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Abstract

A two-dimensional fluid laser-plasma integrator for stratified plasma-vacsystems is
presented. Inside a plasma, a laser pulse can be longitudinally compfessetén or
more wave lengths to one or two cycles. However, for physically realisticlations,
transversal effects have to be included, because transversaliliisiaban destroy the
pulse and transversal compression in the plasma as well as focusinguinnvalows
much higher intensities to be reached. In contrast to the one-dimensioealvdasre a
two-step implementation of the Gautschi-type exponential integrator with carstem
size turned out to be sufficient, it is essential to enable changes of the tiprsiztefor the
two-dimensional case. The use of a one-step version of the Gautsehintggrator, being
accurate of second order independent of the highest frequent@egan the system, is
proposed. In vacuum this allows to take arbitrarily large time steps. To optimizene
and memory requirements within the plasma, a splitting of the Laplacian is suggEsi®d
splitting allows to evaluate the matrix functions arising in the Gautschi-type methoiedy
dimensional Fourier transforms. It is also demonstrated how the diffeegiants of the
scheme can be parallelized. Numerical experiments illustrate the supefmnpence and
accuracy of the integrator compared to the standard leap-frog methadlyFme discuss
the simulation of a layered plasma vacuum structure using the new method.
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1 Introduction

The huge progress in laser technology enabled a new aredatitistic laser-

plasma-interaction with many fundamental applicationse Bo called relativis-
tic optics [1] is still rapidly growing. When a relativistita intense laser pulse is
propagating through a plasma, many new physical effectsadg, 3]. Among the
latter are relativistic optical guiding, relativistic elompression, filamentation,
harmonic excitation, wake-field generation, and lasereisquency variations
(photon acceleration). Electrons may be accelerated upetd éhergies and the
ions can gain multi-MeV energies.

The CPA (chirped pulse amplification) technology [1] allowedconsiderably
compress the laser pulse in the longitudinal directioneltdime possible to build
short-pulse lasers with high powers and large focusedsities. A significant new
effect is that short and intense electromagnetic pulsesternatensive wakes of
plasma oscillations behind themselves. The electrostestidllations have a fre-
guency close to the plasma frequency and a wave-number Batthe phase ve-
locity of the oscillations is close to the speed of light.tleées being properly in-
jected into the wake-field [4] may be trapped in there and esadoelerated to high
energies. Wake-field generation [5] became a very intergpihenomenon of short
pulse laser physics, with a huge potential for practicaliappons. The so called
bubble acceleration [6] turned out to be a very effectiveepss. Laser-plasma ac-
celerators have been proposed as a next generation of cbaggaterators because
of the large electric fields they can sustain over short desta compared to con-
ventional accelerator technology [7-9].

In the present paper we use a reduced fluid description withaitm of modeling
laser pulse propagation in layered plasma-vacuum strestirweakly relativistic
intensities (Section 2). At these intensities, efficiemtgibudinal pulse compres-
sion is possible with low energy losses to the plasma, bectugsrelativistic mass
nonlinearity dominates over ponderomotive and other neali effects. Inside a
plasma a laser pulse can be longitudinally compressed femrmot more wave-
lengths to one or two cycles [10], much shorter than curygmlssible with CPA
alone. In [11] highly accurate and efficient methods werestiped to simulate
this one-dimensional pulse compression with much less noaieoise and much
shorter runtimes than e.g. PIC simulations. But for phyliaekalistic simulations,
transversal effects have to be included, because tramgwestabilities can destroy
the pulse [10] and transversal compression in the plasmaedisas/ focusing in
vacuum [12] allows much higher intensities to be reachethérmpresent paper we
develop the implementation of a two-dimensional integré@sed on a one step
Gautschi-type exponential integration scheme to studyidhgitudinal compres-
sion and especially the transversal focusing propertidayared plasma-vacuum
systems. For two space dimensions the numerical efficieacgrbes truly impor-
tant, especially for the intended application. This is losesa large number of pa-



rameters influences the compression and focusing of the diks plasma density,
pulse lengths, width and amplitude, number of plasma layelative length of the
layers, amount of vacuum between the layers and thus a largber of simulation
runs is required for the optimization.

In [11], we suggested to use a Gautschi-type exponentediator (see [13,14] and
references given there) for the time-integration of the-dimeensional problem
and we presented comparisons which showed that such tngetmnic integrators
outperform the standard leap-frog method for this paréicalpplication. For the
spatial discretization we introduced the so-called geaselope approach (QEA)
to reduce the number of spatial grid points significantly.

The results achieved with this one-dimensional code miat/ais to generalize
the techniques to the two-dimensional case (Section 3).edewy in contrast to
the one-dimensional case, where a two-step implementafitime Gautschi-type
exponential integrator with constant step size turned outet sufficient, it is es-
sential to enable changes of the time-step-size for thediwensional case. In
Section 3.1, we therefore suggest to use a one-step verkitie Gautschi-type
integrator [13,15]. An error analysis for the whole familitllese methods is given
in [16]. In particular, it was shown that these methods ap®isé order accurate
independent of the highest frequencies arising in the syste

The main computational effort for one time-step with an exgdial integrator
arises from the computation or approximation of the proddie matrix function

with a vector. In the one-dimensional case, the proposeddospectral discretiza-
tion enabled the use of fast Fourier transformation. Thad ® an implementation
where the overhead compared to the leap-frog method was bt The situ-

ation changes completely in two space dimensions. We thggest to use the
full two-dimensional Laplacian within the matrix functisionly in vacuum, where
huge time-steps can be performed and higher costs pay afindppropagation in

plasma, we split the Laplacian into a transversal and a fodugjal direction and
use only the (one-dimensional) longitudinal directionhwibe matrix functions.
This splitting is justified by physical properties of thewwabn (Section 3.2-3.5).

Nevertheless, for large problems it can be necessary tdiglemathe scheme. A
key observation is that the parallelization has to be adbjat¢he different varia-
tions of the integrator being applied in different regionsidg the simulation (e.g.
vacuum, plasma, and transition regions). We will discussimplementation in
Section 3.6.

In Section 4 we present numerical experiments to illustifzeperformance of our
scheme and we discuss a physical application.



2 Physical model

In this paper we consider the following two-dimensional rlod
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wherea is the normalized vector potentigithe relativistic factor,
_ 2
V¥=1+|3 3

andn} denotes the electron density variatidnis the two-dimensional Laplacian
operator,ﬂ—g is a density parameter wheng < nc to allow for pulse propagation

inside of the plasmand is the normalized, time-independent density profile. To
avoid reflections at plasma boundaries we only considertiefnshanging linearly
at plasma boundaries.

This model has been introduced in [11] for the one-dimeradioase and is valid in
the weakly relativistic regime, i.ép|e < mec for the electrons moving in the laser
field. Thus the initial amplitude scalesas~ € < 1 andné ~ €2,

A derivation of this model including details of the scalirade found in Appendix
A.

Note, that in vacuum = 0 and therefor@} = n}(0) = 0. Thus, in vacuum, only a
two-dimensional linear wave equation for the vector poééneémains to be solved.

3 Numerical schemes
3.1 Gautschi-type exponential integrator for time-disiz&tion

After semi discretization in space (cf. Sec. 3.3), we obsasystem of second order
ordinary differential equations of the form

y(t) = —Q3(t) + F(y(t)) (4)

whereQ? is a symmetric, positive semi-definite matrix aid||, ||Fy||, ||Fyll and
IY'||% + ||Qy]||? are bounded. For the solution we suggest to apply the fatigwi



family of numerical schemes [15, 17]
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Here,

b= (p(hQ), Y= llJ(hQ), Yo = llJo(hQ), Y, = l]Jl(hQ),
whereg, Y, Yo, P are even and analytical functions which are bounded on the no
negative real axis satisfying

@®0) = Y(0) = Wo(0) = W1 (0) =1.

To obtain a scheme with certain desirable properties ingaoseastraints on the
choice of these functions. For instance, a scheme is synuifednd only if

P(&) = sinc(&)Wa (&) andyo(&) = cog&) W1 (&)

and symplecticity is equivalent to

W(&) = sinc(&)@(g).

Moreover, Hairer and Lubich [15] proved that for= wl, w > 0 andF(y) = By
with constanB, the energy is conserved up@gh) for all values ofhw if and only
if

W(E) = sinc®(&)(?) (6)
Thus, there is no scheme in this family which is sympleahdgives good energy
conservation.

In [16], Grimm and Hochbruck derived criteria, which guasssecond order ac-
curacy independent of the eigenvalue€fThey suggested to choose

Y(E) =sinc*€),  @(&) =sinc(¥), (7)

which results in a symmetric second order scheme satis{gngVe use this choice
of functions for our implementation.

Note, that linear problems witk = 0 are solved exactly by all these schemes.
This allows to use arbitrarily large time-steps for the @gation in vacuum. For
the propagation inside of the plasma layers, smaller titepsshave to be used to
obtain the desired accuracy. Note that this change of tieesswould be much
more complicated for the two-step method discussed in [&hiich does not have
the favorable energy conservation property. The only ategnof the two-step
method is that problems with = c are solved exactly even fars 0, but this case

is not relevant for our application.



3.2 Implementation of exponential integrators

For a Gautschi-type time integration scheme, the main tefffer time-step is the
evaluation or approximation of the products of certain mdtmctions of the dis-
cretized Laplaciaf with vectors. It is indispensable to do this in an efficienywa
The computational cost of each time-step is thus closeatedlto the spatial dis-
cretization.

For one-dimensional problems with periodic boundary coois, the method of
choice is using spectral discretization, in which case tlarimnQ is diagonaliz-
able via one-dimensional Fourier transformations. Thepmaational cost of these
transformations i©(N;logN;) operations folN, spatial grid points.

The situation is slightly different in two space dimensioRecall that a two-di-
mensional Fourier transformation on a grid consistindNpk Nk grid points can
be evaluated usin@(N;Nx(logN; + logNy)) operations. For large grids, this may
become too expensive. In addition, on parallel machined) sansformations be-
come inefficient due to the large communication effort.

In general, diagonalization of a large matfXxresulting from finite difference or
finite element discretization is impossible. An alternais’to use Krylov subspace
methods such as the symmetric Lanczos process [18, 19]. +¢owfer the appli-
cations considered here such technigques were not competiti

Therefore, we propose to use different spatial discretimatin different regimes
depending on physical properties of the solution. Moreoweralter the splittings
in (4) during the time integration, i.e. we move parts of thecektized Laplacian
into the functionF. This allows for an efficient evaluation of the matrix furets.

3.3 Spatial discretization

We consider the Laplacian in Cartesian coordinates as watylasdrical coor-
dinates. The-coordinate always resembles the propagation directicheofaser
pulse whereasorr, respectively, denote the transversal direction. The nidgrece
ony or the angular coordinate, respectively, are omitted intéteedimensional
case.

In the Cartesian case we assume periodic boundary conditidssth directions.
This is possible as long as reflected waves are taken caré¢hef bbundaries, since
the physical solution satisfies a finite energy condition.

For the cylindrical case, we impose periodic boundary domas only for the lon-
gitudinal direction and homogeneous Dirichlet boundanyditoons forr = R.



For both geometries we solve the density equation and aeathay-factor only
on grid points which are inside the plasma.

3.3.1 Cartesian coordinates in vacuum

In vacuum we only need to solve the linear wave equation
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For periodic boundary conditions the semi-discretizatiorspace is done by a
pseudo-spectral method witl, Fourier modes on the intervale zp + [—L, L]
in propagation direction anidy modes on the intervad € [—Ly, L] in perpendicu-
lar direction.

Leta=a(t) ¢ CN»*M anda = a(t) € CN*™ be complex matrices containing ap-
proximations to the vector potential and its time derivatn the grid,

: 0
aj~ak,at), aj~zax;at).
The Laplacian is approximated by
Nar 7y 'DiFna+ary DeFy. |

where
21 . Ny Nk
Dy = —diag| ——,...,— -1 k=x2z
k I—k g< 2 y ; 2 >7 5 &
and 7y denotes the discrete Fourier transformfbFourier modes.

Formally, the matricea anda can be reorganized by writing them column-wise
into long vectors. Then the spatially discretized equaf)ncan be written as a
system of differential equations (4), whe®ds a matrix which can be diagonalized
via two-dimensional fast Fourier transforms afd= 0. However, for the imple-
mentation, the matrix notation is more efficient .

In the first time-step, where the initial data is given in ghgkspace, we start by
performing a two-dimensional Fourier transform by appipiast (one-dimensional)
Fourier transforms to all columns and rowsaoéinda. Then we evaluate the func-
tions arising in the Gautschi-type integrator at the diadiaed operator. The re-
sulting operator can be applied to the matriaesda by pointwise multiplication.
(If desired, subsequent time-steps in vacuum can be comhppufeequency space
by diagonal operations only.) At times, where the solut®mnequired in physical
space, inverse Fourier transforms have to be applied towh and columns ch
anda again.



Due to the Gautschi-type integrator being exact in vacuarhe best case we only
have to compute one time-step. The total cost amounts to wsedtmensional
Fourier transforms and in addition four scalar multiplioas per grid point. Stor-
age is required for two arrays fa anda plus four arrays for the diagonalized
matrix functions of the same size. If a reduction of storagesicessary, the matrix
functions can be computed on demand. From the computaipaiat of view, this
is a rather small overhead compared to the two-dimensianailé&r transforms.

3.3.2 Cartesian coordinates in plasma

In plasma layers we have to solve the full, nonlinear systeegoations

0> 0% 02 none+n1
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After space discretization, the linear part is represebted 2x 2 block diagonal
matrix, whose upper diagonal block contains the discrdtlzgplacian and whose
lower diagonal block contains the diagonal operator of #wad equation. Hence,
the matrix operators required for the time integration sohean be computed
separately for both equations. Note that due to the noniilyeae need to compute
(and store) more matrix operators than in vacuum. The mats@j one time-step
in frequency domain amounts to two two-dimensional Fourgmsformations.

Due to the nonlinearity, the time integration scheme dodssolve the the dis-
cretized system exactly anymore. However, the time-step isi only limited by

accuracy, not by stability. This is in contrast to the welbkm leap-frog method,
where stability requires to use time-steps proportiondh&inverse of the largest
eigenvalue of the linear part. We will present comparisonSeéc. 4.2. For more
detailed comparisons for one-dimensional problems we tefg.1].

This straightforward implementation turns out to be quipensive with respect to
computational cost and storage. Fortunately, it is possiincrease the efficiency
considerably by exploiting properties of the solution.

In the left graph of Fig. 1 we show the longitudinal distrilout of the real part of
the vector potentiah along the optical axis of the pulse. On the right, we show
the transversal distribution of the real (solid) and thegmary (dashed) part &

at the pointz, where the maximum of the pulse is attained. The transveistil-
bution is obviously much smoother than the longitudinalerBfore, we can dis-
cretize the transversal direction on a much coarser grickebleer, we propose
to split the Laplacian and only treat the longitudinal pdriteexactly Q ~ 4)
whereas the transversal part is added to the nonline&(ity. To avoid the expen-
sive two-dimensional Fourier transformations, we progosese fourth-order finite
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Fig. 1.Left: The spatial distribution of the real part of the solution in longitudinal direction
through the center of the pulse is highly oscillatdRyght: The spatial distribution of the
real (solid) and imaginary (dashed) part of the solution in transvengadtabn through the
maximum of the pulse is smooth.

differences in this direction.

Due to this splitting, the longitudinal part of the Laplatiaan be diagonalized
by one-dimensional Fourier transforms (of lendtf). Moreover, we only have to
compute (and store) matrix operators of lenigthFor the computation we keep the
vector potential and its derivative in Fourier space onlpimgitudinal direction. In
transversal direction the arrays are not transformed.

For the density equation the application of the exponemtiagrator is straight for-
ward in physical space. Since the density profile only depenad here the storage
requirements are again only of the order of vectors of lehgtiThe inhomogene-
ity contains the Laplacian of the relativistic factowhich depends on the absolute
value of the vector potential. This is a smooth function flocdar polarized laser
beams. Thus it is sufficient to use fourth order finite differes inboth directions
to approximate the inhomogeneity of the density equation.

3.3.3 Cylindrical coordinates

For the equations formulated in cylindrical coordinates
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we basically use the same ideas as for Cartesian coordimafgasma regions,
i.e., we useQ ~ A and treat the transversal direction as part of the nonlityear
For the longitudinal direction, we use pseudo-spectrardiszation while for the

transversal direction, we suggest to use second order ditflisgences.
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Fig. 2. The spectrum of the longitudinal spatial distribution (left) is not gedtaround 0,
other than that of the transversal spatial distribution (right).

Since in cylindrical coordinates it is hard to diagonalihe tomplete Laplacian
in a fast and stable way we use the same implementation iruvaas within the
plasma.

3.3.4 Quasi-envelope approach

The quasi-envelope approach (QEA) is motivated by the feattthe important part

of the spectrum of the operator in longitudinal directiorcagcentrated around a
certain characteristic wave-number depending on wheligeptlse propagates in-
side or outside of the plasma, see Fig. 2, left. The idea of @HA shift the spec-

trum appropriately, see [11] for details. In the two-dimenal case, the situation
in longitudinal direction is exactly the same as in the oimeethsional case but no
shift is necessary for the transversal direction, as camrée & Fig. 2, right. Note,

that this only reduces the number of grid points needed taweshe solution, but

the large norm of the approximation of the parallel part @ kiaplacian remains
unchanged, thus the Gautschi-type time integrator isestsential.

Here again, we replace the vector poterdialy
a(x,zt) = a(x,zt)d*?

which leads to a new equation far
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The value ofk is chosen depending on the position of the pulse, namely
/31— 2—2 or K = 1 or the mean value of both [11].
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3.4 Adaptivity

In order to apply all the different variations of our scheméha appropriate time
we have to determine the location of the pulse. This is dorghggically motivated

means. At the beginning we know the location of the maximumlaode and the

exact width of the pulse. Additionally we know the approximgroup velocity

of the pulse at any time. This allows to determine the appnakt speed of the
maximum of the pulse and to estimate the time when the pulséh@ next region
of the simulation domain.

With this method we can switch between the different integneschemes in vac-
uum and plasma for Cartesian coordinates as well as adapaliesvofk for the
QEA. The latter can be done by a simple shift in the positiothefFourier coef-
ficients which also ensures periodicity of the shift funot@? with regard to the
box length 2.,.

Additionally we can change the spatial grid, which becomesessary for very
narrow pulses as they occur in the simulation of pulse cosgmwa. Also for hard
plasma boundaries, where reflections are no longer nelgjgilbecomes necessary
to interpolate to a finer grid and invert the QEA shift, as wWasaaly shown for the
one-dimensional case in [11]. For pseudo-spectral digatéin this only requires
a larger array in Fourier space where extra entries are fili¢l zeros. But the
computation is much more expensive for the finer grid, thtespolation is avoided
unless absolutely necessary. Therefore, we also use a tafhieestimate for the
pulse to be nonzero.

3.5 Moving simulation window

There are a lot of interesting applications where the fatitdation domain is very
large and it is not at all feasible to use the complete spadiadain during the whole
simulation. To avoid this we use a moving-window technique.

Using the group velocity as described above we estimatartieewhen the pulse
comes close to the right boundary of the simulation box. s purpose we
slightly overestimate the domain on which we consider thiseto be nonzero.
This increases robustness while the computational costgkgible.

The shift is implemented by transforming the vector potdrt physical space,
cutting off the left part and extrapolating to the right byday zeros fora andng.
nd is calculated from the known profile function.

There are two difficulties to be mentioned in this context tiune periodic bound-
ary conditions. First, if reflections occur at plasma bouigtave have to cut them

11



off entirely when shifting the simulation box. Secondly,viacuum this limits the
time-step size because otherwise the pulse would movediesity through the
box instead of moving on continuously. This would result pratgal shifts of the
solution.

3.6 Parallelization

Even though we already reduced computational costs signtfig for large prob-
lems it can be usefull to have a parallel version of the methtsie we have to
tailor the means of parallelization to the different casescdbed above.

3.6.1 Vacuum

For Cartesian coordinates in vacuum we first distribute thensos of the arrays
uniformly over the processors to perform the one-dimeradifest Fourier trans-
forms for each column. We then do a parallel transpositiothefarray and dis-
tribute the rows over the processors for the second parteotwio-dimensional
Fourier transform . Of course the application of the matrix function is alscesgr
over the processors involved.

3.6.2 Plasma

In plasma we basically use the same strategy for paraltelizdor both kinds of
geometries. Here we again distribute all the columns of thaya over the pro-
cessors. But since we only need one-dimensional Fouriesftrans we can avoid
transposing the arrays and therefore save a lot of commiioncame between
different processors.

The only communication between processors is due to theueasal part of the
Laplacian, which is discretized by fourth and second ordatefidifferences in
plasma for Cartesian and cylindrical coordinates, respagtiThus we have to ex-
change at most two columns at each side of the distributey aiices. In Fig. 3
this is demonstrated for a matrix divided to two processorfartesian coordi-
nates and periodic boundary conditions. In this case we t@agtore four extra
columns per processor which are copied from the neighbeaniray.

Each processor first sends the boundary columns to the raiggbprocessors.
Then the next time-step is performed for the inner part oftinay. At the end, the

1 We use the MPI based transpose routine from FFTW version 2 and EEfialoutines
from FFTW 3.

12



A= 20 columns

/N

P1 P2
10 + 4 columns 10 + 4 columns

Fig. 3. Example parallelization scheme for two processors, Cartesiadiicatas in plasma,
periodic boundary conditions and 20 grid points in transversal direcfibe. colored
columns have to be communicated between the processors for the evaluatiog o
transversal Laplacian with finite differences and are stored twice.

information sent from the neighboring arrays is used toudate the finite differ-
ence approximation at the boundaries. This results in dlpkzation which hardly
suffers from communication overhead between processecsuse latencies and
transmission times are almost completely hidden by thedsgnous communica-
tion.

4 Exemplary results

4.1 Splitting of the Laplacian

In this section we will demonstrate, that the error introeth®dy the splitting of
the Laplacian is negligible. For this, we use a rather smah®le, where it is
possible to have a high resolution reference solution topare with. We also
reduce the model and only consider the wave equation witstaohdensity and

13
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Fig. 4. The relative error of the maximum squared amplitude is shown in ther pigiure
and the absolute error of the position of the maximum in wave-lengths is draive iower
picture. The curves marked by circles are the errors of the Gautsahiatgbhod applied
to the full Laplacian, the squares are the errors of the splitted method witieFspectral
discretization in both directions and the diamonds are those for the splitted meitfod
finite differences in transversal direction.
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This is sufficient, since the splitting only affects the waggiation and does neither
depend on the kind of nonlinearity nor on the density equatio

The initial conditions are chosen from

—(-7—kgt)? 2
ax,zt)=ae 1 e'6dkoznY) (12)

whereap = 0.15 is the initial amplitudezg = 35\ the initial pulse position in
longitudinal direction]g = 10\g the lengthwy = 100\g the width of the pulse and
ko=,/1— 2—2 the plasma wave-length.

This is solved for Cartesian coordinatesz) € [—300\p, 300\o] x [0Ag, 300\o] and

t € [0/vp,300/vo]. We use 1024 grid points irdirection and 512 grid points in
x-direction. The time-step size is chosen &dZ. For the reference solution we use
twice as many points in both spatial directions, whereagheitime-discretization
we choose a fourth of the original time-step. For the errdcudation we Fourier
interpolate the solutions to the finer grid.

In Fig. 4 we can see the error in two different measures, iruthger picture the
relative error in the maximum squared amplitude is showntaadbwer one shows

14
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Fig. 5. The relative error in the maximum amplitude is plotted over the run time in minutes
Circles: Gautschi-type integrator. Squares: leap-frog. Dashetsespatial discretization.
Line: fine spatial discretization. Along each curve the valuevdries.

the absolute error of the position of the maximum in wavegtbs. For each type
of error there are three different curves. The circular matkow the error of the
Gautschi-type method applied to the full Laplacian, disze&l via Fourier spectral
method in both directions. The square marks are the errotiseoGautschi-type

method applied to the parallel Laplacian only and the trarsal part treated as
nonlinearity. Here we still use Fourier spectral methodstf@ discretization in

both directions. The diamond marks represent the erroreo$itted method, but
this time with fourth order finite differences in transvdrgaection. We can see,
that the three error curves are nearly indistinguishablechvproves that the split-
ting does not degrade accuracy.

4.2 Effect of different time-integration schemes

We next compare our new implementation of the Gautschi-tytggrator with the
leap-frog scheme, which is the standard scheme used forothgos of second
order wave equations.

Here, we solve the full system of equations for the two-disi@mal Cartesian
case (9). The density layer starts at 25Qvith a linear increase up tﬁg =03
over B\, then it stays constant over 5QQuntil there is a linear decrease between
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755\0 and 760\ again.

The initial conditions are again taken from (12) wah = 0.12, zg = 150\¢ and
ko = 1, since the pulse starts in vacuum. The remaining coeftEmne the same as
above.

The simulation is run up td = 1240/vy, thus the pulse propagates through the
plasma layer and travels through vacuum afterwards for songe For the runtime
comparisons we used the moving window technique, sinceitgation domain

is quite long.

In vacuum there is no need to compare the leap-frog scherhelveitexact solution
which the Gautschi-type integrator computes, thus we delonly the time-steps
done inside of the plasma in the runtime comparison.

As a measure for the quality of the solution we choose theivel@rror of the
maximum amplitude. As a sensible error threshold we usewe\afl1%. Since the
reference solution was computed on a finer grid, we intetpdlthe solution to the
reference grid and then computed the maximum amplitude.

In Fig. 5 the amplitude error of the Gautschi-type methodc(es) and the leap-
frog method (squares) is plotted against computation timglasma. The dashed
line represents a coarse spatial discretization with 10&#i gpints in longitudi-
nal direction, wherelzis chosen to be.852\¢ and 400 grid points in transversal
direction withdx = 2Aq. The continuous line gives the errors for a fine spatial dis-
cretization withN, = 2048,dz= 0.176\g, Nx = 800 anddx = Aq. In both cases
the resulting simulation box of approximately 3g0n longitudinal direction and
800\, in transversal direction is moved along with the solution.

For the same error the step size for the leap-frog methodadnlas aibout twice as
small as for the Gautschi-type integrator. This is in agrestwith the results in the
one-dimensional case from [11]. But in the two-dimensiomealecthe advantage of
the leap-frog method in terms of computational time per tstep is smaller than in
the one dimensional case, because simulation times arestrorgly affected by
memory bandwidth limitations, see Fig. 6. Thus it is evenergificient to invest
in a more sophisticated algorithm and benefit from the latiges-steps.

4.3 Parallelization

To demonstrate the efficiency of the parallelized versioawfcode we simulated
the same problem as for the runtime comparison with one, fouw, six and eight
processors on a cluster of single CPU P4 nodes with standayab{®iEthernet
interconnects. We used the finer one of the two spatial dizat®ns.
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Fig. 6. For the Gautschi-type method (solid) and the leap-frog methodddpagie run-
time between outputs (i.e. 228 time-steps, except for vacuum steps with thecliaype
method) is shown. The spatiahd time-discretization is the same for both schemes except
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Fig. 7. The upper three pictures show the full time (black), pure numheching time
(light gray), data receive time (dark gray) and synchronization time (midcdg) per
time-step for two, four and eight processors respectively. The fquidiure shows the
accumulated full integration time for one, two, four and eight processorsds from top
to bottom).

In the upper three pictures of Fig. 7 full time (black), putember crunching time
(light gray), data receive time (dark gray) and synchratimzetime? (middle gray)
per time-step for two, four and eight processors, respalgtiis shown. In each case
we can distinguish between three different behaviors ottdude. First of all there

2 The synchronization time is due Ml _Barri er () calls after each time-step.
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Fig. 8. The runtime per output step for two, four, six and eight proeegsarves from dark
to light gray) respectively compared to single processor runtime (black).

is the vacuum step region. Here, the crunching time is qaitge $ince we neither
calculate the nonlinearity nor the density equation. H@vedue to the matrix
transpositions the communication time is rather long.

The other two cases are the plasma and transition regiores.ofly difference
is the spatial resolution which is higher in the transitiegion. However in both
cases the full equations are solved and the Laplace sgliimpplied. The first
results in higher crunching times whereas the latter resltice communication
time significantly.

Another nice property is the very short synchronizatioresngiven by the middle
gray curves. Thus independent of the number of processeds thee work is evenly
balanced over the processors.

In comparison we can see, that a single vacuum time-step lakger than a single
time-step for the full equations, even with the higher spa@solution in transition
regions. This is compensated by the fact that the time-gtepacuum are 200
times larger than the time-steps we use for solving the tillo§ equations. This
is illustrated in the fourth picture of Fig. 7, where the aoculated full integration
time is shown for a single processor and for two, four andtgpghallel processors
(curves from top to bottom). The strongest increase of caatjmnal time is in the
transition region, where we use the higher spatial reswiutiirectly followed by
the plasma regions. We can also see, that in comparisontdggator spends hardly
any time in vacuum regions. Note, that the length of the tsteps in vacuum is
only limited by points of data output and the shifting of theglation box.
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Fig. 9. Speed up factor for 2, 4, 6 and 8 processors (solid) vs. sdatihg (dashed).

The runtime per output step is shown in Fig. 8. Here again iffierent regions
of the simulation are visible. The drop in simulation timevé&rds the end of the
plasma region is due to the remaining length of the plasmer lmgide the simu-
lation box, since the density equation is only solved onelgréd points which lie
inside the plasma.

Another point to emphasize is the good scaling of the accatadlfull integration

times with the number of processors used, even for thisivelgtsmall problem.

Using two processors reduces the runtime by a factor of I'B&. runtimes for

four, six and eight processors scale with 3.88, 5.65 and ré§8ectively (see Fig.
9).

4.4 Example for a physical application

One physical application for our code is the simulation gkled plasma / vac-
uum structures to study the longitudinal compression apd@ally the transversal
focusing properties of such structures. For a controllabk@ efficient longitudinal
compression, the laser amplitude has to be subrelati,viﬁiag <1 (whereagg=1
corresponds to 8w /cn?), otherwise the energy loss inside the plasma would be
too large. Moreover, the spot size has to be much larger tlapulse length, oth-
erwise the pulse would directly show collapse behaviorsTimplies that a high
power laser pulse has to be only weakly focused initiallyédrbthe right ampli-
tude and spot size range. Inside the plasma the pulse iguoimally compressed
from ten or more wave-lengths to just one or two cycles [10]tdach high subrel-
ativistic or even relativistic intensities, the pulse hadeé transversely focused as
well. Fortunately the plasma induces a negative curvatitieeophase front of the
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Fig. 10. An initially (in both directions) Gaussian pulse wih= 0.1, Lo = 10A\g and
W = 150Ao propagates through two plasma layers of density= 0.3n; and different
lengths. The first layer is 33@Q long and the second 12% with 1500\¢ vacuum in be-
tween.

pulse, which leads to focusing of the pulse behind the pldayex [12]. This fo-
cusing can be enhanced by slicing a plasma layer of optimgthefor longitudinal
compression into multiple shorter layers with vacuum sedtiin between.

An example for two layers with different lengths is shown ig.RLO; the amplitude
curve and the radial profiles at different times are shownig E1. In the vac-
uum regions between the layers additional transversakfogwccurs and thus the
transversal focusing potential of the pulse can be fullyl@igd.

This leads to a much smaller spot size in the focus behindatsteplasma layer
(Fig. 13). Furthermore the pulse enters the next layer whigher amplitude and
thus the nonlinear self interaction is enhanced, too. Adxeaseen in Fig. 12, both
effects combined lead to a much larger achievable intettsitlyincreases with the
number of layers. But the optimum configuration seems to bddyars, where the
second layer is much thinner than the first.

An additional advantage of a layered structure is the cbofrivansversal filamen-

tation [10]. For this more than two layers can be necessasulBon flamentation
control and a thorough review of the focusing properties oftiple plasma layers
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Fig. 11. Plots of the radial profile of Fig. 10 at six different times/locationarked with
squares in the plot of the maximum amplitude (top). Time evolution from left to right,
to bottom.

0.6 -

o © e
& IS o
T T T
1 1 1

maximum of |a|?

©

S
T
1

01 F / .

1 | | | | | | | | |
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
Z/AO

Fig. 12. Maximum amplitude of the same initial pulse as in Fig. 10 as it propagatesth
one to four plasma layers of density= 0.3n.. The curves are in increasing lightness: one
layer (460\g), two layers (227 each), three layers (13@ each), four layers (11% each)
and again two layers (33% and 10Q\p). In each case there is a total of 22Q0vacuum
between the layers.
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Fig. 13. Spot size of the same initial pulse as in Fig. 10 propagating throeghatine
plasma / vacuum configurations as in Fig. 12.

can be found in [20].

5 Conclusion

We have detailed the implementation of a two-dimension@grator for weakly
relativistic laser-plasma interaction. Special attemtieas paid to efficiently simu-
late systems with large amounts of vacuum between the plEsmes, by selecting
a time-integration method that is in principle able to udstearily large steps in
vacuum. This is necessary for the study of transversal fogud a laser pulse by
layered plasma and vacuum structures. We have shown thgrator to be highly
accurate and to be distinctly superior to the standard fieapmethod in terms
of stability, allowed step size and the integrator runtirf@sthe same accuracy.
We also discussed how other methods to reduce the commahtiomplexity, like
QEA which was introduced in [11] and a moving simulation wong can be com-
bined with this time-integration scheme.

The proposed implementation can be directly extended tdahiree-dimensional
case. Then parallelization becomes strictly necessaryeaen for large numbers
of processors we expect the scaling to be almost linear.
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A Details of the physical model

The high-frequency fluid-Maxwell model consists of the wageiation, Poisson’s
equation, and the electron continuity and momentum equstim dimensionless
form, these equations are

62 0 No P
A DA — 2 (o= “ney (A.1)
n
Ap= (N —ne)
Nc
0 P
0 P
5 (P—A) =L < (0x (P—A)} =Dlo-y) (A3)

wherey = /1 + P2 is the relativistic factor. We use the Coulomb gauge condlitio
0-A = 0. The vector potentiah is measured in the uné/mc; the same is used
for the non-dimensional electrostatic potentlThe unit for the density is the
maximum valuag of the ion background density, wheraass the so called crit-
ical density. Since we are interested in laser propagati@miunderdense plasma,
no/nc < 1 holds. The momentur® is measured ic, wherem, e, c are electron
mass, elementary charge, and speed of light, respectively.

The momentum balance (A.3) can be simplified further by cimgoan initial gauge
condition which does not restrict generality. We define tteggetion operator§l,
andlg such that any fieldi is decomposed inta = v +w with the following
properties

Miu=v=u; Oxv=0, butgeneraly O-v#0,
Mgu=w=ug, O-w=0, butgenerally Oxw#0,

with
nc+ I_Ig — 1.

Clearly,v is a gradient field, and is a rotation field. The operators can be repre-
sented as

Ne=0A"'0- and Mg=1-0a"'0..

Applying the projection operators to the momentum balarc8)(allows to split
the equation in a divergence-free and a curl-free part. Goaton

%(PQ—A)—I‘IQ gx{Dx (Pg—A)}| =0

describes the convective transport of the divergencegaeeof the canonical mo-
mentumPcan= P — A. This implies that for the initial conditioRg = A the canon-
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ical momentum stays curl-free for all times, i.e.
Pcan=Pg+Pc—A =Pc.

This initial condition simplifies the curl-free part to

Sincel x P; = 0, Pc can be written in terms of a Clebsch-potentRd,—= (0. The
integration of (A.3) thus leads to

LI
Applying the splitting viallg and[¢ to the wave equation (A.1) fok, we obtain

for the divergence-free part

02 No ~1r. e
oA —DA = —n—c(l— 0A D-){V(A+DUJ)}

and for the curl-free part

Straightforward evaluations of the right-hand-sides lead

a2 - ofon28) o [0) ]
S S I (G e

To further simplify the equations in the weakly relativtstegime, we scale the per-
pendicular variation with respect to the parallel changeal(ng parametex) and
introduce smallness parametersgs, B, p, andd for the amplitudes of the physical
variables:

A(r,t)=¢e{A (zar ) +ueZAH(z,0(rl)}
ne(r,t) = ng+ Bng(z,ar .)

(p(rat) = p(p]'(Z,CXI'L)

llJ(r;t) :5llJ1(Z70”L)

y(r,t) = 1+E—2|A]2
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The different smallness parameters are of course intéecelén the following we
justify the relations

H=0<1 and d=p=PB=¢€’«<1
between these parameters. From the Coulomb gauge we get
O-A=¢e{ad Al +H0AI} =0 = p=a.
The Laplace-equation fapyields
pAQh = ne— )Z%Bnéipzﬁ-
The reduced momentum balance

Sorpt =p@'— (y—1) = pg*+ 0(€?

and the continuity equation
n
pO-00¢" = Bont = —n—ongéAlpl-l— ..
C

are consistent with = p = B = €2 . This scaling is also compatible with the wave
equation forA, i.e.

2
g {0ZA — 02A — 0% A}_—s{n (3 +pnd) [1—%\A|2}A}+
C
Then, because of

n A%
DV‘a = £2(0nk + nSDT)

and
AD:AL(O(DL)—HJ(A”OZ
we have

0(a-0%) =o(a
( v) (&)

0 x Kmr\'/e) (Dw)} — o(%a) .

The inverse Laplace-operator does not change the ordeealdminating terms
since

1 1 ,Kk2 92\t
Aflz o ~ -1 1—a N 0 CXZ
4 @+ o2k 4 k2|< k2|> (622> +o(a%),

where# ~1is the inverse Fourier-transform.
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To get consistent equations, we include all terms up to cgélemd a?, while
neglecting terms of ordea and higher.

Linearizing and differentiating in time the continuity edion (A.2), i.e.

62 1 I’lo 00

ﬁne— eatALp )

and eliminating on the right-hand-sidg* by taking the Laplacian of the equation
for P!, we arrive at

2 0
:tz nt+ @nonl eA|A|2 . (A.4)

Together with the lowest order wave equation

ng AA——n—C{ (1——yAy) }A (A.5)

we obtain a closed system of two equations. Instead of assexjgansion we may
retain the fully-factor, keeping in mind at the end the valid accuracy of #sailts.
For the initial conditionA; = 0, the parallel component will stay zero during time
evolution. It is then possible to use the scalar complexe@fielda to describe the
vector potential via

a(r,t) = Ag(r,t) +iAy(r,t) .
Making use of the latter, we obtain (1) being coupled to (Awlhere the latter
agrees with (2).
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