
Acceleration of Contour Integration Techniques by

Rational Krylov Subspace Methods
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Abstract

We suggest a rational Krylov subspace approximation for products of ma-
trix functions and a vector appearing in exponential integrators. We consider
matrices with a field-of-values in a sector lying in the left complex half-plane.
The choice of the poles for our method is suggested by a fixed rational approx-
imation based on contour integration along a hyperbola around the sector.
Compared to the fixed approximation, our rational Krylov subspace method
exhibits an accelerated and more stable convergence of order O(e−Cn).
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1. Introduction

In the field of exponential integrators, which form a promising class of
numerical methods for the time integration of differential equations, the so-
called ϕ-functions are of great importance. These ϕ-functions are given by

ϕ`(z) :=

∫ 1

0

e(1−s)z s`−1

(`− 1)!
ds for ` ≥ 1

and by ϕ0(z) := ez in the case ` = 0. Another possible representation is

ϕ`(z) =
ez − t`−1(z)

z`
with t`−1(z) =

`−1∑
k=0

zk

k!
. (1)
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By setting ϕ`(0) = 1/`!, the ϕ-functions can be extended to holomorphic
functions on the whole complex plane.

For the application of exponential integrators, the efficient and reliable
approximation of the matrix ϕ-functions times a vector is an essential ingredi-
ent. In order to illustrate this, we consider the system of ordinary differential
equations

y′(t) = Ay(t), y(0) = v with A ∈ CN×N , v ∈ CN . (2)

The solution of this problem is given as

y(τ) = eτAv = ϕ0(τA)v ,

which represents the simplest exponential integrator. Alternatively, the exact
solution can be written as an expansion of the form

y(τ) = v + τAv + · · ·+ τ `−1

(`− 1)!
A`−1v + τ `ϕ`(τA)A`v .

A fast and effective computation of the action of the matrix exponential
eτA on the vector v or of the matrix function τ `ϕ`(τA) on A`v would thus
directly lead to an efficient solution of the system (2) of ordinary differential
equations.

A more involved example, where linear combinations of τ `ϕ`(τA)vj for
different vectors vj appear, is given in [33]. Approximating the nonlinearity
N(y(t)) in the initial value problem

y′(t) = Ay(t) +N(y(t)) , y(t0) = y0

by a Taylor polynomial of order s, we obtain the modified problem

y′(t) = Ay(t) +
s∑
j=0

tj

j!
vj

with solution

y(t0 + τ) = eτAy0 +
s∑
j=0

j∑
`=0

tj−`0

(j − `)!
τ `+1ϕ`+1(τA)vj .

Similar ideas can, for example, also be found in [21], where a kth order mul-
tistep method is obtained by approximating the nonlinearity with a suitable
interpolation polynomial.
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Linear combinations of the ϕ`-functions at possibly different time steps
appear in exponential Runge–Kutta methods, for example the method given
by the tableau

0

c2 c2ϕ1(c2τA)

ϕ1(τA)− 1
c2
ϕ2(τA) 1

c2
ϕ2(τA)

(3)

This method has been proposed by Strehmel and Weiner in [36] and requires
the evaluation of ϕ1 at time τ and c2τ , and of ϕ2 at time τ . The method is
also discussed as a part of Example 2.18 in the review [19] on exponential
integrators by Hochbruck and Ostermann.

Since exponential integrators may need evaluations of the matrix ϕ-
functions for different time step sizes τ with the same vector v, cf. (3), we
study the uniform approximation of τ `ϕ`(τA)v for ` ≥ 0 in a time inter-
val [τ0, τ1]. Thereby, we restrict our investigations to sectorial matrices A
whose field-of-values lies in a sector in the left complex half-plane. Such ma-
trices typically arise from a spatial discretization of some parabolic partial
differential equation.

For the approximation of the matrix ϕ-functions in a special rational
Krylov subspace, we derive bounds that are completely independent of the
exact location and the size of the field-of-values in the sector. Therefore, the
derived error bounds hold true uniformly for arbitrary space discretizations
of a given parabolic differential operator, as long as the discretization matrix
keeps its field-of-values in this sector that also contains the field-of-values
of the corresponding operator. Any reasonable discretization of a parabolic
operator is usually of that kind. An approximation of the matrix ϕ-functions
converging independently of the refinement of the grid in space, i.e. indepen-
dently of the norm of the discretization matrix A, is crucial for the efficient
application within exponential integrators. The reason is that this class of
integrators has the advantage that neither the temporal convergence nor the
maximum possible time step size are affected by a large norm of the dis-
cretization matrix A and this beneficial property can only be preserved by
an ‖A‖-independent approximation of the occurring matrix functions.

Our idea is based on combining a contour integration method that leads
to fixed rational approximations with a rational Krylov subspace method in
order to speed up the convergence. When approximating the product of a
matrix function f(A) with some vector v, Krylov methods can take advantage
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of spectral properties of v in the eigenvectors of A. For example, if there
is a polynomial p of small degree m such that p(A)v = 0, then the Krylov
method for approximating f(A)v stops after m iteration steps with the exact
solution. In contrast, a fixed rational (or polynomial) approximation ignores
such spectral effects. Furthermore, polynomial and rational Krylov methods
are known to produce an approximant, that is, up to a factor of two, related
to the typically unknown best polynomial or rational approximation on the
field-of-values of the considered matrix (cf. [2], Proposition 3.1 and Theorem
5.2). That means, the Krylov approximant is a quasi-best approximation
and this feature can accelerate the convergence significantly compared to
fixed rational approximants. Using a rational Krylov method, the vector
f(A)v is approximated in a rational Krylov subspace that is in general of the
form

Qm(A, v) =

{
pm−1(A)

qm−1(A)
v, pm−1 ∈ Pm−1

}
= span{v, (z1 − A)−1v, . . . , (zm−1 − A)−1v} ,

where Pm−1 denotes the space of all polynomials of degree at most m−1 and
qm−1 ∈ Pm−1 is a fixed chosen polynomial. Every different choice of the de-
nominator qm−1 results in a different rational Krylov subspace method. The
roots z1, . . . , zm−1 of qm−1 are called poles of the rational Krylov subspace.
In our case, we choose simple poles zj according to the contour integration
approach in [24]. The approximation of f(A)v for matrices or operators A by
rational Krylov subspace methods has already been investigated in a num-
ber of papers (e.g. [1, 2, 4–6, 8–11, 13–17, 20, 22, 25–30, 32, 38]). In the
context of differential operators or fine space discretizations of differential
operators, it has recently emerged that rational Krylov subspace methods
work tremendously better than standard Krylov subspace methods based on
the subspace

Km(A, v) = {pm−1(A)v, pm−1 ∈ Pm−1}

= span{v, Av, . . . , Am−1v} .

The paper is organized as follows. After this introduction, we briefly review
the main results in [23, 24] about the numerical inversion of the Laplace
transform by a quadrature rule in Section 2. In Section 3, we introduce the
rational Krylov subspace based on the fixed rational approximation reviewed
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in Section 2 and prove our main theorem. Before a brief conclusion, several
numerical experiments are reported in Section 4.

2. A contour integral approximation for the ϕ-functions

For the evaluation and approximation of matrix functions, suitable con-
tour integrals combined with the trapezoidal rule have been already consid-
ered, e.g. in [18, 31, 32, 37].

In this section, we use the results by López-Fernández, Palencia, and
Schädle in [23, 24] about the application of the trapezoidal rule for the inver-
sion of sectorial Laplace transforms in order to approximate the ϕ-functions.
The ideas in [23, 24] are based on the papers [34, 35] by Stenger about
approximation methods using Whittaker’s cardinal function. The classical
estimate by Stenger of order O(e−c

√
n) was first improved to O(e−cn/ ln(n)) in

[23] and later refined to O(e−cn) in [24]. This refinement was achieved by
selecting appropriately the free occurring parameters such as, for instance,
the quadrature node spacing h. Similar ideas can be found in [39], where
parabolic and hyperbolic contours for the computation of the Bromwich in-
tegral are discussed.

Let (· , ·) be some inner product on the vector space CN with associated
norm ‖·‖. The induced matrix norm is also denoted by ‖·‖. In the following,
we always consider matrices A ∈ CN×N with a field-of-values

W (A) = {(Ax, x) |x ∈ CN , ‖x‖ = 1}

located in a sector

Sα = {z ∈ C | |arg(−z)| ≤ α} , 0 < α <
π

2

in the left complex half-plane. Usually, such matrices stem from a spatial
discretization of a parabolic operator A such as Aφ = div(a(x)∇φ) + b(x) ·
∇φ + c(x)φ, where φ belongs to the domain of the differential operator A.
All our results can be generalized to operators A on Hilbert spaces and some
results extend to operators A on Banach spaces.

We want to study matrices of an arbitrary dimension and with an arbi-
trarily large field-of-values W (A) ⊆ Sα simultaneously. For this purpose, it
is helpful to represent the matrix ϕ-functions via a Cauchy integral along the
left branch of a hyperbola around the sector Sα containing the field-of-values
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of the considered matrix A. More precisely, we choose β, d > 0 such that the
condition

0 < β − d < β + d <
π

2
− α̃ , α < α̃ <

π

2
(4)

is fulfilled and we define the parameterization of the left branch of the hy-
perbola by

T (s) = λ · (1− sin(β + is)) , λ > 0 , s ∈ (−∞,∞) . (5)

The mapping T transforms the horizontal strip of width 2d around the real
axis into a region outside the sector Sα. This region is limited by the left
branches of the two hyperbolas with foci at λ corresponding to the asymptotic
angles π/2− (β + d) and π/2− (β − d) that are both larger than the angle
α of the sector Sα; see Figure 1 on the left-hand side.

λ

α β1

β2

β1 = π
2 − (β − d)

β2 = π
2 − (β + d)

α

T (−s0)

T (s0)

Figure 1: Shape of the horizontal strip {z ∈ C | |Im z| ≤ d} after the transformation by

the mapping T on the left, and contour Γ̃ in the proof of Lemma 1 on the right.

Lemma 1. Let A ∈ CN×N be a matrix with W (A) ⊆ Sα. Select β and d
according to condition (4). Then we have for τ ≥ 0 the representation

τ `ϕ`(τA) =
1

2πi

∫
Γ

eτz

z`
(z − A)−1 dz , ` = 0, 1, 2, . . . , (6)

where Γ is a path with the parameterization (5).
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This lemma is inspired by Theorem 5.1 in [32]. The improper integral
in (6) is understood in the Riemannian sense. Its existence follows from the
well-known resolvent estimate (cf. [7], Section II.4)

‖(z − A)−1‖ ≤ M

|z|
for all z ∈ C\Sα̃ , α < α̃ <

π

2
(7)

which guarantees that the integral in (6) is absolutely convergent for the
contour Γ running from −i∞ to +i∞ within the shaded area in Figure 1 on
the left.

Proof (of Lemma 1). We choose a finite contour Γ̃, that runs from T (−s0)
to T (s0) on the hyperbola. Then we close the open hyperbola on the left with
an arc of a circle around 0 connecting these two points in such a way that
W (A) is surrounded with a positive distance; cf. Figure 1 on the right. For
an arbitrary z0 ∈ W (A), we then have

τ `ϕ`(τz0) =
τ `

2πi

∫
Γ̃

ϕ`(τz)

z − z0

dz =
1

2πi

∫
Γ̃

eτz

z`(z − z0)
dz .

The first equality is just the Cauchy integral formula. For the second equality,
we use representation (1) for the ϕ-functions to obtain

τ `ϕ`(τz0) =
1

2πi

∫
Γ̃

eτz − t`−1(τz)

z`
· 1

z − z0

dz

=
1

2πi

∫
Γ̃

eτz

z`
· 1

z − z0

dz − 1

2πi

∫
Γ̃

1

z − z0

·
`−1∑
k=0

τ k

k!
zk−` dz .

With the help of the residue theorem, one can easily show that the second
term vanishes. Hence, the corresponding matrix function can be written as

τ `ϕ`(τA) =
1

2πi

∫
Γ̃

eτz

z`
(z − A)−1 dz .

The proof ends by letting s0 tend to infinity and checking that the integral
over the circular arc from T (s0) to T (−s0) vanishes. �

By inserting the parameterization T (s) for the contour Γ, the integral in
Lemma 1 becomes

τ `ϕ`(τA) =
1

2πi

∫ ∞
−∞

eτT (s)

T (s)`
T ′(s)(T (s)− A)−1 ds .
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We discretize this integral by the truncated trapezoidal rule with 2n + 1
equally spaced nodes sk = kh, −n ≤ k ≤ n of distance h, in order to obtain
the rational approximation

τ `ϕ`(τA) ≈ rn(A) =
h

2πi

n∑
k=−n

eτT (sk)

T (sk)`
T ′(sk)(T (sk)− A)−1 , (8)

where rn ∈ P2n/q2n+1 with q2n+1(z) =
∏n

k=−n(T (sk) − z) ∈ P2n+1. Now,
setting u(t) = τ `ϕ`(τA) in Theorem 1 (and subsequent remarks) in [24], we
have the following bound for the approximation of τ `ϕ`(τA) by the rational
matrix function rn(A):

Lemma 2. Suppose that d and β satisfy the condition (4). For ` ≥ 0, n ≥ 1,
τ0 > 0, Λ ≥ 1, 0 < θ < 1, and the parameter choice

h =
a(θ)

n
, λ =

2πdn(1− θ)
τ0Λa(θ)

, a(θ) = arccosh

(
Λ

(1− θ) sin(β)

)
, (9)

we obtain on the time interval τ0 ≤ τ ≤ Λτ0 the uniform estimate

‖τ `ϕ`(τA)− rn(A)‖ ≤ C · L(λτ0 sin(β − d))

λ`
· 2εn(θ)θ

1− εn(θ)
(10)

with

C = M · 2

π

√
1 + sin(β + d)

(1− sin(β + d))2`+1
, εn(θ) = exp

(
−2πdn

a(θ)

)
,

where M denotes the constant in (7). The function L in (10) is given as
L(s) = 1 + | ln(1 − e−s)|, where L(s) behaves like | ln(s)| for s → 0+ and
tends to 1 for s→ +∞.

This convergence result for a fixed rational approximation of τ `ϕ`(τA)
will now be used to construct a rational Krylov subspace method with the
same poles but an improved convergence behavior.
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T (s)

W (A)
α

Figure 2: The field-of-values W (A) of A and the location of the poles on the hyperbola T .

3. Rational Krylov subspace approximation

In this section, we consider the approximation of the vector τ `ϕ`(τA)v in
the rational Krylov subspace

Q2n+2(A, v) =

{
p2n+1(A)

q2n+1(A)
v, p2n+1 ∈ P2n+1

}
= span{v, (z−n − A)−1v, (z−(n−1) − A)−1v, . . . , (zn − A)−1v} .

In accordance with the considerations of the previous section, we choose
the poles as zk = T (hk), k = −n, . . . , n, where T is the hyperbola defined
in (5) winding around the field-of-values W (A); see Figure 2. The fixed
denominator polynomial q2n+1 of the rational Krylov subspace Q2n+2(A, v)
has therefore the form

q2n+1(z) =
n∏

k=−n

[
λ · (1− sin (β + ikh))− z

]
, (11)

where the parameters h, λ, and β are chosen according to (4) and (9).
The rational Krylov approximation is now defined as

τ `ϕ`(τA)v ≈ τ `ϕ`(τAn)v ,
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where An ∈ CN×N is the restriction of the matrix A to Q2n+2(A, v) and has
rank 2n + 2. This restriction is given by An = PnAPn, where Pn designates
the orthogonal projection onto the rational Krylov subspace Q2n+2(A, v).
Let Vn ∈ CN×(2n+2) be a matrix whose columns v1, . . . , v2n+2 build an or-
thonormal basis of Q2n+2(A, v). Then the orthogonal projector Pn is given
as VnV

+
n , where V +

n ∈ C(2n+2)×N denotes the Moore-Penrose pseudoinverse
of Vn with respect to the chosen inner product on CN . With these notations
the rational Krylov subspace approximation can be written as

τ `ϕ`(τA)v ≈ τ `ϕ`(τAn)v = τ `Vnϕ`(τSn)V +
n v , Sn = V +

n AVn .

The function ϕ` then has to be evaluated only for a small square matrix Sn of
dimension 2n+ 2� N . This can be done by standard algorithms for dense
matrices.

The orthonormal basis vectors v1, . . . , v2n+2 can be computed by a ratio-
nal Arnoldi process or Gram-Schmidt orthogonalization. In contrast to the
sequential Arnoldi algorithm, the latter allows for a parallel implementation
by assigning to each computing node the solution of one of the linear systems
(zk − A)wk = v for k = −n, . . . , n. This procedure results in a tremendous
speed-up. A similar approach was carried out in [12], where matrices A with
W (A) ⊆ {z ∈ C |Re(z) ≤ 0} have been considered and where the differ-
ent poles of the rational Krylov subspace have been located parallel to the
imaginary axis.

It is known that solving the linear systems in parallel and using a Gram-
Schmidt-type orthogonalization tends to produce an ill-conditioned rational
Krylov basis and numerical inaccuracies may occur during the orthogonal-
ization. Special care needs to be taken to stabilize the algorithm. A more
detailed recent discussion in the context of general rational Krylov subspace
methods can be found in [3].

With the help of the results in the previous section, we are now able to
state the following theorem.

Theorem 3. Let the fixed denominator q2n+1 of the rational Krylov subspace
Q2n+2(A, v) be given as in (11). Moreover, let A be a matrix with W (A) ⊆
Sα and denote by An its restriction to Q2n+2(A, v). We assume that the
parameters are chosen according to (4) and (9). For the approximation of
τ `ϕ`(τA)v, ` ≥ 0, in Q2n+2(A, v), we have for τ0 ≤ τ ≤ Λτ0 the uniform
estimate

‖τ `ϕ`(τA)v − τ `ϕ`(τAn)v‖ ≤ C1

n`
· e−C2n · ‖v‖ , n ≥ 1 , (12)
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where the constants C1 and C2 depend on `, d, β, and θ.

Proof. Let τ ∈ [τ0,Λτ0] be arbitrarily chosen. For all rational functions
r ∈ P2n+1/q2n+1 evaluated at the matrix A, the rational Krylov subspace ap-
proximation of r(A)v inQ2n+2(A, v) is exact (see [2], p. 3869). More precisely,
we have

r(An)v = r(A)v for all r ∈ P2n+1/q2n+1 .

Therefore, we obtain the estimate

‖τ `ϕ`(τA)v − τ `ϕ`(τAn)v‖ ≤‖τ `ϕ`(τA)− r(A)‖‖v‖

+ ‖τ `ϕ`(τAn)− r(An)‖‖v‖ .
(13)

The relation An = PnAPn with the self-adjoint projector Pn implies for all
x ∈ CN that

(Anx, x) = (APnx, Pnx) ⊆ Sα

and thus W (An) ⊆ Sα by our assumption W (A) ⊆ Sα. We now choose for r
the special rational function

r(z) =
h

2πi

n∑
k=−n

eτT (sk)

T (sk)`
T ′(sk)

T (sk)− z
∈ P2n/q2n+1 ⊆ P2n+1/q2n+1

as in (8). Then, we use inequality (10) for both terms on the right-hand side
of (13). This yields

‖τ `ϕ`(τA)v − τ `ϕ`(τAn)v‖ ≤ 2C · L(λτ0 sin(β − d))

λ`
· 2εn(θ)θ

1− εn(θ)
‖v‖ .

Thus, (12) holds true with

C1 =
8M

π
(

1− exp
(
− 2πd

a(θ)

)) ·
√

1 + sin(β + d)

(1− sin(β + d))2`+1

· L
(

2πd(1− θ) sin(β − d)

Λa(θ)

)
·
(

τ0Λa(θ)

2πd(1− θ)

)`
C2 = − 2πdθ

a(θ)
,

where we used that L(s) and (1 − exp(−s))−1 are decreasing functions in
s > 0. �
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4. Numerical experiments

We start this section with a test example, where we contrast the perfor-
mance of the rational Krylov subspace method with the fixed rational approx-
imation. In a second example, we consider a convection diffusion equation
whose discretization leads to a matrix with a sectorial field-of-values.

4.1. Test example

For the standard Euclidean norm, we consider the approximation of eAv in
the rational Krylov subspace Q2n+2(A, v) and compare the convergence with
the fixed rational approximation in (8) that we have obtained by discretizing
the above integral representation of the matrix ϕ-functions by a suitable
quadrature rule. As test matrix, we take a normal matrix A ∈ C1000×1000

whose eigenvalues lie on the boundary of the sector Sπ/4, so that W (A) ⊆
Sπ/4. To be exact, the eigenvalues of A lie in the intervals e±i(π−α) · [1, 500].

The vector v is chosen as a random vector of norm one. Furthermore,
we set β = π/8 and d = π/9 such that the assumption (4) is satisfied. The
distance h of the quadrature nodes and the parameter λ of the contour T
are tuned as suggested in Theorem 1 of [24] (cf. Section 2 above), where we
choose τ0 = 1, Λ = 1 and θ = 0.5.

According to the foregoing description, the poles of rational Krylov sub-
space approximation as well as those of the fixed approximation are symmet-
rically located along the hyperbola T (s) = λ(1−sin(β+is)), s ∈ (−∞,+∞),
with focus λ and asymptotic angle π/2− β.

In Figure 3, we plot the obtained errors of the rational Krylov subspace
method (blue solid line) and the fixed rational approximation (red dashed
line). We can clearly see that from the very first step the Krylov method
converges significantly faster than the fixed approximation. After about the
40th iteration step, the approximation error even deteriorates for the latter
method. The reason for this is that the errors which arise during the compu-
tation of the fixed rational approximation have an enormous influence on the
convergence behavior for large values of n. Instead of the rational function
rn(A) in (8), we have to consider in practice the expression

rn(A)v =
n∑

k=−n

ωkUkv ,
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Figure 3: Comparison of the fixed (red dashed line) and the rational Krylov (blue solid
line) approximation for eAv for θ = 0.5. Moreover, the error of the fixed approximation
is shown for the choice θ = 1 − 1/n (black dash-dotted line), in order to avoid error
amplification.

where

Uk ≈ (T (sk)− A)−1v , ωk ≈
h

2πi

eT (sk)T ′(sk)

T (sk)`
, k = −n, . . . , n .

Proceeding analogously as described in [24], a detailed analysis of the actual
error ‖ϕ`(A)v−rn(A)v‖ reveals that an additional term of order O(εn(θ)θ−1)
appears which goes to infinity for n → ∞. In [24], this problem of error
propagation is overcome by choosing the parameter θ as 1−1/n, which results
in a slower linear convergence rate saturating at some level, but prevents error
amplification. The approximation error for the fixed rational approximation
using θ = 1− 1/n is depicted in Figure 3 by the black dash-dotted line.

In contrast, this effect is not observed for the rational Krylov subspace
approximation that is stable against the influence of errors; cf. Figure 3. Us-
ing a rational Arnoldi decomposition with some reorthogonalization process,
it is possible to achieve nearly machine precision.
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Figure 4: Domain Ω with a coarse triangulation on the left-hand side and the initial value
φ0 on the right-hand side.

4.2. Convection diffusion equation

On the Hilbert space L2(Ω), we consider the convection diffusion equation

φ′ = δ∆φ− bT∇φ for (x, y) ∈ Ω , t > 0

φ(0, x, y) = φ0(x, y) for (x, y) ∈ Ω

φ(t, x, y) = 0 for (x, y) ∈ ∂Ω , t ≥ 0 .

with diffusion coefficient δ > 0 and velocity b = (b1, b2)T . The domain Ω
together with a coarse triangulation and the initial function φ0 are shown in
Figure 4. We discretize the spatial domain by finite elements, using the stan-
dard linear basis functions Ψk(x, y) ∈ H1

0 (Ω), k = 1, . . . , N on a triangular
grid. This leads to the system of ordinary differential equations

Mu′(t) = Su(t) , u(0) = u0 , (14)

where M,S ∈ RN×N are the mass and the stiffness matrix. The coefficient
vector u(t) = (µk(t))

N
k=1 can be identified with the approximation

φ(t, x, y) ≈
N∑
k=1

µk(t)Ψk(x, y)

to the exact solution φ of the convection diffusion equation. The discrete
problem (14) is solved by the product eτM

−1Su0 of the matrix exponential
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and the initial vector u0. In order to determine the sector Sα that con-
tains the field-of-values of the discretization matrix A = M−1S, we consider
the corresponding differential operator Aφ = δ∆φ − bT∇φ. With standard
techniques from functional analysis, we find that the sectorial operator A
satisfies

W (A) ⊆ Sα , α = arctan

(
|b1|+ |b2|

δ

)
with respect to the L2-inner product. The corresponding discrete inner prod-
uct reads (v, w)M = wHMv for v, w ∈ CN and the mass matrix M . The field-
of-values of A with respect to this M -inner product is then also contained in
Sα what can be verified as follows: Since

(S)ij = −δ
∫

Ω

∇φi∇φj dΩ +

∫
Ω

(bT∇φi)φj dΩ , i, j = 1, . . . , N ,

we have for all v = (ηk)
N
k=1 ∈ CN the relation

(Av, v)M = vHMAv = vHSv = (Aϑ, ϑ)L2(Ω) ∈ W (A) ⊆ Sα ,

where ϑ =
∑N

k=1 ηkΨk ∈ H1
0 (Ω).

We now approximate eτAu0 in the rational Krylov subspace Q2n+2(A, u0).
The parameters are chosen as τ = 0.05, γ = 10, β = 0.25, d = 0.2, and
θ = 0.5 such that condition (4) is fulfilled. For the diffusion coefficient and
the velocity, we used δ = 0.5 and b = (0, 1)T . To demonstrate the grid-
independent convergence, we use three different refinements for the triangu-
lation of our domain Ω leading to discretization matrices A ∈ RN×N with
N = 521, N = 36,417, and N = 588,033. The associated approximation
errors are shown in Figure 5. We see that the error curves hardly differ from
each other.

For comparison, we also computed the error of the fixed approximation
using the rational matrix function rn(A) in (8) which is shown in Figure 5
by the red dashed line. It becomes apparent that the difference between the
rational Krylov subspace approximation and the fixed approximation is even
more extreme than in the previous test example. This is a typical behavior
for the rational Krylov subspace method applied to some discretized problem.
The error bound (12) is only a worst case bound, often a faster convergence
can be observed.
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Figure 5: Error versus dimension of Q2n+2(A, u0) for the approximation of eτAu0. We
used three different discretizations with N = 521 (green dotted line), N = 36,417 (orange
dash-dotted line), and N = 588,033 (blue solid line) basis functions. The red dashed line
shows the error of the fixed rational approximation using rn(A)v in (8).

5. Conclusion

We analyzed the approximation of τ `ϕ`(τA)v by a rational Krylov sub-
space method. Our study covers the case of a single time step τ as well as
a time interval τ ∈ [τ0, τ1]. The poles of the rational Krylov subspace lie
on a hyperbolic contour that winds around the field-of-values of the matrix
A lying inside a sectorial region in the left complex half-plane. As long as
the field-of-values is contained in the sector, our error bounds are uniformly
valid for matrices of arbitrary dimension and with an arbitrarily large field-
of-values. In view of a matrix stemming from some spatial discretization of
a differential operator, we have proven a grid-independent convergence.

The special choice of our poles in the rational Krylov subspace is based on
a fixed rational approximation used in [23, 24] that is obtained by applying
the trapezoidal rule to a contour integral representation of the ϕ-functions.
Using the proposed rational Krylov method instead of the fixed approxima-
tion with the same poles, the convergence is stabilized and accelerated.
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[12] Göckler, T., Grimm, V., 2014. Uniform approximation of ϕ-functions
in exponential integrators by a rational Krylov subspace method with
simple poles. SIAM J. Matrix Anal. Appl. 35 (4), 1467–1489.

[13] Grimm, V., 2012. Resolvent Krylov subspace approximation to operator
functions. BIT Numerical Mathematics 52 (3), 639–659.

[14] Grimm, V., Gugat, M., 2010. Approximation of semigroups and related
operator functions by resolvent series. SIAM J. Numer. Anal. 48 (5),
1826–1845.

[15] Grimm, V., Hochbruck, M., 2008. Rational approximation to trigono-
metric operators. BIT Numerical Mathematics 48 (2), 215–229.
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