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Abstract

A two-dimensional fluid laser-plasma integrator for stratified plasma-vacuumsystems is
presented. Inside a plasma, a laser pulse can be longitudinally compressedfrom ten or
more wave lengths to one or two cycles. However, for physically realistic simulations,
transversal effects have to be included, because transversal instabilities can destroy the
pulse and transversal compression in the plasma as well as focusing in vacuum allows
much higher intensities to be reached. In contrast to the one-dimensional case, where a
two-step implementation of the Gautschi-type exponential integrator with constant step
size turned out to be sufficient, it is essential to enable changes of the time step-size for the
two-dimensional case. The use of a one-step version of the Gautschi-type integrator, being
accurate of second order independent of the highest frequencies arising in the system, is
proposed. In vacuum this allows to take arbitrarily large time steps. To optimize runtime
and memory requirements within the plasma, a splitting of the Laplacian is suggested. This
splitting allows to evaluate the matrix functions arising in the Gautschi-type method byone-
dimensional Fourier transforms. It is also demonstrated how the differentvariants of the
scheme can be parallelized. Numerical experiments illustrate the superior performance and
accuracy of the integrator compared to the standard leap-frog method. Finally, we discuss
the simulation of a layered plasma vacuum structure using the new method.
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1 Introduction

The huge progress in laser technology enabled a new area of relativistic laser-
plasma-interaction with many fundamental applications. The so called relativis-
tic optics [1] is still rapidly growing. When a relativistically intense laser pulse is
propagating through a plasma, many new physical effects appear [2,3]. Among the
latter are relativistic optical guiding, relativistic self-compression, filamentation,
harmonic excitation, wake-field generation, and laser pulse frequency variations
(photon acceleration). Electrons may be accelerated up to GeV energies and the
ions can gain multi-MeV energies.

The CPA (chirped pulse amplification) technology [1] allowedto considerably
compress the laser pulse in the longitudinal direction. It became possible to build
short-pulse lasers with high powers and large focused intensities. A significant new
effect is that short and intense electromagnetic pulses create intensive wakes of
plasma oscillations behind themselves. The electrostaticoscillations have a fre-
quency close to the plasma frequency and a wave-number such that the phase ve-
locity of the oscillations is close to the speed of light. Particles being properly in-
jected into the wake-field [4] may be trapped in there and can be accelerated to high
energies. Wake-field generation [5] became a very interesting phenomenon of short
pulse laser physics, with a huge potential for practical applications. The so called
bubble acceleration [6] turned out to be a very effective process. Laser-plasma ac-
celerators have been proposed as a next generation of compact accelerators because
of the large electric fields they can sustain over short distances compared to con-
ventional accelerator technology [7–9].

In the present paper we use a reduced fluid description with the aim of modeling
laser pulse propagation in layered plasma-vacuum structures at weakly relativistic
intensities (Section 2). At these intensities, efficient longitudinal pulse compres-
sion is possible with low energy losses to the plasma, because the relativistic mass
nonlinearity dominates over ponderomotive and other nonlinear effects. Inside a
plasma a laser pulse can be longitudinally compressed from ten or more wave-
lengths to one or two cycles [10], much shorter than currently possible with CPA
alone. In [11] highly accurate and efficient methods were developed to simulate
this one-dimensional pulse compression with much less numerical noise and much
shorter runtimes than e.g. PIC simulations. But for physically realistic simulations,
transversal effects have to be included, because transversal instabilities can destroy
the pulse [10] and transversal compression in the plasma as well as focusing in
vacuum [12] allows much higher intensities to be reached. Inthe present paper we
develop the implementation of a two-dimensional integrator based on a one step
Gautschi-type exponential integration scheme to study thelongitudinal compres-
sion and especially the transversal focusing properties oflayered plasma-vacuum
systems. For two space dimensions the numerical efficiency becomes truly impor-
tant, especially for the intended application. This is because a large number of pa-
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rameters influences the compression and focusing of the pulse, like plasma density,
pulse lengths, width and amplitude, number of plasma layers, relative length of the
layers, amount of vacuum between the layers and thus a large number of simulation
runs is required for the optimization.

In [11], we suggested to use a Gautschi-type exponential integrator (see [13,14] and
references given there) for the time-integration of the one-dimensional problem
and we presented comparisons which showed that such trigonometric integrators
outperform the standard leap-frog method for this particular application. For the
spatial discretization we introduced the so-called quasi-envelope approach (QEA)
to reduce the number of spatial grid points significantly.

The results achieved with this one-dimensional code motivated us to generalize
the techniques to the two-dimensional case (Section 3). However, in contrast to
the one-dimensional case, where a two-step implementationof the Gautschi-type
exponential integrator with constant step size turned out to be sufficient, it is es-
sential to enable changes of the time-step-size for the two-dimensional case. In
Section 3.1, we therefore suggest to use a one-step version of the Gautschi-type
integrator [13,15]. An error analysis for the whole family of these methods is given
in [16]. In particular, it was shown that these methods are second order accurate
independent of the highest frequencies arising in the system.

The main computational effort for one time-step with an exponential integrator
arises from the computation or approximation of the productof a matrix function
with a vector. In the one-dimensional case, the proposed pseudospectral discretiza-
tion enabled the use of fast Fourier transformation. This lead to an implementation
where the overhead compared to the leap-frog method was quite low. The situ-
ation changes completely in two space dimensions. We thus suggest to use the
full two-dimensional Laplacian within the matrix functions only in vacuum, where
huge time-steps can be performed and higher costs pay off. During propagation in
plasma, we split the Laplacian into a transversal and a longitudinal direction and
use only the (one-dimensional) longitudinal direction with the matrix functions.
This splitting is justified by physical properties of the solution (Section 3.2–3.5).

Nevertheless, for large problems it can be necessary to parallelize the scheme. A
key observation is that the parallelization has to be adapted to the different varia-
tions of the integrator being applied in different regions during the simulation (e.g.
vacuum, plasma, and transition regions). We will discuss our implementation in
Section 3.6.

In Section 4 we present numerical experiments to illustratethe performance of our
scheme and we discuss a physical application.
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2 Physical model

In this paper we consider the following two-dimensional model

∂2

∂t2a = ∆a− n0

nc

(n0
e +n1

e)

γ
a , (1)

∂2

∂t2n1
e = −n0

nc
n0

en1
e +n0

e∆γ (2)

wherea is the normalized vector potential,γ the relativistic factor,

γ2 = 1+ |a|2 (3)

andn1
e denotes the electron density variation.∆ is the two-dimensional Laplacian

operator,n0
nc

is a density parameter wheren0 < nc to allow for pulse propagation

inside of the plasma.n0
e is the normalized, time-independent density profile. To

avoid reflections at plasma boundaries we only consider densities changing linearly
at plasma boundaries.

This model has been introduced in [11] for the one-dimensional case and is valid in
the weakly relativistic regime, i.e.|p|e≪ mec for the electrons moving in the laser
field. Thus the initial amplitude scales asa0 ∼ ε ≪ 1 andn1

e ∼ ε2.

A derivation of this model including details of the scaling can be found in Appendix
A.

Note, that in vacuumn0
e ≡ 0 and thereforen1

e ≡ n1
e(0) = 0. Thus, in vacuum, only a

two-dimensional linear wave equation for the vector potential remains to be solved.

3 Numerical schemes

3.1 Gautschi-type exponential integrator for time-discretization

After semi discretization in space (cf. Sec. 3.3), we obtaina system of second order
ordinary differential equations of the form

ÿ(t) = −Ω2y(t)+F(y(t)) (4)

whereΩ2 is a symmetric, positive semi-definite matrix and‖F‖, ‖Fy‖, ‖Fyy‖ and
‖y′‖2 + ‖Ωy‖2 are bounded. For the solution we suggest to apply the following
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family of numerical schemes [15,17]

yn+1 = cos(hΩ) yn +hsinc(hΩ) ẏn +
1
2

h2ΨF(Φyn) (5a)

ẏn+1 = −Ωsin(hΩ) yn +cos(hΩ) ẏn +
1
2

h
(

Ψ0F(Φyn)+Ψ1F(Φyn+1)
)
. (5b)

Here,
Φ = φ(hΩ), Ψ = ψ(hΩ), Ψ0 = ψ0(hΩ), Ψ1 = ψ1(hΩ),

whereφ,ψ,ψ0,ψ1 are even and analytical functions which are bounded on the non-
negative real axis satisfying

φ(0) = ψ(0) = ψ0(0) = ψ1(0) = 1 .

To obtain a scheme with certain desirable properties imposes constraints on the
choice of these functions. For instance, a scheme is symmetric if and only if

ψ(ξ) = sinc(ξ)ψ1(ξ) andψ0(ξ) = cos(ξ)ψ1(ξ)

and symplecticity is equivalent to

ψ(ξ) = sinc(ξ)φ(ξ).

Moreover, Hairer and Lubich [15] proved that forΩ = ωI , ω > 0 andF(y) = By
with constantB, the energy is conserved up toO(h) for all values ofhω if and only
if

ψ(ξ) = sinc2(ξ)φ(ξ) (6)

Thus, there is no scheme in this family which is symplecticandgives good energy
conservation.

In [16], Grimm and Hochbruck derived criteria, which guarantee second order ac-
curacy independent of the eigenvalues ofΩ. They suggested to choose

ψ(ξ) = sinc3(ξ), φ(ξ) = sinc(ξ), (7)

which results in a symmetric second order scheme satisfying(6). We use this choice
of functions for our implementation.

Note, that linear problems withF ≡ 0 are solved exactly by all these schemes.
This allows to use arbitrarily large time-steps for the propagation in vacuum. For
the propagation inside of the plasma layers, smaller time-steps have to be used to
obtain the desired accuracy. Note that this change of time-steps would be much
more complicated for the two-step method discussed in [11],which does not have
the favorable energy conservation property. The only advantage of the two-step
method is that problems withF ≡ c are solved exactly even forc 6= 0, but this case
is not relevant for our application.
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3.2 Implementation of exponential integrators

For a Gautschi-type time integration scheme, the main effort per time-step is the
evaluation or approximation of the products of certain matrix functions of the dis-
cretized LaplacianΩ with vectors. It is indispensable to do this in an efficient way.
The computational cost of each time-step is thus closely related to the spatial dis-
cretization.

For one-dimensional problems with periodic boundary conditions, the method of
choice is using spectral discretization, in which case the matrix Ω is diagonaliz-
able via one-dimensional Fourier transformations. The computational cost of these
transformations isO(Nz logNz) operations forNz spatial grid points.

The situation is slightly different in two space dimensions. Recall that a two-di-
mensional Fourier transformation on a grid consisting ofNz×Nx grid points can
be evaluated usingO(NzNx(logNz+ logNx)) operations. For large grids, this may
become too expensive. In addition, on parallel machines, such transformations be-
come inefficient due to the large communication effort.

In general, diagonalization of a large matrixΩ resulting from finite difference or
finite element discretization is impossible. An alternative is to use Krylov subspace
methods such as the symmetric Lanczos process [18, 19]. However, for the appli-
cations considered here such techniques were not competitive.

Therefore, we propose to use different spatial discretizations in different regimes
depending on physical properties of the solution. Moreover, we alter the splittings
in (4) during the time integration, i.e. we move parts of the discretized Laplacian
into the functionF . This allows for an efficient evaluation of the matrix functions.

3.3 Spatial discretization

We consider the Laplacian in Cartesian coordinates as well ascylindrical coor-
dinates. Thez-coordinate always resembles the propagation direction ofthe laser
pulse whereasx or r, respectively, denote the transversal direction. The dependence
on y or the angular coordinate, respectively, are omitted in thetwo-dimensional
case.

In the Cartesian case we assume periodic boundary conditionsin both directions.
This is possible as long as reflected waves are taken care of atthe boundaries, since
the physical solution satisfies a finite energy condition.

For the cylindrical case, we impose periodic boundary conditions only for the lon-
gitudinal direction and homogeneous Dirichlet boundary conditions forr = R.
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For both geometries we solve the density equation and evaluate theγ-factor only
on grid points which are inside the plasma.

3.3.1 Cartesian coordinates in vacuum

In vacuum we only need to solve the linear wave equation

∂2

∂t2a =
∂2

∂z2a+
∂2

∂x2a . (8)

For periodic boundary conditions the semi-discretizationin space is done by a
pseudo-spectral method withNz Fourier modes on the intervalz∈ z0 + [−Lz,Lz]
in propagation direction andNx modes on the intervalx∈ [−Lx,Lx] in perpendicu-
lar direction.

Let a = a(t) ∈ C
Nz×Nx andȧ = ȧ(t) ∈ C

Nz×Nx be complex matrices containing ap-
proximations to the vector potential and its time derivative on the grid,

ai, j ≈ a(x j ,zi, t), ȧi, j ≈
∂
∂t

a(x j ,zi, t) .

The Laplacian is approximated by

∆a≈ F −1
Nz

D2
zFNza+aF T

Nx
D2

xF
−T

Nx

where

Dk =
2πi
Lk

diag

(
−Nk

2
, . . . ,

Nk

2
−1

)
, k = x,z,

andFN denotes the discrete Fourier transform forN Fourier modes.

Formally, the matricesa and ȧ can be reorganized by writing them column-wise
into long vectors. Then the spatially discretized equation(8) can be written as a
system of differential equations (4), whereΩ is a matrix which can be diagonalized
via two-dimensional fast Fourier transforms andF ≡ 0. However, for the imple-
mentation, the matrix notation is more efficient .

In the first time-step, where the initial data is given in physical space, we start by
performing a two-dimensional Fourier transform by applying fast (one-dimensional)
Fourier transforms to all columns and rows ofa andȧ. Then we evaluate the func-
tions arising in the Gautschi-type integrator at the diagonalized operator. The re-
sulting operator can be applied to the matricesa andȧ by pointwise multiplication.
(If desired, subsequent time-steps in vacuum can be computed in frequency space
by diagonal operations only.) At times, where the solution is required in physical
space, inverse Fourier transforms have to be applied to all rows and columns ofa
andȧ again.
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Due to the Gautschi-type integrator being exact in vacuum, in the best case we only
have to compute one time-step. The total cost amounts to two two-dimensional
Fourier transforms and in addition four scalar multiplications per grid point. Stor-
age is required for two arrays fora and ȧ plus four arrays for the diagonalized
matrix functions of the same size. If a reduction of storage is necessary, the matrix
functions can be computed on demand. From the computationalpoint of view, this
is a rather small overhead compared to the two-dimensional Fourier transforms.

3.3.2 Cartesian coordinates in plasma

In plasma layers we have to solve the full, nonlinear system of equations

∂2

∂t2a− ∂2

∂z2a− ∂2

∂x2a = −n0

nc

n0
e +n1

e

γ
a (9a)

∂2

∂t2n1
e +

n0

nc
n0

en1
e = n0

e∆γ. (9b)

After space discretization, the linear part is representedby a 2×2 block diagonal
matrix, whose upper diagonal block contains the discretized Laplacian and whose
lower diagonal block contains the diagonal operator of the second equation. Hence,
the matrix operators required for the time integration scheme can be computed
separately for both equations. Note that due to the nonlinearity, we need to compute
(and store) more matrix operators than in vacuum. The main costs of one time-step
in frequency domain amounts to two two-dimensional Fouriertransformations.

Due to the nonlinearity, the time integration scheme does not solve the the dis-
cretized system exactly anymore. However, the time-step size is only limited by
accuracy, not by stability. This is in contrast to the well known leap-frog method,
where stability requires to use time-steps proportional tothe inverse of the largest
eigenvalue of the linear part. We will present comparisons in Sec. 4.2. For more
detailed comparisons for one-dimensional problems we refer to [11].

This straightforward implementation turns out to be quite expensive with respect to
computational cost and storage. Fortunately, it is possible to increase the efficiency
considerably by exploiting properties of the solution.

In the left graph of Fig. 1 we show the longitudinal distribution of the real part of
the vector potentiala along the optical axis of the pulse. On the right, we show
the transversal distribution of the real (solid) and the imaginary (dashed) part ofa
at the pointz, where the maximum of the pulse is attained. The transversaldistri-
bution is obviously much smoother than the longitudinal. Therefore, we can dis-
cretize the transversal direction on a much coarser grid. Moreover, we propose
to split the Laplacian and only treat the longitudinal part of it exactly (Ω ≈ ∆‖)
whereas the transversal part is added to the nonlinearityF(y). To avoid the expen-
sive two-dimensional Fourier transformations, we proposeto use fourth-order finite
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Fig. 1.Left: The spatial distribution of the real part of the solution in longitudinal direction
through the center of the pulse is highly oscillatory.Right: The spatial distribution of the
real (solid) and imaginary (dashed) part of the solution in transversal direction through the
maximum of the pulse is smooth.

differences in this direction.

Due to this splitting, the longitudinal part of the Laplacian, can be diagonalized
by one-dimensional Fourier transforms (of lengthNz). Moreover, we only have to
compute (and store) matrix operators of lengthNz. For the computation we keep the
vector potential and its derivative in Fourier space only inlongitudinal direction. In
transversal direction the arrays are not transformed.

For the density equation the application of the exponentialintegrator is straight for-
ward in physical space. Since the density profile only depends onzhere the storage
requirements are again only of the order of vectors of lengthNz. The inhomogene-
ity contains the Laplacian of the relativistic factorγ which depends on the absolute
value of the vector potential. This is a smooth function for circular polarized laser
beams. Thus it is sufficient to use fourth order finite differences inbothdirections
to approximate the inhomogeneity of the density equation.

3.3.3 Cylindrical coordinates

For the equations formulated in cylindrical coordinates

∂2

∂t2a =
∂2

∂z2a+
1
r

∂
∂r

(
r

∂
∂r

a

)
− n0

nc

n0
e +n1

e

γ
a (10a)

∂2

∂t2n1
e = −n0

nc
n0

en1
e +n0

e∆γ (10b)

we basically use the same ideas as for Cartesian coordinates in plasma regions,
i.e., we useΩ ≈ ∆‖ and treat the transversal direction as part of the nonlinearity.
For the longitudinal direction, we use pseudo-spectral discretization while for the
transversal direction, we suggest to use second order finitedifferences.
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Fig. 2. The spectrum of the longitudinal spatial distribution (left) is not centered around 0,
other than that of the transversal spatial distribution (right).

Since in cylindrical coordinates it is hard to diagonalize the complete Laplacian
in a fast and stable way we use the same implementation in vacuum as within the
plasma.

3.3.4 Quasi-envelope approach

The quasi-envelope approach (QEA) is motivated by the fact that the important part
of the spectrum of the operator in longitudinal direction isconcentrated around a
certain characteristic wave-number depending on whether the pulse propagates in-
side or outside of the plasma, see Fig. 2, left. The idea of QEAis to shift the spec-
trum appropriately, see [11] for details. In the two-dimensional case, the situation
in longitudinal direction is exactly the same as in the one-dimensional case but no
shift is necessary for the transversal direction, as can be seen in Fig. 2, right. Note,
that this only reduces the number of grid points needed to resolve the solution, but
the large norm of the approximation of the parallel part of the Laplacian remains
unchanged, thus the Gautschi-type time integrator is stillessential.

Here again, we replace the vector potentiala by

a(x,z, t) = ã(x,z, t)eiκz ,

which leads to a new equation forã

∂2

∂t2 ã =

(
∂
∂z

+ iκ
)2

ã+∆⊥ã− n0

nc

n0
e +n1

e

γ
ã , γ2 = 1+ |ã|2 .

The value ofκ is chosen depending on the position of the pulse, namelyκ =√
1− n0

nc
or κ = 1 or the mean value of both [11].
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3.4 Adaptivity

In order to apply all the different variations of our scheme at the appropriate time
we have to determine the location of the pulse. This is done byphysically motivated
means. At the beginning we know the location of the maximum amplitude and the
exact width of the pulse. Additionally we know the approximate group velocity
of the pulse at any time. This allows to determine the approximate speed of the
maximum of the pulse and to estimate the time when the pulse hits the next region
of the simulation domain.

With this method we can switch between the different integration schemes in vac-
uum and plasma for Cartesian coordinates as well as adapt the values ofκ for the
QEA. The latter can be done by a simple shift in the position ofthe Fourier coef-
ficients which also ensures periodicity of the shift function eiκz with regard to the
box length 2Lz.

Additionally we can change the spatial grid, which becomes necessary for very
narrow pulses as they occur in the simulation of pulse compression. Also for hard
plasma boundaries, where reflections are no longer negligible, it becomes necessary
to interpolate to a finer grid and invert the QEA shift, as was already shown for the
one-dimensional case in [11]. For pseudo-spectral discretization this only requires
a larger array in Fourier space where extra entries are filledwith zeros. But the
computation is much more expensive for the finer grid, thus interpolation is avoided
unless absolutely necessary. Therefore, we also use a rather tight estimate for the
pulse to be nonzero.

3.5 Moving simulation window

There are a lot of interesting applications where the full simulation domain is very
large and it is not at all feasible to use the complete spatialdomain during the whole
simulation. To avoid this we use a moving-window technique.

Using the group velocity as described above we estimate the time when the pulse
comes close to the right boundary of the simulation box. For this purpose we
slightly overestimate the domain on which we consider the pulse to be nonzero.
This increases robustness while the computational cost is negligible.

The shift is implemented by transforming the vector potential to physical space,
cutting off the left part and extrapolating to the right by adding zeros fora andn1

e.
n0

e is calculated from the known profile function.

There are two difficulties to be mentioned in this context dueto the periodic bound-
ary conditions. First, if reflections occur at plasma boundaries we have to cut them
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off entirely when shifting the simulation box. Secondly, invacuum this limits the
time-step size because otherwise the pulse would move periodically through the
box instead of moving on continuously. This would result in spatial shifts of the
solution.

3.6 Parallelization

Even though we already reduced computational costs significantly, for large prob-
lems it can be usefull to have a parallel version of the method. Here we have to
tailor the means of parallelization to the different cases described above.

3.6.1 Vacuum

For Cartesian coordinates in vacuum we first distribute the columns of the arrays
uniformly over the processors to perform the one-dimensional fast Fourier trans-
forms for each column. We then do a parallel transposition ofthe array and dis-
tribute the rows over the processors for the second part of the two-dimensional
Fourier transform1 . Of course the application of the matrix function is also spread
over the processors involved.

3.6.2 Plasma

In plasma we basically use the same strategy for parallelization for both kinds of
geometries. Here we again distribute all the columns of the arrays over the pro-
cessors. But since we only need one-dimensional Fourier transforms we can avoid
transposing the arrays and therefore save a lot of communication time between
different processors.

The only communication between processors is due to the transversal part of the
Laplacian, which is discretized by fourth and second order finite differences in
plasma for Cartesian and cylindrical coordinates, respectively. Thus we have to ex-
change at most two columns at each side of the distributed array slices. In Fig. 3
this is demonstrated for a matrix divided to two processors for Cartesian coordi-
nates and periodic boundary conditions. In this case we haveto store four extra
columns per processor which are copied from the neighboringarray.

Each processor first sends the boundary columns to the neighboring processors.
Then the next time-step is performed for the inner part of thearray. At the end, the

1 We use the MPI based transpose routine from FFTW version 2 and serialFFT routines
from FFTW 3.
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A = 20 columns

P1

10 + 4 columns

P2

10 + 4 columns

A1 = A2 =

Fig. 3. Example parallelization scheme for two processors, Cartesian coordinates in plasma,
periodic boundary conditions and 20 grid points in transversal direction.The colored
columns have to be communicated between the processors for the evaluation of the
transversal Laplacian with finite differences and are stored twice.

information sent from the neighboring arrays is used to calculate the finite differ-
ence approximation at the boundaries. This results in a parallelization which hardly
suffers from communication overhead between processors, because latencies and
transmission times are almost completely hidden by the asynchronous communica-
tion.

4 Exemplary results

4.1 Splitting of the Laplacian

In this section we will demonstrate, that the error introduced by the splitting of
the Laplacian is negligible. For this, we use a rather small example, where it is
possible to have a high resolution reference solution to compare with. We also
reduce the model and only consider the wave equation with constant density and
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Fig. 4. The relative error of the maximum squared amplitude is shown in the upper picture
and the absolute error of the position of the maximum in wave-lengths is drawn inthe lower
picture. The curves marked by circles are the errors of the Gautschi-type method applied
to the full Laplacian, the squares are the errors of the splitted method with Fourier spectral
discretization in both directions and the diamonds are those for the splitted methodwith
finite differences in transversal direction.

cubic nonlinearity

∂2

∂t2a = ∆a− n0

nc
(1− 1

2
|a|2)a ,

n0

nc
= 0.3 . (11)

This is sufficient, since the splitting only affects the waveequation and does neither
depend on the kind of nonlinearity nor on the density equation.

The initial conditions are chosen from

a(x,z, t) = a0e
−(z−z0−k0t)2

l20 e
−x2

w2
0 ei(k0z−z0−t) (12)

wherea0 = 0.15 is the initial amplitude,z0 = 35λ0 the initial pulse position in
longitudinal direction,l0 = 10λ0 the length,w0 = 100λ0 the width of the pulse and

k0 =
√

1− n0
nc

the plasma wave-length.

This is solved for Cartesian coordinates(x,z)∈ [−300λ0,300λ0]× [0λ0,300λ0] and
t ∈ [0/ν0,300/ν0]. We use 1024 grid points inz-direction and 512 grid points in
x-direction. The time-step size is chosen as 0.2dz. For the reference solution we use
twice as many points in both spatial directions, whereas forthe time-discretization
we choose a fourth of the original time-step. For the error calculation we Fourier
interpolate the solutions to the finer grid.

In Fig. 4 we can see the error in two different measures, in theupper picture the
relative error in the maximum squared amplitude is shown andthe lower one shows
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the absolute error of the position of the maximum in wave-lengths. For each type
of error there are three different curves. The circular marks show the error of the
Gautschi-type method applied to the full Laplacian, discretized via Fourier spectral
method in both directions. The square marks are the errors ofthe Gautschi-type
method applied to the parallel Laplacian only and the transversal part treated as
nonlinearity. Here we still use Fourier spectral methods for the discretization in
both directions. The diamond marks represent the error of the splitted method, but
this time with fourth order finite differences in transversal direction. We can see,
that the three error curves are nearly indistinguishable, which proves that the split-
ting does not degrade accuracy.

4.2 Effect of different time-integration schemes

We next compare our new implementation of the Gautschi-typeintegrator with the
leap-frog scheme, which is the standard scheme used for the solution of second
order wave equations.

Here, we solve the full system of equations for the two-dimensional Cartesian
case (9). The density layer starts at 250λ0 with a linear increase up ton0

nc
= 0.3

over 5λ0, then it stays constant over 500λ0 until there is a linear decrease between

15



755λ0 and 760λ0 again.

The initial conditions are again taken from (12) witha0 = 0.12, z0 = 150λ0 and
k0 = 1, since the pulse starts in vacuum. The remaining coefficients are the same as
above.

The simulation is run up tot = 1240/ν0, thus the pulse propagates through the
plasma layer and travels through vacuum afterwards for sometime. For the runtime
comparisons we used the moving window technique, since the simulation domain
is quite long.

In vacuum there is no need to compare the leap-frog scheme with the exact solution
which the Gautschi-type integrator computes, thus we include only the time-steps
done inside of the plasma in the runtime comparison.

As a measure for the quality of the solution we choose the relative error of the
maximum amplitude. As a sensible error threshold we use a value of 1%. Since the
reference solution was computed on a finer grid, we interpolated the solution to the
reference grid and then computed the maximum amplitude.

In Fig. 5 the amplitude error of the Gautschi-type method (circles) and the leap-
frog method (squares) is plotted against computation time in plasma. The dashed
line represents a coarse spatial discretization with 1024 grid points in longitudi-
nal direction, wheredz is chosen to be 0.352λ0 and 400 grid points in transversal
direction withdx= 2λ0. The continuous line gives the errors for a fine spatial dis-
cretization withNz = 2048,dz= 0.176λ0, Nx = 800 anddx = λ0. In both cases
the resulting simulation box of approximately 360λ0 in longitudinal direction and
800λ0 in transversal direction is moved along with the solution.

For the same error the step size for the leap-frog method has to be about twice as
small as for the Gautschi-type integrator. This is in agreement with the results in the
one-dimensional case from [11]. But in the two-dimensional case the advantage of
the leap-frog method in terms of computational time per time-step is smaller than in
the one dimensional case, because simulation times are morestrongly affected by
memory bandwidth limitations, see Fig. 6. Thus it is even more efficient to invest
in a more sophisticated algorithm and benefit from the largertime-steps.

4.3 Parallelization

To demonstrate the efficiency of the parallelized version ofour code we simulated
the same problem as for the runtime comparison with one, two,four, six and eight
processors on a cluster of single CPU P4 nodes with standard Gigabit Ethernet
interconnects. We used the finer one of the two spatial discretizations.
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Fig. 7. The upper three pictures show the full time (black), pure number crunching time
(light gray), data receive time (dark gray) and synchronization time (middlegray) per
time-step for two, four and eight processors respectively. The fourthpicture shows the
accumulated full integration time for one, two, four and eight processors (curves from top
to bottom).

In the upper three pictures of Fig. 7 full time (black), pure number crunching time
(light gray), data receive time (dark gray) and synchronization time2 (middle gray)
per time-step for two, four and eight processors, respectively, is shown. In each case
we can distinguish between three different behaviors of thecode. First of all there

2 The synchronization time is due toMPI Barrier() calls after each time-step.
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to light gray) respectively compared to single processor runtime (black).

is the vacuum step region. Here, the crunching time is quite low, since we neither
calculate the nonlinearity nor the density equation. However, due to the matrix
transpositions the communication time is rather long.

The other two cases are the plasma and transition regions. The only difference
is the spatial resolution which is higher in the transition region. However in both
cases the full equations are solved and the Laplace splitting is applied. The first
results in higher crunching times whereas the latter reduces the communication
time significantly.

Another nice property is the very short synchronization times given by the middle
gray curves. Thus independent of the number of processors used, the work is evenly
balanced over the processors.

In comparison we can see, that a single vacuum time-step takes longer than a single
time-step for the full equations, even with the higher spatial resolution in transition
regions. This is compensated by the fact that the time-stepsin vacuum are 200
times larger than the time-steps we use for solving the full set of equations. This
is illustrated in the fourth picture of Fig. 7, where the accumulated full integration
time is shown for a single processor and for two, four and eight parallel processors
(curves from top to bottom). The strongest increase of computational time is in the
transition region, where we use the higher spatial resolution directly followed by
the plasma regions. We can also see, that in comparison the integrator spends hardly
any time in vacuum regions. Note, that the length of the time-steps in vacuum is
only limited by points of data output and the shifting of the simulation box.
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The runtime per output step is shown in Fig. 8. Here again the different regions
of the simulation are visible. The drop in simulation time towards the end of the
plasma region is due to the remaining length of the plasma layer inside the simu-
lation box, since the density equation is only solved on those grid points which lie
inside the plasma.

Another point to emphasize is the good scaling of the accumulated full integration
times with the number of processors used, even for this relatively small problem.
Using two processors reduces the runtime by a factor of 1.97.The runtimes for
four, six and eight processors scale with 3.88, 5.65 and 7.08respectively (see Fig.
9).

4.4 Example for a physical application

One physical application for our code is the simulation of layered plasma / vac-
uum structures to study the longitudinal compression and especially the transversal
focusing properties of such structures. For a controllableand efficient longitudinal
compression, the laser amplitude has to be subrelativistic, i.e.a2

0 < 1 (wherea0 = 1
corresponds to 1018W/cm2), otherwise the energy loss inside the plasma would be
too large. Moreover, the spot size has to be much larger than the pulse length, oth-
erwise the pulse would directly show collapse behavior. This implies that a high
power laser pulse has to be only weakly focused initially to be in the right ampli-
tude and spot size range. Inside the plasma the pulse is longitudinally compressed
from ten or more wave-lengths to just one or two cycles [10]. To reach high subrel-
ativistic or even relativistic intensities, the pulse has to be transversely focused as
well. Fortunately the plasma induces a negative curvature of the phase front of the
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Fig. 10. An initially (in both directions) Gaussian pulse witha0 = 0.1, L0 = 10λ0 and
W0 = 150λ0 propagates through two plasma layers of densityn0 = 0.3nc and different
lengths. The first layer is 330λ0 long and the second 125λ0 with 1500λ0 vacuum in be-
tween.

pulse, which leads to focusing of the pulse behind the plasmalayer [12]. This fo-
cusing can be enhanced by slicing a plasma layer of optimal length for longitudinal
compression into multiple shorter layers with vacuum sections in between.

An example for two layers with different lengths is shown in Fig. 10; the amplitude
curve and the radial profiles at different times are shown in Fig. 11. In the vac-
uum regions between the layers additional transversal focusing occurs and thus the
transversal focusing potential of the pulse can be fully exploited.

This leads to a much smaller spot size in the focus behind the last plasma layer
(Fig. 13). Furthermore the pulse enters the next layer with ahigher amplitude and
thus the nonlinear self interaction is enhanced, too. As canbe seen in Fig. 12, both
effects combined lead to a much larger achievable intensitythat increases with the
number of layers. But the optimum configuration seems to be twolayers, where the
second layer is much thinner than the first.

An additional advantage of a layered structure is the control of transversal filamen-
tation [10]. For this more than two layers can be necessary. Results on filamentation
control and a thorough review of the focusing properties of multiple plasma layers
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can be found in [20].

5 Conclusion

We have detailed the implementation of a two-dimensional integrator for weakly
relativistic laser-plasma interaction. Special attention was paid to efficiently simu-
late systems with large amounts of vacuum between the plasmalayers, by selecting
a time-integration method that is in principle able to use arbitrarily large steps in
vacuum. This is necessary for the study of transversal focusing of a laser pulse by
layered plasma and vacuum structures. We have shown this integrator to be highly
accurate and to be distinctly superior to the standard leap-frog method in terms
of stability, allowed step size and the integrator runtimesfor the same accuracy.
We also discussed how other methods to reduce the computational complexity, like
QEA which was introduced in [11] and a moving simulation window, can be com-
bined with this time-integration scheme.

The proposed implementation can be directly extended to thethree-dimensional
case. Then parallelization becomes strictly necessary andeven for large numbers
of processors we expect the scaling to be almost linear.
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A Details of the physical model

The high-frequency fluid-Maxwell model consists of the waveequation, Poisson’s
equation, and the electron continuity and momentum equations. In dimensionless
form, these equations are

∂2

∂t2A−∆A− ∂
∂t

∇φ = −n0

nc
ne

P
γ

(A.1)

∆φ =
n0

nc
(ni −ne)

∂
∂t

ne+∇ · (ne
P
γ
) = 0 (A.2)

∂
∂t

(P−A)− P
γ
×{∇× (P−A)} = ∇(φ− γ) (A.3)

whereγ =
√

1+P2 is the relativistic factor. We use the Coulomb gauge condition
∇ ·A = 0. The vector potentialA is measured in the unite/mc2; the same is used
for the non-dimensional electrostatic potentialφ. The unit for the density is the
maximum valuen0 of the ion background density, whereasnc is the so called crit-
ical density. Since we are interested in laser propagation in an underdense plasma,
n0/nc < 1 holds. The momentumP is measured inmc, wherem, e, c are electron
mass, elementary charge, and speed of light, respectively.

The momentum balance (A.3) can be simplified further by choosing an initial gauge
condition which does not restrict generality. We define the projection operatorsΠc

and Πg such that any fieldu is decomposed intou = v + w with the following
properties

Πcu = v ≡ uc ∇×v = 0 , but generaly ∇ ·v 6= 0 ,

Πgu = w ≡ ug , ∇ ·w = 0 , but generally ∇×w 6= 0 ,

with
Πc +Πg = 1.

Clearly,v is a gradient field, andw is a rotation field. The operators can be repre-
sented as

Πc = ∇∆−1∇ · and Πg = 1−∇∆−1∇ · .

Applying the projection operators to the momentum balance (A.3) allows to split
the equation in a divergence-free and a curl-free part. The equation

∂
∂t

(Pg−A)−Πg

[
P
γ
×{∇× (Pg−A)}

]
= 0

describes the convective transport of the divergence-freepart of the canonical mo-
mentumPcan= P−A. This implies that for the initial conditionPg = A the canon-

23



ical momentum stays curl-free for all times, i.e.

Pcan= Pg +Pc−A = Pc .

This initial condition simplifies the curl-free part to

∂
∂t

Pc = ∇(φ− γ) .

Since∇×Pc = 0, Pc can be written in terms of a Clebsch-potential,Pc = ∇ψ. The
integration of (A.3) thus leads to

∂
∂t

ψ = φ− γ+1 .

Applying the splitting viaΠg andΠc to the wave equation (A.1) forA, we obtain
for the divergence-free part

∂2

∂t2A−∆A = −n0

nc
(1−∇∆−1∇·){ne

γ
(A +∇ψ)}

and for the curl-free part

∂
∂t

∇φ = −n0

nc
∇∆−1∇ ·

{
ne

γ
(A +∇ψ)

}
.

Straightforward evaluations of the right-hand-sides leadto

∂2

∂t2A−∆A = −n0

nc

[
ne

γ
A−∆−1

{
∇
(

A ·∇ne

γ

)
+∇×

[(
∇

ne

γ

)
× (∇ψ)

]}]

∂
∂t

∇φ = −n0

nc

[
ne

γ
∇ψ+∆−1

{
∇
(

A ·∇ne

γ

)
+∇×

[(
∇

ne

γ

)
× (∇ψ)

]}]
.

To further simplify the equations in the weakly relativistic regime, we scale the per-
pendicular variation with respect to the parallel changes (scaling parameterα) and
introduce smallness parametersε, µ, β, ρ, andδ for the amplitudes of the physical
variables:

A(r , t) = ε{A⊥(z,αr⊥)+µezA‖(z,αr⊥)}
ne(r , t) = n0

e +βn1
e(z,αr⊥)

φ(r , t) = ρφ1(z,αr⊥)

ψ(r , t) = δψ1(z,αr⊥)

γ(r , t) = 1+
ε2

2
|A|2 .
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The different smallness parameters are of course interrelated. In the following we
justify the relations

µ= α ≪ 1 and δ = ρ = β = ε2 ≪ 1

between these parameters. From the Coulomb gauge we get

∇ ·A = ε{α∇⊥ ·A⊥ +µ∂zA‖} = 0 ⇒ µ= α .

The Laplace-equation forφ yields

ρ∆φ1 =
n0

nc
(ne−n0

e) =
n0

nc
βn1

e ⇒ ρ = β .

The reduced momentum balance

δ∂tψ1 = ρφ1− (γ−1) = ρφ1 +O (ε2)

and the continuity equation

ρ∇ ·∂t∇φ1 = β∂tn
1
e = −n0

nc
n0

eδ∆ψ1 + . . .

are consistent withδ = ρ = β = ε2 . This scaling is also compatible with the wave
equation forA, i.e.

ε
{

∂2
t A−∂2

zA−α2∆⊥A
}

= −ε
{

n0

nc
(n0

e +βn1
e)

[
1− ε2

2
|A|2

]
A
}

+ . . . .

Then, because of

∇
ne

γ
= ε2(∇n1

e +n0
e∇

|A|2
2

)

and
A ·∇ = A⊥ · (α∇⊥)+αA‖ ∂z

we have

∇
(

A ·∇ne

γ

)
= O (ε3α) ,

and

∇×
[(

∇
ne

γ

)
× (∇ψ)

]
= O (ε4α) .

The inverse Laplace-operator does not change the order of the dominating terms
since

∆−1 = F −1 1

k2
‖ +α2k2

⊥
≈ F −1 1

k2
‖

(
1−α2k2

⊥
k2
‖

)
=

(
∂2

∂z2

)−1

+O (α2) ,

whereF −1 is the inverse Fourier-transform.
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To get consistent equations, we include all terms up to orderε3 and εα2, while
neglecting terms of orderε3α and higher.

Linearizing and differentiating in time the continuity equation (A.2), i.e.

∂2

∂t2n1
e = −n0

nc
n0

e
∂
∂t

∆ψ1 ,

and eliminating on the right-hand-side∆ψ1 by taking the Laplacian of the equation
for ψ1, we arrive at

∂2

∂t2n1
e +

n0

nc
n0

en1
e =

n0
e

2
∆|A|2 . (A.4)

Together with the lowest order wave equation

∂2

∂t2A−∆A = −n0

nc

{
n0

e

(
1− 1

2
|A|2

)
+n1

e

}
A (A.5)

we obtain a closed system of two equations. Instead of a series expansion we may
retain the fullγ-factor, keeping in mind at the end the valid accuracy of the results.
For the initial conditionA‖ = 0, the parallel component will stay zero during time
evolution. It is then possible to use the scalar complex-valued fielda to describe the
vector potential via

a(r , t) = Ax(r , t)+ iAy(r , t) .

Making use of the latter, we obtain (1) being coupled to (A.4), where the latter
agrees with (2).
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