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L. Introduction. In [2] we introduced the interval Cholesky method in order to
enclose the symmetric solution set
Sgym = {w € R Ax =, A= AT ¢ [A] = [/1]”’, b e [b},

where [A] = [A, A] is a given n x n interval matrix and [b] is a corresponding interval
vector. The algorithm uses the formulae of the classical Cholesky method, replacing
the real entries and arithmetic by interval ones. It terminates with an interval vector
[#]¢ = 1Ch([A], [0]) which encloses Sgy but not necessarily the general solution sct

S =A{xcR"| Av =0, Ac[A], be [b]},

which also containg the solutions of lincar systems with unsymmetric matrices from
[A]l. A criterion necessary for [2]¢ to exist is the positive definiteness of all sym-
metric matrices in [A]-independently of any right-hand side [0]. Unfortunately, this
property is not suflicient, as Reichmann’s example in [13] shows which originally was
constructed for a different situation. This example caused the necessity of criteria
which guarantee the existence of [2]¢ or, equivalently, the feasibility of the inter-
val Cholesky method for arbitrary right-hand interval sides. In [2] we proved that
{:1:]"' exists for a varicty of structured matrices, among them H-matrices, M-matrices,
diagonal dominant matrices, and tridiagonal ones, all with appropriate additional
propertics.  In [3] we extended these criteria of feasibility by perturbation results
analogously to those in [11]. In [15] further results of feasibility were presented for
block variants of the algorithm which were introduced there. It is the purpose of
the present paper to add others. In particular, we will show that the feasibility of
the interval Gaussian algorithm [1] implies the existence of 1] provided that [A]
containg al least one positive definite clement matrix. Based on this crucial result a
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CHOLESKY METHOD WITH INTERVAL DATA 1393

preat deal of criteria for the interval Gaussian algorithm carries over to the interval
Cholesky method. Unfortunately, the feasibility of the interval Cholesky method does
not, necessarily imply that of the interval Gaussian algorithm. We will illustrate this
phenomenon by an example. Tt was unexpected, since we can show that the existence
of [#]% for each symanetric matrix A ¢ [A] implies the feasibility of the Gaussian
algorithm for any matrix A ¢ [A] and not only for the symmetric ones.

We have organized this paper as follows: In section 2 we recall the formulae for
the algorithm and a recursive representation. In addition we introduce our notation
and some basic facts that are used later on. In section 3 we state and prove our new

results illustrating them by examples.

2. Preliminaries. By R™ R™ ™ TR, TR™, IR™ ™ we denote the set of real vectors
with 1 components, the set of real nxn mabrices, the set of intervals, the set of interval
vectors with n components, and the set of n x n interval matrices, respectively. By
“interval” we always mean a real compact interval. We write interval quantitics in
brackets with the exception of point quantities (i.c., degenerate interval quantitios)
which we identify with the element they contain.  Fxamples are the zero mabrix
0, the identity matrix I, and the vector ¢ = (1,1,..., D”. We use the notation
[A] = [A, A] = ([aliy) = (lag;, @iz]) ¢ IR™ simultancously without further reference,
and we proceed similarly for the elements of IR™ IR™*™ TR, and IR™. We also mention
the standard notation from interval analysis ([1], [11]),

a = mid(Ja]) = (a +@)/2 (midpoint),
[[a]] = max{]a||a ¢ [a]} = max{|a, [a]} (absolute value),

min{|al, @} i 0 ¢ a],

. (minimal absolute valuc)
0 otherwise

{la]) = min{|al|a € [a]} =

for intervals [a]. Tor [A] € TR™™ we obtain |[A]| € R™ ™ by applying the operator
|- | entrywise, and we define the comparison matrix ([A]) = (¢;) € R™*" by sobting
—llalil - i0a 7 9,

(laliz) iFdi =4

Since real nunbers can be viewed as degenerate intervals, | and () can also be

used for them. In this case they coincide with their well known real counterpart.

By A > O we denote a nonnegative n X n malbrix, i.c., ai; = 0 ford,j =1,...,n.
Analogously, we define & > 0 for x € R™. We call x € R™ positive writing = > 0 if
@; > 0,4 = 1,...,n. Weuse 2™ for the set of real n X n matbrices with nonpositive
oft-diagonal entries. Trivially, Z"*™ contains the n X n matrix (A). As usual we call
A€ R an M-matrix if A is nonsingular with A=Y > O and A ¢ 277" 1t is an
H-matrix if (A) is an M-matrix.

An interval matrix [A] ¢ TR™" is defined to be an M-matrix if cach clement
A € [A] is an M-matrix. In the same way the term “IT-matrix” can be extended to
TR™ ™ 14, is casy to verify that [A] € IR™ ™ is an M-matrix if and only if Ais an
M-matrix and @;; < 0 for i £ §, and that [A] ¢ IR™ ™ is an H-matrix if and only if
([A]) is an M-matrix.

We call [A] € TR™ ™ irreducible if ([A]) is irreducible. In the same way we
define [A] to be diagonally dominant, strictly diagonally dominant, and irreducibly
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1394 GoALERELD AND G MAYIEER

diagonally dominant, respectively. If there is a positive veetor @ such that

(2.1) ([AD)x >0

holds, then we call [A] generalized diagonally dominant. Morcover, we define [A] to
be generalized strictly diagonally dominant if strict inequality holds in (2.1). Anal-
ogously, a generalized irreducibly diagonally dominant matrix [A] is irreducible and
generalized diagonally dominant with (([A])x); > 0 in (2.1) for at least one compo-
nent i 16 is well known that gencralized strictly diagonally dominant matrices are
H-matrices and vice versa.

We equip TR, TR™, TIR™ =™ with the usual real interval arithmetic as described in
[1], [11]. We assume that the reader is familiar with the basic properties of this
arithmetic. For |a] ¢ TR we define

Vlal = {Va | acla]} for 0<a
and
(2.2) [a]* = {a® | a ¢ [a]}.

Instead of \ﬂﬂ we also write ‘u,ll/z.

Then the interval Cholesky method reads as follows.

Given [A] = [A]T ¢ IR™™ and [b] ¢ TR™, define the lower triangular matrix /)]
and the vectors [y], [#]¢ = ([2]¢) = ICh([A], [b]) € TR™ by

i1 1/2
5 = <lﬂ/l.n‘ -y Wﬁ;) ,
k=1

(ij = | lalis }_: [/'Ji/at[l].ikr> [ =g,

[yl

o]

I:’/li - Z “|I,[l|$Y / |lJ,,, = Ny — |,. ey l.

Jeichl

: (I”]i imul?/lj [liis i=1, 0,

Sums with an upper bound smaller than the lower one arce defined to be zero;
the squares in the first formula are evaluated by applying the interval square function

Apparently [;l:}“ exists if and only if 0 < [, ¢+ = 1,...,n. In this casc we call
the algorithm feasible. Note that this feasibility does not depend on the choice of
[0]. For the interval Cholesky method we assume, without loss of gencerality, [A] to
be symmetric, io., [A] = [A]". (In the case [A] £ [A]" we replace [A] by the largest
interval matrix [B] C [A] which satisfies [B] = [B]7" and rename [B] to [A].) By the
overestimation of the interval arithmetic only

[A] < [L[n]"
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CHOLESKY MIETHOD WITH INTERVAL DATA 1395

can be guaranteed; cf. [2] for details. Nevertheless the pair ([L], [L]") is called the
Cholesky decomposition of [A]. This decomposition can also be defined in a recursive
way. 'To this end write |A] € TR™ ™ as

lalii [e]"
4 (M MI’)

and use its Schur complement, )]l(j‘l [A) — [elle] /laliy ifn > 1,0 ¢ [a}y1, where
[e]ile]i is evaluated as [¢]7.

DBRINITION 2.1 (equivalent definition of (L], [L]")). The pair (|L], [L]") 45 called
the Cholesky decomposition of [A] = [A]" € IR™™ 4f 0 < a,, and if cither n — 1,

(L] = (V]ali1), orifn - 1 and
) e ( Vidin 0 ) |

e/ Vlal 1L

where ([L)', ([L))") is the Cholesky decomposition of yl/‘I If 0 ¢ laliy, then the
Cholesky decomposition does not caist.

In [2] we showed that the matrix [£] in Definition 2.1 is the same as that defined
by the interval Cholesky method. In particular, the cxistence of the Cholesky de-
composition is equivalent to the feasibility of the interval Cholesky method. We will
exploit this fact later. 16 is a basic fact of matrix analysis that the existence of the
Cholesky decomposition of a symmetric point matrix A € R™ ™ is cquivalent to A
being positive definite, to A having only positive eigenvalues, and to A having only
positive leading principal minors; cf., for instance, |7].

Dircctly from the formulac of the interval Cholesky method we obtain the follow-
ing result which corresponds to Lemma 3.1 (b) in [8].

LeMmA 2.1, Let [A] = '/\]' SR € IR, and let [2]¢ — TCh([A], [b])
exist. If D = (lin,g(rl,],...,(l/.,,,) SR /m,.s positive entries di, 4 = 1,...,n, in the
diagonal, then [#]© = 1Ch([D[A]D, D[b]) ewisls and satisfies [£]© — D~ [x]¢

Proof. Denote by a tilde all items which belong to [:i:](’. Then, by induction,
the formulac of the interval Cholesky method yield [L] = D[L], hence [y] = [y] and

[#] = D~ [a]“. 1
We continue by recalling some 1(‘\11“&4 from [2].
TurorEM 2.1, Let [A] = [A]T € IR ™ be an H-matric with 0 < ag, 4= 1,...,n.

Then the following statements hold.

(a) The vector [2]Y ewists, and [L] is again an H-malriz.

(b) Bach symmetric matrix Ac [A] ds positive definite.

I'rom Theorem 2.1 we casily get the following corollary.

COROLLARY 2.1, Let [A] = [A]" ¢ IR™™ be an H-matriz. Then the following
statements are equivalent.

() The vector [x]¢ caists.

(it) The sign condition a;; > 0,4 = 1,...,n, holds.
(iii) The matriz [A] contains al least one sl/nlm(lvl( and positive definite element
Ac[A]

Proof. (i) = (ii). Since ([A]) is an M-mabrix we have (Jal;) > 0,4 = 1,...,n,
whenee 0 ¢ [a]i;. The existence of |:17](" then implics a;; > 0.

The implications (ii) =» (i) and (ii) = (iii) follow dircctly from Theorem 2.1

(iii) => (ii). As in the fivst implication above, one gots 0 ¢ [a}ii, and the sign

condition for a;; follows from the positive definiteness of A. [l
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1396 G, ALEFBELD AND G, MAYER
THroreM 2.2, Let [A] = [A]" ¢ IR™™ be a tridiagonal matric, and let A ¢ | A

be any symancelyi s which salisfies (/\) (| A]) and is positive definite. Then |A]
w5 an H-matviz; in particulor, oll symmetric malrices A ¢ [A] are positive definile,

”/I 1 (:"' - DIt X
A= . c R

be symmetric and positive definite. Then the Schur complement 35 = A" — e Jay,

cmalri,

and [;1:]” caisls.
Turorem 2.3, Lel

of A is symmetric and positive definite.

Proof. Use 0 < " Ax — ()" 04 2 for 2 - ("' Jany, (;l:’)"')l and any nonzero
vector o’ ¢ R [

Since we will also use results of the interval Gaussian algorithim we will recall its
formulac, too.

Given [A] ¢ IR™ and [b] € TR", define [A]®) = ([(1]51)) € IR b))
(|b]£/"’)) EMR™ k= 1,...,n, and [2]¢ = (|=]¢) = IGA([A],[b]) € TIR™ by

[Al(j) — 4], [[)l(l) = [0],
g = [,,U,Iﬁ, 7 = [7"'71”’7

i=k+1, .0 n g=k+1,...n,

otherwise,

V’Jf‘,h): i=1,...,k,
R S L
1ok |1)],EI") M’:) - [b],(f")7 i=k+1,...,mn,
|(”]A: :

k=1,...,n—1,

|:1:]f-_l WE”) 2: I(I,lg':,’-")[.’lﬂ;: /{(1,],51"), i=mn,m— 1,1

it

For 4 = n the sum is set equal to zero.
Note that [#]“ is defined without permuting rows or columns. The algorithm

is feasible if and only if 0 ¢ ['u,],(\,”};), ko= 1

,-..,n, where again the feasibility does
not depend on the choice of [b]. Define the lower triangular matrix [1.] by |i[,, =1,
|f],, : lu]f;)/]u]w for 4 > j, and the upper triangular matrix [U] by [4];; = |u,]§['l.") for
i < 7. According to [11] the pair ([l:], |(7]) is called the triangular decomposition of

(Al

Similar to Definition 2.1 there is an equivalent recursive definition of that decom-

’ [a]i) [(:]"v
A < o I/\J’)

position. It uses the partition
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CHOLESKY METHOD WITH INTISRVAL DATA 1397

and its Schur complement, xl(j\l (A}~ [d)le]” /lalyy if no> 1, 0 ¢ [a]iy. Note that

for [A] = [A]" we have [¢] = [d]. In this case we assume that |cf;[c]; in the product
[d][e]” = [e]]e]" is evaluated as a product of intervals and not as in (2.2). This implics
) \C e,

(Z/l) >‘[/\]( >4[/\l7

where both matrices may differ from cach other. For symmetric point malrices A —
[A], however, equality always holds in (2.4), provided that ayy > 0.

DEFINITION 2.2 (cquivalent definition of (|1, {lf|)) The pair (|1], [U]) s called
triangular decomposition of |A] € TR™ ™ 4f 0 ¢ |aliy and if either no— 1, (1] |
(U] = (la)yy), orif n 1 and

i : 0 o lali fel”
i) S e ),
[d]/lali |11 0 U]

where ([L)',[U]") is the triangular decomposition of );{jl}‘ I 0 ¢ laliy, then the trian-
gular decomposition does not caist.
In what follows we will use the notation of section 2 without further reference.

3. New results. In this section we will present some new criteria for the feasi-
bility of the interval Cholesky method. Since neither the existence of []¢ nor that of
[#] depends on the right-hand side [b], we do not refer to [b] in our results.

Assume now that A ¢ R™ ™ is symmetric and positive definite. Then from the
Cholesky decomposition (1, L") of A we define the diagonal mabrix D = diag(l, . ..

). 16 is well known that D has positive diagonal entries. Hence A = -
(LD Y(DL"Y yields the unique (1, U)-decomposition of A with L=1LD " and U —
DI, Converscly, from the (I:, U)«d(t(:()]‘nposit;i()n of a symmetric matrix A ¢ R"*"™
with positive diagonal entries 4;;, 4 = 1, ..., n, one casily verifics positive definiteness
of A and hence the existence of the Cholesky decomposition. Therefore, the question
arises at once whether a similar result also holds in the interval case. In one direction
the answer is positive.

Tusorem 3.1, Let [A] = [A]" ¢ IR™ ™ contain a symmetric and positive definite
matriz: A. If [£] ewists, then [2]© exists, too.

Proof. Since Ae [A] is symmetric and positive definite we have app > 0. More-
over, since by assumption (:17](: exists we obtain a;; > 0. We now proceed by induction
on the dimension of |A].

If n = 1, then the assertion is obvious. If n > 1, then let it hold for dimensions

(a1
4] ( ¥ M’])‘

I'rom @y, > 0, the Schur complements

less than n, and let

)Jf‘/'\] [A) - |r:][(:["‘/|a,]“ (with [¢];]c]; being evaluated as [¢]%)

for the Cholesky method and
S A [elld” flad 3G

(with [c];[c]; being evaluated as a product of two intervals) for the Gaussian algo-
rithm exist. Since, by assumption, the interval Gaussian algorithm is feasible for >'I/\l
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1398 G ALEFELD AND G MAY ISR,

and since this interval matrix contains the synmetric and positive definite matrix
L

J

) b (cl. Theorem 2.3), the induction hypothesis applies for )Ifj\l, Thercfore, the
Cholesky decomposition exists for this interval matrix and thus exists for the (possibly
proper) subsel >}|(j‘|’ too. 0

We will prove now a result on point matrices which originally increased our hope
for a converse of T'heorem 3.1.

THEOREM 3.2, Lel all symmetric malrvices A [A] = [A]" ¢ IR™™ be positive
definite. “Then the Gaussian algovithm is feasible without prvoting for all matrices
A e |A] (and not only for the symmetric ones).

Proof. Let A ¢ [A]l. Then the symmetric part,! Asyin (A + ATY)2 of A s
contained in [A], and hence it is positive definite by assumption. For £ 0 we have

(3.1) 0 < ;,r:'l'/ls.y,,,:l: = (" Ax + :1:"'/17';17)/2 A,

where we used @ ATw = (2T AT < 2T Aw. From (3.1) we immediately get det A #
0. Since this implication applics also to all leading submatrices of A the assertion
follows from Theorem 9.1.2 in [12]. [

Despite this positive result, the converse of Theorem 3.1 does not hold. This is
illustrated by the following example.

Iizample 3.1. Consider the matrix

o
Do
NN
<t
4 o
-

with a positive parameter € which will be chosen below. Then for the interval Cholesky
method we pet

1 0 0 0
(1,1 [1,v2] 0 0

0 [V [1,/3/2] 0

0 VR D VA VI

i.c., [#]9 exists for any positive value of . On the other hand we obtain

L1 o 0
) 0 1,3 i 9
0] = 1A R A
00 [1,5/3 [0,4/3]
0 0 0 e —7/9,c 1 11/3]
for the upper triangular matrix of the interval Gaussian algorithm. Choosing & — 1/3
results in the interval ](1,],(1/,1,) = [=4/9,4] which contains zero. Hence [#]% does not

exist although [2] does. In particular, the assumptions of Theorem 3.2 are fulfilled.
Therefore, the Gaussian algorithm is feasible for any matrix A ¢ [A], and our example
is also a counterexample for the interval Gaussian algorithm.

"We thank Prof. M. Phum of the University of Karlsruhe for his suggestion to apply the symmetric
part, of A, which made our original proof more elementary.
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CHOLESKY MIETHOD WITH INTERVAL DATA 1399

The dimension n = 4 in Iixample 3.1 is minimal for a counterexample. This can
be seen from our next result.

THrorEM 3.3, Let [A] - [A]T € IR™™ contain a symanetric and positive definile
matriz A, and let no < 3. Then [x)” cxists if and only if €] cxists.

Proof. By virtue of Theorem 3.1 we niust only show that the existence of []¢
|

. 'T'hercfore, from now on we assume that |.’I?’(/ exists. In particular,
)¢ in the case no— 1.

implies that of |«
0 < ayy holds, which immediately guarantees the existence of [a
n =2 By Theorem 3.2 no mabrix A ¢ [A] € IR**2 i singular, hence [#]% exists
by Proposition 4.5.4 in [11].
no= 30 rom a0 we know that ))f‘f” exists. Since any interval [¢f sabisfics

[(:]2 Cle) ] = [(1]2 + [~d, 0
with an appropriate nonnegative number d, we obtain
S S0 DL with [D] = diag([0, dy], 0, dy), [0, ds]),

where dy, dy, dy are appropriate nonnegative real mumbers. Note thal min())[(j‘l)”
min())lr}'ﬂ)n = 0. Choose z ¢ R*\{0} and % = (04" ¢ )][(j]]. Then % can be
written as 3¢ = 0 ¢ D with ¢ = (3¢)" ¢ ))f}"] and O < D ¢ [D], whence

(3.2) DT VETIE A MR I NP DY Ml |

Thus any symmetric matrix 1N ¢ >"‘[(j\l is positive definite, and Theorem 3.2 applies
Lo ))f;"]. Therefore, no matrix Y € )Tﬁ\] is singular, and |‘:1:}(" ¢ IR? exists again by
virtue of Proposition 4.5.4 in [11] applied to )‘,&] C IR2x2, 0

Another interesting negative result can be seen from Fxample 3.1: Tor symmetric
and positive definite matrices A€ R one proves similarly as for %€ in (3.2) that
A+ I) with 1) > O is positive definite, hence the Cholesky method is feasible for
A+ D, too. Tor interval matrices [A] + [0, D], D > O, an analogous result docs
not hold if one merely knows that [5]” exists for [A]. Otherwise apply this result to
';I(j‘] = 'Jl(;‘l + (O, DJ; it would guarantee that )Jﬁ\] has a Cholesky decomposition if
[A] bas one, and an inductive argument would show that Theorem 3.1 has a converse.
T'his contradicts lixample 3.1.

There arc more classes of matrices for which one can prove the converse of 'T'he-
orem 3.1, In order to characterize some of them we use the concept of an undirected
graph of a real matrix A ¢ R™" with the nodes 1, ..., n and the edges {7, 5} when-
ever Jai;| -+ laj| # 05 cf. for instance [6]. We call j a neighbor of the node @ (# j)
if 4 and 7 arc connected by an edge. The number of neighbors of 4 arce the degree
of 4 in the underlying graph. Let G denote the kth elimination graph of [A], i.c.,
the undirected graph of |[/\|(""’)| in which the nodes 1, ...k — 1 and the corresponding
edges have been removed and for which we assume that [(l],(:‘ b # 0 implics [ulfi) 40,
i,J > k (no accidental zeros!); of. [6]. If in (), the node & has the smallest degree and
if this holds for all & = 1,... n, then we say that [A] is ordered by minimum degree.
If the graph of such a matrix has tree structure (i.c., it is a connected graph with no
cycles of length > 3; cf. [4]), then the following result holds.

TheoreM 3.4. Let [A] = [A]T € IR™ ™ contain a symmetric and positive definite
malriz: A If the undivected graph of ([A]) is a tree and if it is ordered by manimum
degree, then the following statements are cquivalent.
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1400 G ALERELD AND G, MAY ISR,

(i) The vector || cwists.
(ii) The vector [ ewists.
(iii) Fach symmetric matric in

Al s positive definite.

Proof. (i) = (ii) follows from Theorem 3.1

(ii) = (iii) is trivial.

(i) > (i) follows from Theorem 3.2 and Theorem 4 in [4]. ]

For a variant of the interval Cholesky method, Theorem 3.4 was proved in [4].
Note that symmetric tridiagonal interval matrices and symmetric arrowhead interval
matrices [14] belong to the class of matrices characterized in Theorem 3.4 (provided
that they contain a symmetric and positive definite matrix /\)

Iivample 3.2. Consider the arrowhead matrix

2 0 [1,1]
[A] — 0 2 1,1

Then Gerschgorin’s theorem shows that the cigenvalues of cach symmetric matrix
A c [A] arc nonnegative. They are even positive as can be seen in most cases by
the same theorem. For the remaining cases A is irreducibly diagonally dominant and
thus an H-matrix. Since such a matrix is regular it cannot have zero as an cigenvalue.
Therefore, cach symmetric matrix A ¢ [A] is positive definite, and [#]¢ exists for [A]
by Theorem 3.4.
In order to formulate our next result we need the extended sign matrix S” which
we define recarsively as in [8].
DEFINITION 3.1 (sign matrix S and extended sign matrix S for [A]). Let [A] €
IR™ ™ Then we have the following.
(a) The matriz S € R™™ with s;; = signdg; is called the sign matriz of |A].
(b) With S from (a) the extended sign matriz S is defined as follows:
S =9
Jork=1:(n~—1)
Jori=(k+1):n
Jorj=(k+1):n
if si; == 0 then si; — — Sk Sk

Note that the values of sfl depend only on 5. Any other matrix |/i] with the
same sign matrix S as [A] yields the same extended sign matrix 57

THrorEM 3.5, Let [A] = [A]" ¢ TR™ be irreducible and generalized diagonally
domanant with O < a;;, i = 1,...,n. Morcover, let S" be the eaxtended sign matria of
[A] defined in Definition 3.1, Then the following statements are cquivalent.

(i) The vector [x]” cxists.

(ii) The vector [x]© cwists.

(iii) The matriz |A] is generalized irreducibly diagonally dominant or the sign

condition

Loafi /g,

3.3 P
( ) ij Vik Ckyj Ckk 1 1/-7 >

holds for some triple (i, 4, k) with k < i, 7.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



CHOLESIKY MISTHOD WITH INTIRVAL DATA 1101

(iv) The matric [A] is generalized drreducibly diagonally dominant or the sign
condilion,

(:;/1) L':/ '«":',/.: ";;\:‘j -

holds for some Lriple (i, 4, k) with k <

Proof. 'The case no = 1 is trivial since @, > 0. Therefore, from now on we assume

n o>l

(ii) «» (iii) holds by virtue of T'heorem 4.7 in [8].

(iii) <> (iv). I'rom ,l,?u: general assumptions of the theorem we gel s, — 1= ),
i1, . n,and S = ST whence 7 = (9)". Therefore,

L’:l ’q:',/\t H;\:‘i, "”;;:l'.: (‘L'.'li,l.:)2 / —1

holds, i.c., the sccond sign condition in (3.3) can never be fulfilled. Morcover, a factor
51, = 1 can always be added in (3.4) which results in the first sign condition in (3.3).
Hence the existence of some triple (4,7, k) as required in (iii) is cquivalent to the
existence of some triple as required in (iv).

(i) = (i). Since [@]9 exists by assumption, cach matrix A ¢ [A] is regular.
Consider the matrvix [A] +el, & > 0. Since a;; > 0,4 = 1,...,n, we get ((A] + &)
(|A]) + eI which shows that [A] + €] is generalized strictly diagonally dominant.
Thercfore, it is an [T-matrix by Theorem 4.4 (a) in [8] and Theorem 2.1 guarantees
that A+ e/ is positive definite for each symmetric matrix A e [A]. Hence Ael
has only positive real cigenvalues which remain positive in the limit & — 0 since A
is regular and since the cigenvalues behave continuously when changing the entries
of a. matrix continuously. Therefore, A s positive definite for cach synmetric matrix
Ac [A]. In particular, [A] contains at least one such matrix, and Theorem 3.1 finishes
the proof.

(i) = (ii). Lot [2]“ exist and assume that [2]9 does not exist. Then [A] cannot
be an H-matrix; in particular, by Theorem 4.4 (b) in [8] it cannot be generalized
irreducibly diagonally dominant. However, since it is generalized diagonally dominant
by assumption, there must exist a positive vector 2 such that ([Al)z = 0. Without

loss of generality, we can assume @ = ¢, 1.c.,
(3.5) (|A]) e = 0.

Otherwise consider the matrix D[A]D with D = diag(ay,...,x,) ¢ R**"*. This
matbrix has the same extended sign matrix 57 as [A], is irreducible and diagonally
dominant, but not irreducibly diagonally dominant. Moreover, it fulfills (3.5), and
by Lemma 2.1 the interval Cholesky method is feasible for it since it is for [A] by
assumption.

Since we assumed that [2]% does not exist, the equivalence of (i) and (iii) shows
that the sign condition (3.3) does not hold. Choose k = 1 for the moment and let )
be the sign matrix of [A]. If 55 # si;, then sg; must be zero by the construction of 57
in Definition 3.1. (Note that at the beginning of this definition we have S’ = 9. Later
st is changed only if it was cequal to zero.) Thercfore, s;; — .s',’,.’. or si; — 0. Hence

iy i
(3.3) does not hold if sfl is replaced there by s, By Lemma 2.1 in 9] this implics

(3.6) lalij — I(I]IIIH]IIIIL’ = ||a)i] + ”“IQJIH”IIA it 4 and i, j > 1.

(lafin)
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2

Next we remark that the equality |[a]?] = |[a] [la] - [a]| holds for any interval [a].

Since a;; is positive and since (2] exists we have 0 < [;; and

0 QJW| /MHWij]<m“)w (o) [t
Mal?| okl =y,

(el (lalis)

([”|II> [“}n

Malal?
alin)

(5.7) <lu/l,:,: ,|l::||?.|> <|v(,,],,,,, "["('ljlf.ii;,]:,"?']i!> ) |<I[(:1JI‘:1|>

Irom (3.6) and (3.7) we directly get

(3.8) O3 = 2 = 2y = Oy

In particular, (|al;;) holds, and Lemma 2.1(b) in [9] implics

although )}I(}‘] 4 >)[(}‘] may hold. In fact, by construction both matrices can difler ab
most in the didy(mal because H} C leli - [e]s can oceur. Since [x]¢ <‘xisl;s the diagonal
entries of ¢ 1 are positive; hence HJ(‘ sign matrices of >'I/\I and ),[ 7 coincide and the
same holds for the extended sign matrices.

With ¢ = ( :, ) and (3.5) we obtain

(O0), = (e, = (dad B =3 (o Tl )

=2
it

(el > Mol 425§ ) LMM

{([A])e), =0, =2 N
Hence

()}fj\]> ¢ = ))E{A]) ¢ - )12['1/\”(:' ())l(j\l) ¢! = 0.

Moreover, from (3.8) together with Lemma 3.3 in [5] we know that ))[(;‘] is irreducible
provided that n > 3.

Since we assumed that [2]° " does not exist, the interval Gaussian algorithm cannot,
be feasible for >'|/ N Therefore, (3.3) cannot hold when formulated for the extended
sipgn malrix of >)f:‘4]' (In fact, deleting the first row and column of 57 for [A] results in
the (()H(sp()mlin extended sign matrix for the Schur complement.) Since we already
showed thal >'|/‘1 and )'l/\l have the same extended sign matrices the equivalence of
(if) and (iii) implics that the interval Gaussian algorithm is not feasible for )ll/‘]
Thus the assumptions of Theorem 3.5 for [A] are also fulfilled for )‘M] = ( '|’\])T

Thercfore, the previous conclusions can be repeated up to the dimension n = 2 for
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)]f;\]. (Note that the restriction of the dimension n concerns only the irreducibility.)

For case of notation assume that [A] plays the role of )Ifj‘] il n 2, e, it s an
irreducible symmetric 2 x 2 interval matrix satisfying ([A]) ¢ = 0. As before we obtain
())&,)(:' 0, i.c, 0¢ )]l(;‘l ¢ TR™ ! which contradicts the feasibility of the interval
Cholesky method and which finally shows thal (3.3) must hold for some triple (4, 4, k)

anless [A] ¢ IR s peneralized irreducibly diagonally dominant. (In this case the

sign condition (3.3) may be hurt as the example [A] = ( f L ) shows.) [
Irzample 3.3.
(a) Lot
4 [, 2] e, 2
[A] s [ev, 2] 4 2 , —2 <o <A

[ev,2] 2 1

Then (A]o) e = 0. For =2 < a < 2 we obtain 5 = e = 5" Thus (3.4) is
fulfilled with (i, 7, k) = (3,2, 1), and [2]% exists.

If v = —2, then things change. Here
I 0 0
S5 0 1 1 =5
0 1 1

and (3.4) does not hold as one can easily check. Thus [£]¢ does not exist. In
fact, [A] o contains the singular matrix

4 2 =2
A 2 41 2
-2 2 !
(b) Let
1 0 0,2 [-2,0]
0 402 0,2

[A] = 0,2 0,2 [6,9] [-2,2]

(2,0 [0,2] [-2,2] [6,9]

Then [A] is irreducible and diagonally dominant. In particular, it satisfics the
assumptions of 'T'heorem 3.5, Morcover, we have

o1 Lo
, 0 1 1 } 01 1 1
b Lo |70 T
0 R

with (3.4) for (4,7, k) = (4,3,2). Hence [2]¢ exists.
I is casy to see by Bxample 3.3 (b) that (3.4) does not hold if the entries of 57
are replaced there by the corresponding entries of 5. Doing so, nevertheless, yiclds a
sullicient eriterion analogously to Theorem 5.3 in [b]. We state this result as a corollary
which follows directly from Theorem 3.5(iv) since (3.9) below can he written as (3.1).
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CorOLLARY 3.1, Let [A] = [A]" ¢ IR™ ™ 0 = 3 be drreducible and generalized
diagonally dominant with O < a;;, i — 1

[A] defined in Def . l/

(-“)) .‘a',,jj Sile “"/-1,'1' |

. Moreover, lel S be the sign matrixc of

Jor some triple (4, j, k) with k < § < i, then [2]¢ caists.

Now we consider tridiagonal matrices.

THsoreM 3.6, Let |A] [A]T ¢ WR™" be tridiagonal.  Then the following
statements are cquivalend.

(i) The vector |x

definite malriz.

(ii) The vector [x]Y eaists.

(iii) Lach symmetric matriz A ¢ [A] is positive definite.

Proof. (i) = (ii) follows from Theorem 3.1.

(ii) = (iii) follows from the feasibility of the Cholesky method for cach symmetric
malbrix A ¢ [A].

(iii) = (i) follows from Theorem 2.2 and the feasibility of the interval Caussian
algorithm for H-mabrices; cf. [1] or [11]. ]

Frwample 3.4, Lot [A] = tridiag([—1,1],2, [~ 1, 1]) € IR™" . Then Gershgorin’s
theorem shows that the cigenvalues of cach symmetric matrix A ¢ [A] are nonnegative.

| cxists and [A] contains at least one symmetric and positive

Since A is either irreducibly diagonally dominant or consists of blocks of such matrices,
it is an /-matrix. Thercfore, no cigenvalue can be zero, each symmetric mabrix
Ac [A] is positive definite, and [2]¢ exists for [A] by Theorem 3.6.

Our final result deals with matrices of the form [A] = I+ [~ 1, R], which at first
glance look very specific. However, preconditioning any regular interval matrix by its
midpoint inverse A=! finally results in such a matrix.

Tusorim 3.7 Let [A] = 1+ [—R, R] with O < R = R" ¢ R™™ and 0 < a;;,
[
(i) The vector [x]“ cwists.

(it) The vector [x]¢ caists.

(iit) The spectral radius of R is less than one.
(iv) The matriz [A] s an H-malriz.
Proof. 'T'he equivalence of (i), (iii), and (iv) is contained in Theorem 3.1 of [10];

cf. also Theorem 4.2 in [8]. T'he implication (iv) = (ii) follows from Theorem 2.1. For

the implication (i) = (iv), let [2]% exist. Then the Cholesky method is feasible for

AT R- ([A]) € |A], hence A is symmetric and positive definite. Morcover, it is

an M-matrix whence [A] is an IT-matrix. 0

n. Then the following statements are cquivalent.
}(,‘
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