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In 1933 Lothar Collatz published his very first article in Zeitschrift für Ange-
wandte Mathematik und Mechanik (ZAMM) on error estimates for finite differ-
ence methods for partial differential equations. At that time, numerics meant
calculations of approximations by hand andmechanical calculators. Then, in the
next decades, parallel to the progress in computer technology, more and more
methods were developed. Nevertheless, in all cases the accuracy of numerical
approximations is limited, so that at least rough error bounds or, at best, tight
enclosures are required for the reliability of the numerical scheme and the valida-
tion of the approximate results. Here, we recall the early development of numeri-
cal analysis of differential equations, of numerical iterations, and for the approx-
imation of eigenvalues.
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1 INTRODUCTION

An analytic solution for differential equations can be found only in special cases, in general only approximations are
accessible. Efficient methods to evaluate such approximations were already introduced a long time before computing
machines were developed, in particular for applications in mechanics and engineering. From the very beginning 100
years ago, the journal ZAMM established as a platform for contributions on models and methods for approximations in
mechanics. The contributions were written in German, and overview articles were introduced with abstracts in German,
English, French, and Russian.
Parallel to the development of more andmore advanced numerical methods, numerical analysis established as an inde-

pendent area of mathematical research. Themain task is the investigation of convergence properties of numerical approx-
imations and to derive bounds for the error which cannot be avoided as long as no analytic solution can be determined
in closed form. From the very beginning Lothar Collatz contributed to this research, in particular with many articles in
ZAMM. His achievements were fundamental at that time, since they build a comprehensive treatment of all aspects in
this field:

∙ Approximation schemes for differential equations
In the first step, derivatives where approximated numerically, e.g., by finite differences, so that the discretized differen-
tial equations can be solved as a finite dimensional system.

∙ Iterative solution methods
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F IGURE 1 Illustration of the boundary interpolation [1]

The discretization of partial differential equations yields very large finite dimensional systems which have to be solved
only approximately so that the truncation error is smaller than the discretization error, e.g., by suitable iterative schemes.

∙ Error bounds and enclosures
In the next step, the accuracy of the approximation is analyzed, e.g., on the basis of Taylor expansions, where the main
task is the estimate of the global error depending on the local approximation error of the derivatives in the equation
and on a priori estimates for the stability of the discrete solutions.

∙ Applications
Stability properties of mechanical structures can be predicted by numerical computations, e.g., by the evaluation of
eigenvalues and eigenmodes for different components in themechanical system. Of course, this requires that themodel
and the computations are sufficiently accurate.

In the next sections we recall examples for this procedure where together with efficient methods for the computation of a
numerical approximation the accuracy of the overall solution process is considered as well. This combination of efficient
approximation schemes with a broad technology to control and to estimate the numerical error in order to gain reliability
of the overall solution process is still the main challenge in numerical mathematics.

2 NUMERICAL APPROXIMATION OF SOLUTIONS OF DIFFERENTIAL EQUATIONS

Finite differences on uniform regular grids in 2D were the starting point for approximating elliptic equations in bounded
domains. If the boundary is aligned with the grid, the consistency error for standard methods is of second order, but in
case of curved boundary, it is reduced if only a simple approximation of the boundary is used. In his first publication in
1933, L. Collatz derived an improved boundary interpolationwhich yields an approximationwhich has also been of second
order [1], cf. Figure 1.
Meanwhile this is extended to higher order methods, but a simple equidistant interpolation of the boundary gets unsta-

ble for high polynomial degrees (the so-called Babuška paradox). In the following, the boundary interpolation has also
been transferred to the optimal approximation of general domains with isoparametric finite elements, and more recently
with isogeometric analysis (IGA) based on rational B-splines.
Nonlinear ordinary differential equations of first and second order �̇� = 𝑓(𝑡, 𝑦) and �̈� = 𝑓(𝑡, 𝑦, �̇�) are considered by Col-

latz in 1942 [2]. At that time the error analysis for first order ODEs was already developed, e.g., for linear multi-step
methods. In [2], the two-step methods by Adams (for the first order case) and Störmer (for second order) are considered.
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Today these methods are well understood and many software tools are available, but the main challenge remains to find a
compromise between the efficiency of explicit methods and the improved stability of implicit methods: explicit methods
are easier to realize but not suitable for stiff problems, since then the stability requires very small time steps. On the other
hand, implicit methods require the solution of a nonlinear system of algebraic equations. This can be approximated by
a predictor-corrector method, starting with an explicit prediction as a starting point for nonlinear correction steps. Such
a method is introduced in [2], the error is estimated and criteria for the optimal step size and the required iterations for
every time step are derived. Moreover, for the first time step 𝑘 = 1 a starting iteration is defined; this is required, since the
two-step method computes 𝑦𝑘+1 from 𝑦𝑘 and 𝑦𝑘−1.
More involved is the error analysis for the second order case. Here, explicit bounds for the step size depending on the

two Lipschitz constants of 𝑓 with respect to 𝑦 and �̇� are derived. On basis of this analysis, in [3] Collatz introduced a
”natural” time step size which is optimal in the sense that the method is stable and convergent and in addition aims at
minimizing the computational effort. Here it is recommended to adjust the step size during the simulation in order to
remain within a certain range of optimality.
Meanwhile this is a general paradigm for adaptive computations, and a large variety of techniques for error estimation

and step size control is available for ODEs as well as for PDEs in time and in space. Nevertheless, uniform step sizes are
still dominant in many applications, since step size adaption also requires additional computations and the development
of adaptive algorithms is more involved and often problem specific, so that the code has to be extended for new problem
classes. Thus, optimality within a prescribed level of accuracy remains a challenge.
In 1949 themethod and the error analysis for second order ODEs are extended to higher order ODEs [4]. Here, a general

technique is presented for the explicit representation of multiple integrals by finite differences and a remainder term
depending of higher derivatives. This allows to construct a class ofmulti-step schemes for 𝑛-th orderODEs. As an example,
one obtains for the order 𝑛 = 4, time step size ℎ > 0 and 𝑘 = 1, 2, 3, 4, … the implicit system

𝑦
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where 𝑡𝑘 = 𝑘ℎ, 𝑓𝑘 = 𝑓(𝑡𝑘, 𝑦𝑘), and∇2𝑓𝑘 = 𝑓𝑘+1 − 2𝑓𝑘 + 𝑓𝑘−1. For given initial values 𝑦0, 𝑦
(1)
0
, 𝑦

(2)
0
, 𝑦

(3)
0
a starting iteration

is used to compute the values for the first time step 𝑦1, 𝑦
(1)
1
, 𝑦

(2)
1
, 𝑦

(3)
1
.

Later, amayor focus in the research of Collatz is the numerics for partial differential equations. An example [5] in 1952 is
the error analysis for approximations of second order elliptic equations in a bounded domain Ω with Dirichlet boundary
data on 𝜕Ω. Here, a polynomial ansatz in Ω is used, and the approximation is computed by minimizing a functional
combining the corresponding energy and a penalty term for the boundary values. The main tool in this analysis is the
monotonicity principle. An example is provided for the Laplace equation Δ𝑢 = 0 in the unit square for given polynomial
Dirichlet data 𝑢D. The best approximation with a polynomial ansatz function

𝑝(𝑥, 𝑦) = 𝑎1 + 𝑎2𝑥
2 + 𝑎3𝑦

2 + 𝑎4(𝑥
4 + 𝑦4) + 𝑎5𝑥

2𝑦2

is computed byminimizing the corresponding quadratic functional (with penalty parameter 𝜃 > 0 for the boundary term)

𝐽(𝑝) =
1

2 ∫
Ω

|∇𝑝|2 d𝑥 + 𝜃 ∫
𝜕Ω

|𝑝 − 𝑢D|2 d𝑎

which is achieved by solving a linear system inℝ5. Then, an explicit bound for the pointwise error ‖𝑢 − 𝑝‖∞,Ω is derived
from evaluating ‖Δ𝑝‖∞,Ω and ‖𝑝 − 𝑢D‖∞,𝜕Ω; see also Section 4.
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Meanwhile, for the finite element method with piecewise polynomial ansatz functions, minimizing the energy func-
tional is the standard approach, where Dirichlet boundary conditions in general are approximated by interpolation.
Nevertheless, in particular for nonconforming approximations such as discontinuous Galerkin methods, the Dirich-
let data are approximated using a penalty term. On the other hand, since for many elliptic applications such as linear
elasticity no monotonicity principle exists, in general error estimates for finite elements are now derived by Galerkin
orthogonality.
The state of the art in numerical analysis of differential equations is compiled by Lothar Collatz in a textbook [6]with the

first edition 1951 written in German; in the following several further editions appeared, including an English translation
of the last edition [7] in 2012. Here, in four chapters initial-value problems and boundary-value problems for ordinary
differential equations, and time-dependent and stationary partial differential equations are considered. This book was
a milestone in this field since it built the basis for the first generation of students in mathematics who were educated
in numerical analysis at a time where computers were available only in advanced computing centers. Meanwhile both,
numerical techniques and computer facilities advanced enormously, but the main message is still the same: numerical
mathematics aims simultaneously at both, the development of efficientmethods togetherwith the analysis of convergence
and error estimates.

3 CONVERGENCE ESTIMATES FOR NUMERICAL ITERATIONS IN ℝ AND IN ℝ𝑵

Today, it is generally accepted that for a new numerical method (or for a modification of a well-known method) among
others, several aspects have to be discussed:

(a) the numerical behavior with respect to rounding errors (e.g., in a given floating point system);
(b) the necessary amount of work (e.g., the number of floating point operations);
(c) the error caused by stopping an iterative method after a finite number of steps.

Before numerical analysis established as research topic, numerical algorithms were often considered without taking into
account (a)–(c). In the development of corresponding ideas and results, the work of Lothar Collatz has played a major
role. Here, we demonstrate this by referring to several examples in a series of his articles published in the early time of
ZAMM.
Concerning (a), we start with the paper [8] which appeared in 1936, where the computation of an approximation for the

square root of a positive number 𝑎 > 1 using amechanical calculator has been discussed. The proposed algorithm delivers
automatically an error bound for the approximation. Furthermore, the new algorithm is faster than thewell knownHeron
method which is based on Newton’s method.
The second aspect (b), namely the discussion of the amount of work and the possibility of its reduction is demonstrated

in 1940 in the paper [9] on the evaluation of complex polynomials. It is well known that an effective method is the Horner
scheme. In some cases one has to evaluate polynomials with real coefficients at complex numbers; as an example, the
application to special mechanical systems with several degrees of freedom is mentioned. For this case, an algorithm is
presented in detail, which needs half of the arithmeticwork compared to applying theHorner scheme directly. No complex
arithmetic is used in the new algorithm.
The third aspect (c) is first discussed 1942 in [10] for the so-called Total Step Method (TSM) and the Single Step

Method (SSM), respectively. Here the question is investigated how one can modify a given linear system of simultane-
ous equations to make it sufficiently strictly diagonally dominant for the iterative solution process. For a system with
two equations and two unknowns it is demonstrated that TSM and SSM are either both convergent for arbitrary starting
values or both divergent. In the first case, SSM is twice as fast convergent as TSM. Furthermore it is demonstrated by
examples that for systems with more than two unknowns and equations TSM can be convergent whereas SSM is diver-
gent and vice versa. The matrices are not strictly diagonally dominant in these examples. Finally, for a strictly diagonally
dominant matrix an error estimation for SSM is derived for the approximation obtained after a finite number of iteration
steps.
In 1950, in the paper [11] the fact is used that an iterationmethod for the linear system𝐴𝑥 = 𝑏 resulting from the splitting

𝐴 = 𝐵 + 𝐶 with a nonsingular matrix 𝐵 and iterating by

𝐵𝑥𝑘+1 = −𝐶𝑥𝑘 + 𝑏, 𝑘 = 0, 1, 2, …
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F IGURE 2 A reducible matrix

is convergent for all starting values if and only if the spectral radius of the so-called iterationmatrix−𝐵−1𝐶 is less than one.
It is shown in this paper that TSM and SSM can bewritten in this form by choosing𝐵 and𝐶 correspondingly. Furthermore,
the spectral radius condition holds if 𝐴 is strictly diagonally dominant. The same holds if the transposed of 𝐴 is strictly
diagonally dominant. Additionally, the spectral radius condition holds for SSM if𝐴 is symmetric and positive definite. An
important result of this paper concerns the situation that the given matrix (or its transposed) is only weakly diagonally
dominant, i.e.,

𝑛∑
𝑗=1,𝑗≠𝑖

|𝑎𝑖𝑗| ≤ |𝑎𝑖𝑖|, 𝑖 = 1, … , 𝑛,

andwhere at least for one index 𝑖 the strict inequality holds. An example is presentedwhich shows that in this case possibly
neither TSM nor SSM is convergent for all initial values. An additional condition for the matrix 𝐴 is needed to guarantee
convergence: The matrix has to be irreducible (“nichtzerfallend”). This means that it is not possible by interchanging the
rows of the matrix and simultaneously interchanging the same columns so that the resulting matrix has the form where
𝐴11 and 𝐴22 are square block matrices (possibly of different size) and the block 𝐴21 has only zero entries. Otherwise, the
matrix is reducible (”zerfallend”), cf. Figure 2. This basic property played a major role in the development of more gen-
eral iterative methods for linear systems. A weakly diagonally dominant matrix which is irreducible is called irreducibly
diagonally dominant.
Matrices of this type appear by discretizing certain boundary value problems for partial differential equations (see also

Section 2), and now these results are addressed in introductory lectures on numerical analysis. Nevertheless, meanwhile
Krylov methods such as conjugate gradients or GMRES are mostly used for the iterative solution of linear systems, and
more general convergence results are obtained from spectral properties of the iteration matrix.
For solving simultaneous systems of nonlinear equations the application of an iterative method is usually the only

possible procedure for the approximation of a solution. In 1954, the paper [12] considers the so-called simplified New-
ton method. In this case the derivative is kept fixed after a couple of iterative steps, usually after the first step. For
this special situation an error estimation is given for the approximation obtained after a finite number of steps. This
is based on a systematic use of Banach’s fixed point theorem. Meanwhile, this idea is adapted for proving the exis-
tence of solutions and computing error estimates for nonlinear equations formulated in very general settings; see also
Section 4.
We note that today, besides of (a)–(c), on modern computer systems further aspects have to be considered for new

algorithms or modifications of existing methods (e.g., parallelization, energy saving by minimizing data transfer in the
computer and others). It is clear that at the time when ZAMM was founded these problems did not exist and therefore
could not even be formulated. However, it is obvious that without the early results challenging questions for modern
applications could not be discussed today.

4 SOLUTION ENCLOSURES AND EIGENVALUE BOUNDS

Collatz’ work is under several aspects guided by the mutual influence of analysis and numerics on each other. He
used, e.g., operator theoretical approaches to develop numerical methods for differential equations. On the other hand,
he exploited numerical results to obtain analytical statements via enclosures of exact solutions, e.g., for boundary and
eigenvalue problems with ordinary or partial differential equations. Hence he was a pioneer in the field of “computer-
assisted proofs”, which nowadays (with much more powerful computer facilities) is a worldwide rapidly growing
area.
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We select some early ZAMM publications of Collatz to demonstrate this interplay of analysis and numerics in his work.
In [13], he considers fixed-point equations

𝑇𝑢 = 𝑢 (1)

in a Banach space 𝐵, and also equations 𝑆𝑢 = 0, which are transformed into the fixed-point form (1) using 𝑇 = 𝐼 − 𝐿−1𝑆,
where 𝐿 denotes an invertible linear operator. Under suitable assumptions one may hope for contraction properties
of 𝑇 near a desired exact solution, and hence for convergence of the sequence (𝑢𝑛) given by some appropriate 𝑢0
and

𝑢𝑛+1 = 𝑇𝑢𝑛, 𝑛 = 0, 1, 2, … , (2)

which Collatz uses for obtaining numerical approximations. He also formulates a general contraction mapping theorem
for problem (1) which uses a metric with values in an ordered Banach space. As main application, he considers nonlinear
differential equations

𝐿𝑢(𝑥) = 𝑓(𝑥, 𝑢(𝑥))+ boundary conditions

on a bounded domain𝐷 ⊂ ℝ𝑚, where 𝐿 is a linear differential operator with suitable bijectivity properties. With𝑁 denot-
ing an upper bound for 𝜕𝑓∕𝜕𝑢 on some appropriate set, the crucial assumption that some positive function 𝜎 exists such
that

𝐿𝜎 − 𝑁𝜎 ≥ 𝑁|𝑢1 − 𝑢0| on 𝐷 (3)

provides the rigorous error bound

|𝑢 − 𝑢1| ≤ 𝜎 on 𝐷 (4)

for an exact solution 𝑢.
Assumption (3) is closely related to the existence of a maximum principle for 𝐿 − 𝑁 and hence rather restrictive, but

nevertheless Collatz and others were able to obtain solution enclosures by this or similar approaches for many examples
with ordinary or partial differential equations. Meanwhile, since about 30 years, methods are being developed which
replace (4) by an error bound in a Sobolev space and which avoid condition (3).
Collatz’ approach via (3) is also strongly connected with methods of monotone operators, which he developed and

applied tomany examples in various publications, e.g., [13,14]. Here, the Banach space𝐵 inwhich the fixed-point Equation
(1) is formulated is assumed to be ordered, and 𝑇 is supposed to be either monotonically non-decreasing or monotonically
non-increasing with respect to this order. In the first case, besides (2) a second sequence (�̂�𝑛), �̂�𝑛+1 = 𝑇�̂�𝑛, is considered,
and under the assumptions

𝑢0 ≤ �̂�0, 𝑢0 ≤ 𝑢1, �̂�1 ≤ �̂�0, (5)

the existence of a fixed-point 𝑢∗ follows from Schauder’s fixed-point theorem; both sequences converge to 𝑢∗, and

𝑢0 ≤ 𝑢1 ≤ ⋯ ≤ 𝑢𝑛 ≤ 𝑢∗ ≤ �̂�𝑛 ≤ ⋯ ≤ �̂�1 ≤ �̂�0 for all 𝑛 ∈ ℕ .

Condition (5) is also closely related to the method of sub- and supersolutions for enclosing (and proving existence of)
solutions to initial and boundary value problems.
In the second case, where 𝑇 is monotonically non-increasing, the assumptions 𝑢0 ≤ 𝑢1 and 𝑢0 ≤ 𝑢2 lead to the

convergence of (𝑢2𝑘) and (𝑢2𝑘+1) to limits 𝑢even and 𝑢odd, respectively, and the existence of a fixed-point 𝑢∗ such
that

𝑢0 ≤ 𝑢2 ≤ 𝑢4 ≤ ⋯ ≤ 𝑢even ≤ 𝑢∗ ≤ 𝑢odd ≤ ⋯ ≤ 𝑢5 ≤ 𝑢3 ≤ 𝑢1 .
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Another major topic in Collatz’ work on solution enclosures is the field of eigenvalue bounds. E.g., in [15], he considers
eigenvalue problems

𝐿[𝜑] + 𝜆𝑝𝜑 = 0 + boundary conditions (6)

with a symmetric, negative definite linear differential operator 𝐿 and a positive, continuous function 𝑝. In some parts of
[15], 𝑝𝜑 in (6) is replaced by a second differential operator𝑀[𝜑]. In [16], also integro-differential operators 𝐿 and𝑀 are
considered. Under suitable assumptions, Collatz uses an inverse iteration 𝐿[𝐹𝑛] + 𝑝𝐹𝑛−1 = 0 to compute approximations
to the eigenfunction associated with the first (smallest) eigenvalue 𝜆1, and then evaluates the Rayleigh quotient to obtain
approximations to 𝜆1, which by Rayleigh’s principle also form upper bounds to 𝜆1. To compute lower bounds to 𝜆1, Collatz
proposes the Temple quotients for 𝐹1, 𝐹2, …, i.e.,

𝜆1 ≥
𝓁2 ∫ 𝐹𝑛(−𝐿)[𝐹𝑛]d𝑥 − ∫

1

𝑝
𝐿[𝐹𝑛]

2d𝑥

𝓁2 ∫ 𝑝𝐹2
𝑛d𝑥 − ∫ 𝐹𝑛(−𝐿)[𝐹𝑛]d𝑥

for all 𝑛 ∈ ℕ, (7)

with 𝓁2 denoting a (rough) lower bound for 𝜆2, which must be large enough to make the denominator in (7) positive.
Actually, the bound (7) is obtained by applying the formula [15, Equation (7.4)] for odd 𝑛.
For computing upper bounds also for higher eigenvalues, Collatz proposes the Rayleigh-Ritz method, which he formu-

lates in two versions, once via the Euler equations of a variational problem, and once directly via a Ritz-Galerkin approach.
80 years after Collatz’ early publication [15], the Rayleigh-Ritz method and the Temple quotient are still “modern” and

widely used. Some other approaches providing lower eigenvalue bounds (Trefftz method, Temple’s inclusion theorem,
difference methods), which are also discussed in Collatz’ work, have got a bit in the background since then.
Further developments were Kato’s eigenvalue bounds (1949) which are highly accurate but need substantial a priori

knowledge, Lehmann’s lower eigenvalue bounds (1963) and Goerisch’s extension which generalize the Temple quotient
(7) for obtaining lower bounds also to higher eigenvalues, and homotopy methods for computing rough lower bounds to
some higher eigenvalues, which are needed for the Temple quotient and for Lehmann’s method.

5 CONCLUSION

This review on early developments in numerical mathematics with a special focus on the contributions of Lothar Collatz
in ZAMM highlights the fundamental principles in applied mathematics:

∙ Mathematical models are investigated which are based on applications in mechanics and physics, and in many cases
these applications initiate developments in numerics; examples are the computation of eigenmodes of membranes [17],
eigenfrequencies of machine components [18] and of plates [19].

∙ The development of algorithms is complemented by the analysis of stability, accuracy, efficiency, and – as far as possible
– error control.

∙ The approximation of mathematical models and the analysis of the solution properties with respect to existence and
regularity have to be combined to guarantee convergence of the approximations.

REFERENCES
[1] Collatz, L.: Bemerkungen zur Fehlerabschätzung für das Differenzenverfahren bei partiellen Differentialgleichungen. ZAMM-J. Appl.

Math. Mech. /Z. Angew. Math. Mech. 13(1), 56–57 (1933)
[2] Collatz, L., Zurmühl, R.: Beiträge zu den Interpolationsverfahren der numerischen Integration von Differentialgleichungen 1. und 2.

Ordnung. ZAMM-J. Appl. Math. Mech. /Z. Angew. Math. Mech. 22(1), 42–55 (1942)
[3] Collatz, L.: Natürliche Schrittweite bei numerischer Integration von Differentialgleichungssystemen. ZAMM-J. Appl. Math. Mech. /Z.

Angew. Math. Mech. 22(4), 216–225 (1942)
[4] Collatz, L.: Differenzenverfahren zur numerischen Integration von gewöhnlichenDifferentialgleichungen 𝑛-ter Ordnung. ZAMM-J. Appl.

Math. Mech. /Z. Angew. Math. Mech. 29(7-8), 199–209 (1949)
[5] Collatz, L.: Fehlerabschätzung bei der ersten Randwertaufgabe bei elliptischen Differentialgleichungen. ZAMM-J. Appl. Math. Mech. /Z.

Angew. Math. Mech. 32(7), 202–211 (1952)



8 of 8 ALEFELD et al.

[6] Collatz, L.: Numerische Behandlung von Differentialgleichungen. Grundlehren der mathematischen Wissenschaften, vol. 60. Springer,
Berlin, Heidelberg (1951)

[7] Collatz, L.: The Numerical Treatment of Differential Equations. Grundlehren der mathematischen Wissenschaften, vol. 60. Springer,
Berlin, Heidelberg (2012)

[8] Collatz, L.: Über das Quadratwurzelziehen mit der Rechenmaschine. ZAMM-J. Appl. Math. Mech. /Z. Angew. Math. Mech. 16(1), 59–60
(1936)

[9] Collatz, L.: Das Hornersche Schema bei komplexen Wurzeln algebraischer Gleichungen. ZAMM-J. Appl. Math. Mech. /Z. Angew. Math.
Mech. 20(4), 235–236 (1940)

[10] Collatz, L.: Fehlerabschätzung für das Iterationsverfahren zur Auflösung linearer Gleichungssysteme. ZAMM-J. Appl. Math. Mech. /Z.
Angew. Math. Mech. 22(6), 357–361 (1942)

[11] Collatz, L.: Zur Herleitung von Konvergenzkriterien für Iterationsverfahren bei linearen Gleichungssystemen. ZAMM-J. Appl. Math.
Mech. /Z. Angew. Math. Mech. 30(8-9), 278–280 (1950)

[12] Collatz, L.: Das vereinfachte Newtonsche verfahren bei algebraischen und transzendenten Gleichungen. ZAMM-J. Appl. Math. Mech. /Z.
Angew. Math. Mech. 34(1-2), 70–71 (1954)

[13] Collatz, L.: Einige funktionalanalytischeMethoden bei der numerischen Behandlung von Differentialgleichungen. ZAMM-J. Appl. Math.
Mech. /Z. Angew. Math. Mech. 38(7-8), 264–267 (1958)

[14] Collatz, L.: Einschließungssätze bei Iteration und Relaxation. ZAMM-J. Appl. Math. Mech. /Z. Angew. Math. Mech. 32(2-3), 76–84 (1952)
[15] Collatz, L.: Zusammenfassender Bericht. Genäherte Berechnung von Eigenwerten. ZAMM-J. Appl. Math. Mech. /Z. Angew. Math. Mech.

19(4), 224–249 (1939)
[16] Collatz, L.: Eigenwertaufgaben bei einer Klasse linearer Integro-Differentialgleichungen. ZAMM-J. Appl. Math. Mech. /Z. Angew. Math.

Mech. 25(5-6), 129–130 (1947)
[17] Collatz, L.: Die Berechnung von Eigenschwingungen einer gleichseitig dreieckigen Membran mit Hilfe von Sechsecksnetzen. ZAMM-J.

Appl. Math. Mech. /Z. Angew. Math. Mech. 14(5), 315–317 (1934)
[18] Vdi, T.P., Collatz, L.: Über die Berechnung undDarstellung der Eigenfrequenzen homogenerMaschinenmit Zusatzdrehmassen. ZAMM-J.

Appl. Math. Mech. /Z. Angew. Math. Mech. 18(3), 186–194 (1938)
[19] Collatz, L.: Das Mehrstellenverfahren bei Plattenaufgaben. ZAMM-J. Appl. Math. Mech. /Z. Angew. Math. Mech. 30(11-12), 385–388 (1950)

How to cite this article: Alefeld G , Plum M, Wieners C. Error bounds and enclosures: The development of
numerical analysis and the impact of the contributions by Lothar Collatz. Z Angew Math Mech.
2020;100:e202002042. https://doi.org/10.1002/zamm.202002042

https://doi.org/10.1002/zamm.202002042

	Error bounds and enclosures: The development of numerical analysis and the impact of the contributions by Lothar Collatz
	1 | INTRODUCTION
	2 | NUMERICAL APPROXIMATION OF SOLUTIONS OF DIFFERENTIAL EQUATIONS
	3 | CONVERGENCE ESTIMATES FOR NUMERICAL ITERATIONS IN AND IN 
	4 | SOLUTION ENCLOSURES AND EIGENVALUE BOUNDS
	5 | CONCLUSION
	REFERENCES


