�; �)I(�; �) ;
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where Sn(�; �) = 2 n�1Xj=0 sin(j + 1)�sin� ei(n�j)�
and I(�; �) = Z 10 sin(1��)�� (cos �� � �(�2))d�= ��cos� � cos��2 � �2 + 12�(�2) �(�2)� :
With the boundssin(1� �)�=� � 1� � and (8) we havejI(�; �)j � 1; for all �; � � 0: (21)

From cos �� � �(�2) = O(�2), when� tends to zero, we conclude that
there is a constantC1 such that1� jI(�; �)j � C1�; for all � � 0: (22)

Next we consider the real part ofSn(�; �), which by trigonometric iden-
tities turns out to beReSn(�; �) = 1cos � � cos� 1sin� (� sinn� cos� (cos� � cos�)� sin� (sinn� sin � � sin n� sin�)+ sin� cos � (cosn� � cosn�)):

(23)Re Sn(�; �) is a continuous,2�-periodic function in�; �, hence we set� = 2k� + a; � = 2m� + b; 0 � jaj; jbj � �:
By continuity, it is sufficient to consider�; � with 0 < jaj; jbj < � andjaj 6= jbj. Moreover,ReSn(�; �) = Re Sn(a; b) is an even function ina; b.
Hence we can restrict ourselves to the casea; b > 0.

We consider the three terms in (23) separately. The first termis bounded
by n. For the second term, by the generalized mean-value theoremfor a
fraction of differentiable functions, there is a� betweena andb such thatsin nb sin b� sinna sin acos b� cosa = � cos � sin n�sin � � n cosn�;
and hence this expression is bounded by2n for all a; b � 0. From the
above bounds we conclude that the product ofI(�; �)=(n�) with the first
two terms in (23) is uniformly bounded for all�; � � 0 andn � 0.

For the last term in (23), things are more complicated, because this term
grows likeO(n2) for �! � and� ! k�. However, we will show that the
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product of the third term with the integralI(�; �)=(n�) is bounded. The
mean-value theorem guarantees the existence of� betweena andb such
that cosnb� cosnacos b� cosa = n sinn�sin � :
Hence, there is a constanctC2 such that for0 < � < 12�����I(�; �)n� ���� ����cosnb� cosnacos b� cos a ���� � C2� for � � a; b � � � �:
We now consider the case� = b! 0. Fromj cosnb � cosnaj � njb� aj
andcos b� cos a = 12(a� b)(a+ b)(1 +O(a2 + b2)) we obtain����cosnb� cosnacos b� cosa ���� � 4na+ b for 0 < b < 12� ; 0 < a < � :
For� ! 0 we therefore conclude with (22)����I(�; �)n� ���� ����cosn� � cosn�cos� � cos� ���� � 4C1 for 0 < � < 12� ; � > 0 :
For� > 12�, we have for the product with the first term ofI(�; �)1n� ����cosn� � cosn��2 � �2 ���� � 1�(� + �) � 4�2 for � > 12� ; � > 0 :
Next we consider the product with the second term inI(�; �) for � near�.
Here we have similarly to the above����cosnb� cosnacos b� cosa ���� � 4nj� � aj+ j� � bj
for 12� < b < 32�, 0 < a < 2�. By condition (7), we havej�(�2)j �C3j� � �j for � near�, and hence������(�2)�(�2)n� ����� � ����cosn� � cosn�cos� � cos� ���� � 4C312�
for 12� < � < 32�, a > 0. The same argument applies for� near arbitrary
integer multiples of�.

Combining these estimates, we see thatRe ein�"n(�; �) is bounded in-
dependently of�; � andn. Similarly, we can show that such a uniform
bound exists for the imaginary part, and hence"n(�; �) is bounded uni-
formly.

In the nonresonance case, wherej����2k�j � � > 0 andj��k�j �� for all integersk, we havejSn(�; �)j � C=�, which by (21) and (22)
implies j"n(�; �)j � Cn� : (24)

This proves the second assertion of the lemma.



Oscillatory di�erential equations 13
The logarithmic term in Theorem 1 results from the followingbound.

Lemma 5 Let En = ("n(�j ; �k))Nj;k=1, where the�j are arbitrary non-
negative real numbers. In the matrix norm induced by the Euclidean norm,
the entrywise product ofEn with an arbitraryN � N matrixG is then
bounded by kEn �Gk � C log(n+ 1) log(N + 1) kGk :
The constantC depends only on the choice of the filter function�.

Remark.We have immediatelykEn �Gk � C0 k jGj k � C0pN kGk
with C0 = supj;�;� j"j(�; �)j, which is finite by Lemma 4.

Proof The proof proceeds by splitting the matrixEn into a sum of matrices
and estimating them separately. We may assume�1 � �2 � : : :� �N .

(a) Consider first the triangle� : 0 � � � � < � and letE�n be the
submatrix ofEn defined byE�n = (ejk) with ejk = � "n(�j ; �k) if (�j ; �k) 2 �0 else.

(25)

Here we write�k = �k in the second argument for notational clarity. We
splitE�n further into a partEVn whose entry arguments are near the vertical
edge� = 0 of �, into a partEDn near the diagonal edge� = �, and a partECn close to the corner(0; 0). For this, let' be a smooth cutting function
with '(x) = 1 for x � 13 , and'(x) = 0 for x � 23 . Further, let�n be the
characteristic function of the interval[0; 1=n]. We haveE�n = EVn +EDn + ECn
with EVn = (eVjk) = ('(�j=�k)(1� �n(�k)) ejk)EDn = (eDjk) = ((1� '(�j=�k))(1� �n(�k)) ejk)ECn = (eCjk) = (�n(�k) ejk) :

(b) We now show for the part near the vertical edge thatkEVn �Gk � C log(n+ 1) kGk : (26)

LetG = (gjk) and consider for arbitrary vectorsx = (xj), y = (yk)x�(EVn �G)y =Xj;k xj gjkeVjk yk :
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Partial summation in horizontal direction gives, withdVjk = eVj+1;k � eVjk ,x�(EVn �G)y = �Xj;k �Xi�j xigik�dVjkyk = �Xj Xi;k (xi 1fi�jg) gik (dVjkyk)
where1fi�jg = 1 if i � j, and zero else. This impliesjx�(EVn �G)yj �Xj kxk � kGk � kyk �maxk jdVjkj ;
and hence kEVn �Gk �Xj maxk jdVjkj � kGk : (27)

We havedVjk = eVj+1;k � eVjk= '(�j+1=�k)(1� �n(�k))("n(�j+1; �k)� "n(�j ; �k)) +('(�j+1=�k)� '(�j=�k))(1� �n(�k))"n(�j ; �k) :
By Lemma 4 we havej"n(�; �)j � C, and from the formulas in the proof
of Lemma 4 one obtains also����@"n@� (�; �)���� � Cmin(n; 1=�) for (�; �) 2 � with �=� � 2=3; (28)

i.e., for those(�; �) for which '(�=�) 6= 0. Note that'(�j+1=�k) �'(�j=�k) 6= 0 only if �j+1=�k � 13 and�j=�k � 23 , that is, only if�k 2 [32�j ; 3�j+1]. Then we havej'(�j+1=�k)� '(�j=�k)j � C �j+1 � �j�k� C min �j+1 � �j32�j ; 1!� 43 C �j+1 � �j�j+1 :
On the other hand, we have�k � 1=n for all k which give non-vanishing
entries inEVn . Combining these estimates givesjdVjkj � Cmin(n; 1=�j+1) � (�j+1 � �j)
and hence Xj maxk jdVjkj � C Z �1=n d�� = C(1 + log n) :
Therefore, (27) implies (26).
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(c) For the part near the diagonal we showkEDn �Gk � C log(n+ 1) log(N + 1) kGk : (29)

We proceed similarly to part (b), but now use anti-diagonal partial summa-
tion. With dDjk = eDj+1;k � eDjk, we have for arbitrary vectorsx; yx�(EDn �G)y =Xj;k xj gjkeDjk yk =Xj;k xj+k gj+k;keDj+k;k yk= �Xj Xi;k xi+k1fi�jggi+k;kdDj+k;k yk= �Xj Xi;k xi (1fi�k�jggik) (dDj+k;kyk) :
(Here we may think ofEDn andG as being embedded in higher-dimensional
matrices by extending them by zero, so that we need not care about the
range of summations above.)

The matrixG(j) = (1fi�k�jggik)i;k is obtained fromG by truncating
a triangular part. Theorem 1 in [1] (see also references therein for related
earlier work) shows thatkG(j)k � C log(N + 1) kGk ; (30)

which explains how the factorlog(N + 1) comes about. This implieskEDn �Gk �Xj maxk jdDj+k;kj � C log(N + 1) kGk : (31)

In place of (28) we now have����@"n@� (�; �)���� � Cmin(n; 1=(���)) for (�; �) 2 � with �=� � 1=3:
In the same way as in part (b), this bound together with (31) yields (29).

(d) For the part near the corner we havekECn �Gk � C log(N + 1) kGk :
This follows as above using partial summation, (30), and thebound����@"n@� (�; �)���� � Cn for (�; �) 2 � :

(e) The same arguments apply also to the complementary triangle0 �� < � < � (with vertical edge� = �, diagonal� = �, and corner(�; �)), and in fact to every triangle whose corners have successive integer
multiples of� as coordinates and whose diagonal or anti-diagonal edge lies
on one of the lines� � � = 2k� with integerk.
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Using the decay properties of the error functions for large arguments,

see the formulas in the beginning of the proof of Lemma 4, we obtain for
every square l;m = [(l�1)�; l�)�[(m�1)�;m�)with l;m = 1; 2; 3; : : :
(each of which is composed of two of the above triangles) the boundkEl;mn �Gk � C � 1(1 + jl2 �m2j)m + 1l2m2� �log(n+ 1) log(N + 1) kGk ;
whereEl;mn is defined likeE�n in (25), but with l;m in place of�. For
every integerk, the block-diagonal matrixEkn =Xm Ek+m;mn
then satisfies the boundkEkn �Gk � maxm kEk+m;mn �Gk � C1 + k2 log(n+ 1) log(N + 1) kGk ;
and consequentlykEn �Gk �Xk kEkn �Gk � C log(n+ 1) log(N + 1) kGk ;
which was to be proved.

5 Linear stability

To gain a better understanding of the behaviour of the methodand the influ-
ence of the filter function�, we study the long-time error propagation for
the linear system y00 = �Ay � By (32)

where bothA andB are assumed symmetric and positive semi-definite.
The method applied to this equation readsyn+1 � 2yn + yn�1 = �h2�(h2A)(A+B�(h2A))yn : (33)

It turns out favourable for stability to have a filter function that is non-
negative: �(x) � 0 for x � 0 : (34)

In the following we assume that squares of integer multiplesof � are the
only zeros of�, and that no eigenvalue ofh
 is precisely an integer multi-
ple of�. Then, the matricesS = �(h2A)1=2 ; F = �(h2A)1=2
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are non-singular. We introduce transformed variablesqn = FS�1yn ; pn = FS�1vn : (35)

By (7), we have for all eigencomponentsjqknj � Cjyknj, and if the squares
of integer multiples of� are the only zeros, of multiplicity exactly 2, then
we have also an inverse inequality for those components for whichh!k is
bounded away from an odd multiple of�. SinceA, F , andS commute, the
recursion forqn has a symmetric matrix:qn+1 � 2qn + qn�1 = �h2(SAS + SFBFS)qn : (36)

Let �(x2) = �(x2) �(x2)(cos 12x)2 : (37)

Note that�(0) = 1, andk�(h2A)k = maxk �((h!k)2) � supx�0 �(x2) <1
for filter functions� with (7) and (34), because� then has at least a double
zero at the square of every integer multiple of�. We have the following
stability criterion.

Theorem 2 In the above situation, ifk�(h2A)k � kh2Bk � 4 ; (38)

then the recursion is stable in the sense thatkqnk � n (kq0k+ kq1k) ; n > 1 :
Proof By diagonalization of the matrix in (36), it is seen that the recur-
sion is stable if and only if the eigenvalues ofh2(SAS + SFBFS) lie
in the interval[0; 4]. It is clear that these eigenvalues are non-negative, so
it remains to find the upper bound. LetC = cos 12h
, so thath2SAS =4(sin 12h
)2 = 4I � 4C2. We then haveh2(SAS + SFBFS) = 4I � C(4I � h2C�1SFBFSC�1)C :
Under condition (38),C(4I � h2C�1SFBFSC�1)C is positive semi-
definite, and the eigenvalues ofh2(SAS + SFBFS) are then bounded
by 4.
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The proof also shows that the condition (38) isnecessaryif the recursion

is to be stable for all positive semi-definite matricesB of a fixed norm. This
necessity is already obvious in the scalar case.

The stability bound forqn can be further used to obtain a bound foryn,
also for those eigencomponents where the inverse ofFS�1 is not reason-
ably bounded. As in Lemma 2, we haveyn+1 = �Wn�1y0 +Wny1 � nXj=1Wn�jS2h2BF 2yj :
Noting thatF 2yj = FSqj , we obtain, withc = kFSk,kyn+1k � nky0k+ (n+ 1)ky1k+ c kh2Bk nXj=1(n � j + 1)kqjk :
6 Choice of the filter function

A first possible choice of a filter function satisfying (7) is�(x2) = sin x=x : (39)

The absolute value of its complex error function"n(�; �) defined by (18)
is plotted in Figure 1. The figure was computed withn = 50, but nearly
identical graphs are obtained for all sufficiently largen (n � 10 or 20,
say). A considerably reduced error function is obtained for�(x2) = sin xx (1 + 16(1� cos x)) : (40)

This filter function is chosen such that the integral term in the error func-
tion, see (17), becomes small for small�; �. This requires�(x2) = 1 �x2=12 + O(x4) for x ! 0. The absolute value of the error function for
(40) is plotted in Figure 2. Unfortunately, the filter function (40) becomes
negative on intervals between the squares of odd and even multiples of�
and hence does not satisfy condition (34) required for linear stability in the
sense of Section 4. A filter function which satisfies (7) and (34) and whose
error function becomes small for small�; �, is given by�(x2) = �sin xx �2 (1 + 12(1� cosx)) : (41)

Its stability threshold function�, given by (37), satisfies�(x2) < 1:04 for
all x � 0. The absolute value of its error function is plotted in Figure 3.
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Figure 1. Error function for�(x2) = sin x=x.
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Figure 2. Error function for the filter (40).

0
2

4
6

0

2

4

6

0

0.02

0.04

0.06

0.08

0.1

Figure 3. Error function for the filter (41).

7 Application to the mollified impulse method

We now show how the above analysis gives new insight into the mollified
impulse method of Garcı́a-Archilla, Sanz-Serna and Skeel [3,4]. When ap-
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plied to Eq. (1), their method readsv+n = vn + 12h�(h2A) g(�(h2A)yn)� yn+1v�n+1 � = � cosh
 
�1 sin h
�
 sin h
 cos h
 �� ynv+n �vn+1 = v�n+1 + 12h�(h2A) g(�(h2A)yn+1) ; (42)

with a filter function� that vanishes at the squares of even multiples of�.
They show second-order error bounds which are independent of the fre-
quencies and of the dimension of the system.

Upon eliminating the (non-averaged) velocities, the scheme (42) be-
comesyn+1 � 2yn + yn�1 = h2�(h2A)(�Ayn + gn) + h2�(h2A) gn ; (43)

where� =  �� �, with  (x2) = sin x=x. With minor modifications, the
error analysis of Section 3 applies also to (43) and consequently to (42).
The role of the error function is now taken by"MIMn (�; �) = "n(�; �)� �(�2) �(�2)� n�1Xj=0 sin(j + 1)�sin� (e�ij� � e�in�) :

(44)
Figure 4 shows the absolute value of this error function (forn = 50) for the
filter � =  , which is a favoured choice in [3] (the long-average method).
In contrast to the situation in Section 6, it is now not possible to construct
a filter function such that the error function (44) becomes arbitrarily small
near(0; 0).
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Figure 4. Error function (44) for�(x2) = sin x=x.
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The error bounds of [3] applied to the equationy00 = �Ay+�G(y�y0),

with � ! 0 and an arbitrary matrixG, can be shown to imply for the
entrywise product ofEMIMn = ("MIMn (h!j ; h!k))Nj;k=1 with G the boundkEMIMn � Gk � C kGk, without the logarithms that we did not succeed to
eliminate in Lemma 5.

In addition to the error terms that were present also in Section 3, there is
now an additional term in the error of the mollified impulse method which
results from not solving equations with a constant inhomogeneity exactly.
Consider the method (42) applied to a linear problem (1) withconstant in-
homogeneityg. Then, the error after the first step ise1 = 12h2�(h2A)g, and
the defect in (43) isdn = �h2�(h2A)g. By Lemma 2 and a trigonometric
identity, we thus have for the error in the(n+ 1)st stepen+1 = Wne1 � nXj=1Wn�j dj = 12h2(I � cos(n+ 1)h
) �(h2A)g
with �(x2) = �(x2)=(1 � cos x). For � =  this function is bounded
in modulus by12 , so thatken+1k � 12h2kgk. Interestingly, the two-step
scheme (43) with exact starting values (e0 = e1 = 0) does not give anO(h2) error bound uniformly in the frequencies. It produces anO(nh2)
error term if, for some frequencies,h!k is close to an odd multiple of�.

The stability result of Theorem 2 does not extend unchanged to the
mollified impulse method (42). In fact, the analysis of 2-dimensional lin-
ear systems in [3] shows that there exists no positive constant c such thatkh2Bk � c implies stability without restrictions onh2A, unless�(x2)
vanishes for allx where (x2) is negative. A straightforward adaptation of
the proof of Theorem 2 shows that this latter condition on thefilter func-
tion is also sufficient for the stability of (42) for equations (32) in arbi-
trary dimensions wheneverk�(h2A)k � kh2Bk � 4, where now�(x2) = (x2)�(x2)2=(cos 12x)2.

Both methods (10) and (42) are obviously time-reversible. An inter-
esting property of (42) is itssymplecticness, that is, the map(yn; vn) 7!(yn+1; vn+1) is symplectic when the method (42) is applied to (1) withg(y) = �rU(y) [3]. For the method (10), the one-step map is not sym-
plectic in the variables(y; v), but by comparison with the Störmer/Verlet
method it is easily verified that it is symplectic in the transformed vari-
ables(q; p) of (35). At present it is not clear, however, what is the signif-
icance of symplecticness of either method for the long-timebehaviour of
numerical solutions. There is no backward error analysis available which
would, for example, guarantee long-time near-conservation of energy, un-
lesskh2Ak � 1 which is not what these methods are meant for.
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8 Numerical experiments

In this section we report on some numerical experiments withthe sine-
Gordon equation utt = uxx � sin u ;
which we consider forx 2 [�1; 1] with periodic boundary conditions.
Pseudospectral discretization in space withN equidistant collocation pointsxj yields an approximationU(t) = (Uj(t))Nj=1 with Uj(t) � u(xj ; t). Its
discrete Fourier transform y(t) = FNU(t)
satisfies y00 = �Ay �FN sin(F�1N y) ;
whereA = diag(!2k) with!k = �k� k = 0; : : : ; N=2� 1(N � k)� k = N=2; : : : ; N � 1 .

We choseN = 128 and the initial positionUj(0) = � for all j, and we
considered two choices of initial velocities, corresponding to non-smooth
and smooth solutions.

In the first case we choseU 0(0) as a vector of normally distributed ran-
dom numbers scaled to Euclidean norm

pN . (This is reproduced by the
following Matlab 5 sequence:randn(’state’,0); v=randn(N,1);
v=v/norm(v)*sqrt(N).) Figure 5 shows the evolutionof potential and
kinetic energy in the time interval[0; 10].

In the second case we choseU 0(0) as a scalar multiple of(0:01 +sin(2�j=N))Nj=1, again scaled to Euclidean norm
pN . Potential and ki-

netic energy in the interval[0; 10] are shown in Figure 6.
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Figures 5 and 6. Kinetic and potential energies for two initial states.
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For these two cases, Figures 7 and 8 plot the Euclidean norm (scaled

by 1=pN ) of the error in the positionsU at t = 10 versus the step size.
(Reference values were obtained by applying the methods with small step
sizes.) The methods used are the mollified impulse method with the ‘long-
average’ filter�(x2) = sin x=x (shown with markers�), and the method
(10) with the same filter (markers+) and with the filters (40) and (41) (with
markers� and�, respectively). Taking no filter at all (� � 1) in (10), which
is not shown in the figures, gave errors more than an order of magnitude
larger than for the most accurate filter (40) and a more erratic error curve
in the nonsmooth example, and about the same errors as the ‘long-average’
filter (+) in the smooth example.

Very similar figures were obtained also for the errors in the velocities.
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Figures 7 and 8. Errors versus step size.� : mollified impulse method with long-average filter (39)+;�; � : Gautschi-type method with filters (39), (40), (41)

In experiments with different data, we did not always observe such a
clear difference between the methods. For example, with initial positionsUj(0) = 12� and the same initial velocities as before, the error curves dif-
fered by less than a factor 2. The filters (40) and (less so) (41) were found
advantageous throughout.

We tested also energy conservation on the interval[0; 1000]. We did not
observe an energy drift for the methods and step sizes considered above.
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