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Abstract: In this paper we use the concept of a feasible vector in order to bound a, solution z* of
an almost linear complementarity problem in a certain set. This set delivers also componentwise
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corresponding bounds recently obtained. By numerical examples it will be demonstrated that

the new bounds can be better by several orders of magnitude.
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1 Introduction

Let F': R — R™ be a given function. The nonlinear complementarity problem, denoted by NCP(F),
is to find a vector z* € R™ such that

z* >0, F(z*) >0, (z*)TF(z*) = 0. (1.1)

The inequalities are meant componentwise. In this article we consider the problem (1.1) with a so-called

almost linear function
F(z) = Mz + ¢(), (1.2)

where M € R™ ™ is a given matrix, and p(z) : R* — R" is a given monotonically increasing diago-
nal function. This means that, the i-th component of ¢(z) is a function of the i-th variable z; only,
vi(z) = @i(z:), and p;(;) is monotonically increasing, i = 1,...,n. If p(z) = ¢ € R", the problem
reduces to a so-called linear complementarity problem, which we denote by LCP(M, q).
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2 G. Alefeld and Z. Wang

Complementarity problems with functions of the form (1.2) have many real world applications, which

has been demonstrated in [5, 6].

Let # € R" be a given approximation of a solution z* of the problem N CP(F) with the function F
given by (1.2). In this paper we present an new approach of computing a componentwise bound of the

error e(Z) := I — x*.

Denote by D and —B the diagonal and off-diagonal part of M, respectively. We define 7 :={1,...,n},
and

B = {ie€I|di>(Mi);+ (i)} (1.4)
(Note that a U S =1T.)
- _ - wi 7= |Ci'z| ificua
i = (&) with Z_{ 0 ficp (1.5)
o (Ma)i+eild)  fica
g = (%) with yl—{ (M#), +oila)| i€ (1.6)
M := D-|B| (1.7)
§ = Mz+7. (1.8)

The linear complementarity problem LCP(M,§) is said to be feasible (see [4]) if
FEA(M,§) = {z €R" >0, Mz +§>0} # 0.

An element u € FEA(M, §) is called a feasible vector of the problem LCP(M,q). Let a feasible vector

u € FEA(M,§) be known, let

and define
D:={ze€R" |z —&| <r}.

Suppose that there exist constants y; such that for any z = (z;) €D

pile) Z0il@) o o, (1.10)
i — Xy
i=1,...,n. We will show in Theorem 2.1 that NCP(F) has a solution z* = (z}) € D.

The following componentwise error bound is then straightforward:
|2; — 27| <7 (1.11)

Moreover, let M be an H-matrix (see below) whose diagonal elements are all positive. Then the linear
complementarity problem LCP(M ,q) is feasible, since u = M~max{0, -4} is a feasible vector of
LCP(M,§). Therefore, by Theorem 2.1, the complementarity problem NCP(F) has a solution z* € D
(which is known to be unique). For this case we have the following error bound which follows immediately
from (1.9) and (1.11):

|2 —z*|<r = i+ M~ max{0, —q}. (1.12)

This error bound can be computed by solving a system of linear equations.

@© European Society of Computational Methods in Sciences and Engineering (ESCMSE)



Bounding Error for Complementarity Problems 3

Very recently the error estimation
|# — 2*| < M~'max{D, I} min{z, MZ + ¢(2)}| (1.13)

was given in [1], when M is an H-matrix whose diagonal elements are all positive, D denotes the diagonal
part of M, I denotes the identity matrix, and “max” has to be understood componentwise. From (1.13),

the error estimation
& =2, < M~ max{D, I}||,l| min{&, Mz + g},

follows for LCP(M,q). This has already been obtained in [3] for 1 < p < oco. It was proven to be more
accurate than that given by Mathias and Pang [8]. We will show that our error bound (1.12) is more
accurate than (1.13). Precisely speaking, we will prove that

F4+ M 'max{0,—-G} < M 'max{D,I} min{z, Mz + o(&)}|.

It will be demonstrated that this inequality could hold strictly by several orders of magnitude (See Table
1 in Section 5).

We also give error bounds for NCP(F) with an F, for which (1.10) does not hold, if we have
g #F (Ma)i+¢i(E:)

foreachi=1,...,n.

A word on the notations used in this paper. Let z = (z;),y = (y;) € R". Let x <y stand for z; < y;,
i=1,...,n. We denote by max{z,y} and min{z,y} the componentwise maximum and minimum of =
and y, respectively. Let M = (m;;) € R™™. M is called a Z-matrix if each of its off-diagonal elements is
non-positive. M is called a P-matrix if each of its principal minors is positive. M is called an H-matrix
if its comparison matrix (M) = ({m;;)) has a nonnegative inverse, that is, each element of the inverse

My if =74,
(mm‘—’{ i

of {M) is nonnegative, where

—|mi| it 1#.
Note that M = (M) in (1.7) if M is a matrix whose diagonal elements are all positive. It is well known
that an H-matrix whose diagonal elements are all positive is a P-matrix. See [4, 10], for example. We
define [M] = (jm).

2 Error Estimation

At first we give an existence theorem for the complementarity problem NCP(F), where F' is defined by
(1.2). This existence theorem simultaneously delivers a componentwise error estimation.

Theorem 2.1. Let M € R™ ™ be a given matriz, and let o(z) = (p;(x;)) be a given diagonal mapping
with each @;(-) being continuous and monotonically increasing. Let & = (2;) € R be given, where R%
denotes the set of vectors with nonnegative components. Let o, B, T and §, M and G be defined by
(1.3)-(1.8), respectively. Let an element u € FEA(g, M) be known, and let r = & +u. Denote

D:={ze€R" |z—3 <r}. (2.14)
Suppose that there are constants v; >0, i =1,...,n, such that for any x € D
M} _<_ Yi fOT Z; 7é :f?i. (215)
Ty — X4

Then the problem NCP(F) has a solution z* € D, where F(x) = Mz + ¢(z).

@© European Society of Computational Methods in Sciences and Engineering (ESCMSE)



4 G. Alefeld and Z. Wang

Proof.  If (2.15) holds, then it holds for arbitrarily large constants +; and therefore we can assume
without the loss of generality that the v; are chosen in such a manner that my +v > 0,i=1,...,n.
Then we choose the elements of the diagonal matrix A = diag(d;) such that

1
0 <6 < , i=1,...,n. (2.16)
My + Y

We note that z* is a solution of NCP(F) if and only if z* is a fixed point of the mapping
I'(z) := max{0,z — A(Mz + ¢(z))}.

We show that under our assumptions, I' has a fixed point 2* in D. Let x € D be fixed. Assume that
x; # ;. From the fact that ¢ is monotonically increasing, it follows that

wi(z:) = iPi(xi) > 0.
Xy — X;

This, together with (2.16), yields

1—dmy > 1—5i(mii+W) > 1—=6;(my +v) > 0,
i — &

and therefore we have for z; # &;
(I - AM)(z - %)~ Alp(z) = (@)l
= (1 = &;(msi + Ml)) (@i — &) — 6i 20 maj(z; — 25)
Ti—Z; i
S (]. - 5imii)n + 51 z Imij]rj‘
J#i

If z; = 2;, then, using again (2.16)

(I - AM)(z - 2) — Alp(z) — 9(2))):

n n
= @i—&i—6 ), miy(z; —25) = =6 Y mij(z; — &)
j=1 j=1

IN

n
8; - Imaglry < (1= dimag)ri + 6; ) [maglry.
i i

Summarizing, we have for x € D
(I-AM)(z - %) - A(p(z) — (%)) < (I-AD+A|B[)r.

From this we achieve

I'(z)

Il

max{0,z — A(Mz + ¢(z))}
= max{0,& - A(M2Z + ¢(2)) + (I - AM)(z - £) — Ap(z) — ¢(2))}
< max{0,% — A(MZ + o(£)) + (I — AD + A|B|)r}.

Noting that M# + (%) > § and u € FEA(M, §), using (1.7), (1.8) and (1.9) we have

(D~ |B))r + (M2 +(#)) = M(&+u)+ (M2 +(2))

M(Z+u)+g
Mu + (M% +§) = Mu+§ > 0.

v

I

From this we obtain
—A(Mz+ o(2)) + A(=D + |B|)r <0,

therefore
T—AMZ + @)+ (I -AD+A|B)r < &+,

© European Society of Computational Methods in Sciences and Engineering (ESCMSE)



Bounding Error for Complementarity Problems 5

which, together with & + r > 0, yields I'(z) < & + .
We move on to prove I'(x) > & — r. Similarly as above, we can show

(I AM)(@ — &) - Alp(x) — p(&) = —( - AD+ A|B))r.
Consequently

() max{0,z — A(Mz + p(z))}
max{0,& — A(M3 + ¢(2)) + (I = AM)(z — 2) — (¢(z) — ¢(2))}

max{0, % — A(Mi + () — (I — AD + A|B|)r}.

I

It

Y

For an index i € a, we have (2—71); = —u; < 0 < [['(z)];. For anindex i € 3, noting that —(Mz+p(£)) >
g and u € FEA(M, §), we have

(D = |Bl)r — (MZ + ¢(2))]:

Il

[M(Z +u) = (M2 + o(&))];
[M(Z +u) +§l:
[Mu + (M3 + §)}; = [Mu + s > 0.

v

Therefore
[ — AMZ + o(Z)) + (I — AD + A|B|)r]; 2 (& —7);.

This yields
[[(z)); > max{0,[& — A(MZ +¢(2)) — (I = AD + AlB|)rli} =2 (& —7)i.
Summerarizing, we have I'(z) > & — r. Hence we have shown that ' maps D into itself. Since I is

continuous and D is compact, convex and not empty, it follows from the Brouwer fixed-point theorem
[9] that T" has a fixed point z* € D, which is a solution of NCP(F). O

The existence domain D, defined by (2.14), delivers a componentwise error estimation
lz* =& < 7 (2.17)

The error bound r = % + u can be obtained once a feasible vector u € FEA(M,§) is known. However,
there might be more than one feasible vector u € FEA(M,§). The following result on the “sharpest”

error bound given in Theorem 2.1 is well known.

Theorem 2.2. Let M and § be defined by (1.7) and (1.8), respectively. If FEA(M,q) # 0, then there
is a unique vector u* € FEA(M,§) such that

u* < u, VYueFEAM,q).

Moreover u* is a solution of LCP(M,q).
Proof. For the proof we refer to Theorem 3.11.6, pp.201, [4]. O
The vector u* from the preceding theorem is called the least element of the set FEA(M ,q)-

Theorem 2.2 indicates that we can obtain a "sharpest” error bound via the least element of F EA(]\;[ ,4),

since for a given vector £ € R™, we have

|2 —a*| < &4+u* < &+u, Vue FEA(M,q).

In Theorem 2.1 we impose no requirement on the matrix M. The problem NCP(F) may have no
solution (in this case the problem LCP(M,§) is not feasible for any &), or may have a unique solution,
or may have more than one solution. The following well known result is on the unique solvability of the

problem NCP(F).

© European Society of Computational Methods in Sciences and Engineering (ESCMSE)



6 G. Alefeld and Z. Wang

Theorem 2.3 ([1]). Let () = (p;(x;)) be a given diagonal mapping with each o;(-) being continuous
and monotonically increasing, let M € R"*™ be a P-matriz. Then NCP(F) has a unique solution z*.

We know that if M is an H-matrix with positive diagonal elements, then M is a P-matrix, and the
corresponding problem NCP(F') has a unique solution. We show that LCP(M ,§G) is always feasible for

this case.

Theorem 2.4. Let the conditions of Theorem 2.1 hold. Moreover suppose that M is an H-matriz with
positive diagonal elements. Let &, M and § are defined by (1.5), (1.7) and (1.8), respectively. Then

u = (M) max{0,-g} € FEA(M,J),
and the problem NCP(F) has a unique solution z* with the estimation

|2 —2*| < r = 7+ (M)~ max{0, —4}. (2.18)

(Note that (2.18) is identical to (1.12) because M = (M).)

Proof.  Since M is assumed to be an H-matrix with positive diagonal elements, we have (M)~! > 0,

that is, each element of (M)~ is nonnegative. So
u = (M) 'max{0,-G} > 0.
Moreover, noting M = (M), we have
Mu+§ = M({M)*max{0, -G} +§ = max{0,—G}+¢ > 0.

Hence u = (M)~ max{0, ~§} € FEA(M,§), and from Theorem 2.1 it follows that there is a solution
x* of the problem NCP(F) with |z* — & < r. The uniqueness of the solution can be guaranteed by
Theorem 2.3. O

From the following example, we can see that for the case that M is a P-matrix without being an
H-matrix, the problem LCP(M ,§) can be feasible, and Theorem 2.1 can be applied.

Sl RO B

M is a P-matriz but not an H-matriz. LCP(M,q) has the unique solution z* = [0,1]T. We compute
for & =[1,7)7 that z = [1,0]T and

RN

It is easy to verify that u = [1,8]T € FEA(M,§), and from (2.17) we have the error bound

Example 2.5. Let

. X . 2
Z2—2z* < r=3%+u = .
8
Unfortunately, we are not in the position to prove that for the whole set of P-matrices, we can find a
feasible vector of LCP(M, ), which would allow the application of Theorem 2.1.
On the other hand we now present an example to demonstrate that Theorem 2.1 can also be applied

even if M is not a P-matrix.

© European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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A R

Note that M is not a P-matriz since mi; = 0. LCP(M,q) has the unique solution z* = [0,1)7. Wwe
compute for & = [1,6]7 that & = [1,6]T and

se (2] e [3)

1t is easy to verify that u = (0,017 € FEA(M,§), and from (2.17) we have the error bound

Example 2.6. Let

3 Discussion for the Non-Lipschitz Case

Let & = (2;) € R™ be given, let D be defined by (2.14). In Theorem 2.1 the condition (2.15) is required,
that is, it is supposed that there are constants 7 20,4=1,...,n, such that for any z = (z;) € D

Ty — T

This condition is fulfilled if each ¢; is locally Lipschitz at Z;. A function f : R® — R™ is said to
be locally Lipschitz at a vector & € R™ if there are constants ¢ > 0 and v > 0 such that for any

TeN(@)={zeR" [z -2|| <e}
(@)= f@I < Allz - 2.

For the case that ¢ fails to be Lipschitz continuous at %, we have the following result on the error
estimation for the problem NCP(F).

Theorem 3.1. Let M € R™*" be an H-matriz with positive diagonal elements. Let p(z) = (p;(x;)) be
a given diagonal mapping with each ¢;(-) continuous and monotonically increasing. Denote by x* the
unique solution of NCP(F) (see Theorem 2.8), where F(z) = Mz +(x). Let a vector & € R™ be given
such that

T # (M2); + i (24), (3.19)

i=1,...,n. Let &, M and § be defined by (1.5), (1.7) and (1.8), respectively. If there is a sequence
{2m}0_ with lim 2™ = & such that () is Lipschitz continuous at each £™, then we have
m—00

| —2z*| < &4 (M)~!max{0,—g}.
Remark 3.2. A solution z* of NCP(F) is called non-degenerate (see [4]) if
z; # Fi(z*), 1=1,...,n.
Condition (3.19) is fulfilled when % is sufficiently close to a non-degenerate solution z*.

Proof.  Let the index subsets o and 3 be defined by (1.3) and (1.4), respectively. Under the condition
(3.19) they can be written as

c={i: & < (M2); + (%)},  Br={i: & > (Mi); + @i(2:)}.

© EBuropean Society of Computational Methods in Sciences and Engineering (ESCMSE)



8 G. Alefeld and Z. Wang

Since lim 2™ = & and Mz + ¢(z) is continuous, we have for a sufficiently large m
m-—0oQ

P < (ME™); + i (81) if iea,

TP > (ME™); + i (87) if iep.

Let 2™ and §™ be defined as in (1.5) and (1.6), respectively. Under the condition (3.19) they can be

written as

Fmo= (M) with i =

lEr| it iea,

0 ifiep,
@) with gn=q (MEitelE) o ifica
—|(MZ™); + @i (21)] if 1€ 8.

We have lim,—,00 ™ = &, lily, 00 §™ = §, where Z and § are defined by (1.5) and (1.6), respectively.
Let ¢™ := MZ™ + ™. Therefore

lim ™ = Mi+§j = 4§
Since ¢(-) is Lipschitz continuous at each £™, from Theorem 2.1 we have

|#™ —2*| < &™+ (M)~ max{0, —¢™}

if m is sufficiently large. Taking m — oo, this yields the conclusion. O

4 Comparison of Error Bounds

In this section we show for the case that M is an H-matrix with positive diagonal elements that the
error bound (2.18) is more accurate than (1.13), which was given in [1].

Theorem 4.1. Let M € R"*™ be an H-matriz whose diagonal elements are all positive, and let o(x) =
(pi(zi)) be a given diagonal mapping. Let & € R be given, where R denotes the set of vectors with
nonnegative components. Let £ and § be defined by (1.5) and (1.8), respectively. Let D denote the
diagonal part of M. Then we have

i+ (M) 'max{0,—g} < (M)"'max{D, T} min{z, Mz + o(z)}|. (4.20)
(The right hand side of (4.20) is identical to that of (1.13) because M = (M).)
Proof. Let § be defined by (1.6). At first we show
max{M#,—§} < max{D,I}| min{z, Mz + o(z)}|.
From (1.5) we know that & > 0. We have

j#i

From the definition of § in (1.6) we know that for i € «
—0i = —(M2)i—pi(#:) < —& < max{l,mi}|Z|.
Noting for ¢ € « that min{%;, (M2Z); + ¢;(#;)} = Z;, we have for i € «

max{((M)Z);, —9;} < max{l, my} min{,;, (M2); + 0:(£:)}|. (4.21)

© European Society of Computational Methods in Sciences and Engineering (ESCMSE)



Bounding Error for Complementarity Problems 9

For i € 3, from the definition of # in (1.5) we know that &; = 0. Therefore we have

(M)E); = mud;— Y |mild; < 0 < max{l,m}|(M2): + ¢i(2:)]
J#
for i € B. From the definition of § in (1.6) we know that for i € 8
gi = —I(M2&); + pi(&:)l;

therefore
~§i = |(M#&); +¢s(&:)| < max{l,my}|(M%); + @i(:)].

Noting for i € 8 that min{Z;, (M2); + ¢i(&:)} = (M2); + ¢s(2:). We have for i € 3
max{((M)Z);, =9} < max{l,my} min{d;, (Mi); +@i(2:)}- (4.22)
Summarizing (4.21) and (4.22) we have
max{(M)#, —j} < max{I, D} min{Z, MZ + p(2)}|.
Since M is an H-matrix with positive diagonal elements, each element of (M)~! is nonnegative. So
(M)~ max{(M)Z, —g} < (M)"'max{D, I} min{, M + ¢(z)}|.

From the definition of § = M7 + § and from the fact that M = (M) it follows that

Il

M)~Y(Mz + max{0, —M& — §})

(M)~ max{(M)Z, -§} (
= &+ (M)~ max{0, ~q},

which completes the proof. O

5 Numerical Experiment and Remarks

Tn this section we perform numerical experiments for Example 5.1 to demonstrate that the bound (2.18)
is more accurate than (1.13), that is, to demonstrate (4.20):
i+ (M) 'max{0, -G} < (M) 'max{D,I}| min{Z, Mi+ p(Z)}

Example 5.1. Let Q = (0,1)2 C R2. Let ¢(s,t,v) : R® — Ry and ¢(s,t) : R* — R be given functions.
We consider finding a function u(s,t) : R — R such that

I

Au (s, t,u) in Q4
u = (s,t) in 0Q
u > 0 in £,
where the domain
0, = {(s,t) € Q| u(s,t) >0}

is unknown. This free boundary problem is formulated from a Dirichlet problem [7], and it models some
reaction-diffusion procedures. We impose a uniform square mesh of n = k2 grid points (si,tm) with the
coordinates (lh,mh), h = 1/(k+1), I,m = 1,...,k. The solution u can be approzimated by a vector
z* = (z7) € R, which solves NCP(F), where F(z) = Mz + ¢(z), M € R™", o(z) = (pi(z;)). The

matriz M has the form

I H -1 4

© European Society of Computational Methods in Sciences and Engineering (ESCMSE)



10 G. Alefeld and Z. Wang

©w=0.1 nw=203 p=0.5 n=0.7 ©n=0.9

n =100 | 1.0687e-02 1.2832e-02 6.6929¢-03 1.0399e-02 8.2744¢-03
n =225 | 2.8664e-03 2.8058e-03 3.9246e-03 2.5748e-03 2.5866e-03
n =400 | 1.9845e-03 1.6332e-03 1.4918e-03 1.6383e-03 1.7056e-03
n =900 | 8.4605e-04 8.4262e-04 9.0013e-04 9.0624e-04 7.5197e-04
n = 1600 | 3.9945e-04 3.8633e-04 4.1893e-04 4.3989e-04 4.0299¢-04

Table 1: Values of & from (5.23)

The diagonal function has the form
wi(xi) = ¢(s1, tm, i) + ciy

where ¢; is constant and is dependent on the values of ¥ on the boundary of Q, 1 = (I — 1)k + m,
ILm=1,...,k. It can be verified that M is an H-matriz whose diagonal elements are all positive. A
similar discrete analogue can also be obtained by the finite element method for a more complex domain
Q. See [2].

Let 4 € (0,1) be given, set A = ﬁ. In our numerical experiments we choose ¢ and ¢ in Example

5.1 as follows

2p
9 W2 +2-1\"7" 1
s,t,u) = max{0, vV s2 + 2 — =} + Amax{0, u}*,
dot) = s r_—__smz( i ) (0,VF+ 8~ 1} + Amax(0,u)

Y(s,t) = (%) N max{0, v/ s% + 2 — %}

Let & = (Z;) € R% be generated in the following way

#; = max{0,v; — 0.5} x 10%i70:5,

where v; and w; are random numbers in [0,1], i = 1,...,n. The assumptions in Theorem 3.1 concerning
the sequence {#™}5°_; are fulfilled for this choice of £. In Table 1 we report for the vectors & which

fulfill the condition (3.19) the following values

= max (Z + (M) 'max{0,—qd});
o (M) max{D, I} min{#, M + (@)1 (5:23)

The numerical results indicate that our error bound (2.18) is more accurate than (1.13), which was given
by Alefeld and Chen in [1], by several orders of magnitude.

Remark 5.2. In the course of numerical computation it might be difficult because of rounding errors
to determine the sets o and 3, defined by (1.3) and (1.4). Without going into details we mention
that by using Intlab [11] rounding errors can be taken into account by modifying (1.3) and (1.4), and

correspondingly also Theorem 2.1.
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