14:17 27 March 2009

[Universitaetsbibliothek Karlsruhe] At:

Downloaded By:

Numerical Functional Analysis and Optimization, 29(3-4):243-267, 2008 T .
aylor &

Copyright © Taylor & Francis Group, LLC e 4 fones

ISSN: 0163-0563 print/1532-2467 online

DOI: 10.1080,/01630560801998054

Taylor &Francis Group

ERROR ESTIMATION FOR NONLINEAR COMPLEMENTARITY
PROBLEMS VIA LINEAR SYSTEMS WITH INTERVAL DATA

Gotz Alefeld' and Zhengyu Wang?

! Institute of Applied and Numerical Mathematics,

University of Karlsruhe (Karlsruhe Institute of Technology), Karlsruhe, Germany
2 Institute of Computational Mathematics and Scientific/Engineering Computing,
Chinese Academy of Sciences, Beijing, China; Department of Mathematics,

Nanjing University, Nanjing, China

O For the nonlinear complementarity problem, we derive norm bounds for the error of an
approximate solution, generalizing the known results for the linear case. Furthermore, we present
a linear system with interval data, whose solution set contains the error of an approximate
solution. We perform extensive numerical tests and compare the different approaches.

Keywords Error bound; Linear interval system; Nonlinear complementarity problem;
P-matrix.

AMS Subject Classification 90C33; 65G30; 65K10.

1. INTRODUCTION

Let the mapping f:R"—R" be given. The nonlinear
complementarity problem, denoted by NCP(f), is to find a vector x* such
that

X =0, f(x)=0, ")f(x)=0, (L.1)

where the inequalities are defined componentwise. NCP(f) models many
real problems in economics, engineering, and so forth. For its source
problems, see [13, 15], for example.
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Let NCP(f) be given by the mapping
£(x) = M+ ®(x),
where M € R™" is a given matrix, and
P(x) = (Pi(x:)).

We call such an NCP(f) an almost linear complementarity problem and
denote it by ALCP(®, M). When ®(x) = g € R" is constant, ALCP(®, M)
reduces to a so-called linear complementarity problem, which we
denote by LCP(q,M). ALCP(®, M) has wide applications, especially in
engineering, for example in the obstacle Bratu problem [24], which
models the nonlinear diffusion phenomena taking place in combustion
and in semiconductors.

Error estimation plays an important role both in numerical solution
and in theoretical analysis for NCP(f). Error estimation has been
extensively studied up to now, see [7, 9, 14, 16, 17, 22] and the monograph
[13]. In the papers [1, 3], a verification test for the existence of a
solution of LCP (g, M) and NCP(f), respectively, was given. If the test is
successful, error bounds are delivered automatically. The idea is as follows.
Given some interval vector [x] and an & € [x], an enclosure of all slopes
formed with & and all x € [x] is computed. Using this slope enclosure, it is
checked (computationally) whether the so-called Krawczyk-operator maps
the interval vector into itself. If this is the case, then by the Brouwer fixed
point theorem, the existence of a solution of the complementarity problem
is guaranteed, and we have a componentwise error bound. It turns out that
this procedure is surprisingly successful if % is a good approximation. For
LCP(q, M) and ALCP(®, M), a verification procedure was given in [4] and
[5], using the special structure of these problems.

In the current article, we propose two different approaches for getting
error bounds. In the first case, we can deliver norm bounds for the error
by using properties of the generalized Jacobian in the sense of Clarke.
A modified approach leads to a linear system with an interval matrix,
whose solution set contains the error vector.

The paper is organized as follows: we include some frequently
used notations and results in Section 2. In Section 3, two different
approaches of error estimation are proposed for NCP(f). Special cases of
ALCP(®, M) and LCP(q, M) are studied in Section 4. Extensive numerical
experiments are performed in Section 5 to support the theoretical analysis.
We complete the paper with some concluding remarks in Section 6.



Downloaded By: [Universitaetsbibliothek Karlsruhe] At: 14:17 27 March 2009

Error Estimation 245

2. PRELIMINARIES AND NOTATIONS

Denote by R” the nonnegative orthant of R”, and denote by R},
the interior of R”. Denote by “<” the natural (or componentwise)
partial ordering in R”, and let (x)=x<y= (%) stand for x; <9,
i=1,...,n. For any x,y € R", we denote by max{x,y} and min{x,y} the
componentwise maximum and minimum of the two vectors, respectively.

We denote by I, the n X n identity matrix, denote the ith row vector
of I, by ¢, and denote ¢ = (1,..., 1)7T. We define .5 := {1,...,n}. For any
1 C .%, we denote by 7 the complement of 7, and |7| denotes the cardinality
of 7. For any A € R™" and for any 7,k € . with 1,k # @, we denote by
A, the submatrix of A with its rows and columns indexed by the elements
of 7 and «, respectively. For the diagonal matrix D, we also write D, as D:
for convenience. For x € R" and 7 € .¥, we denote by x; the subvector of
x with its components indexed by the elements of 7.

Let A = (a;) e R™". A is called a P-matrix if for any nonzero x € R”

max x;(Ax); > 0.

We denote the set of all n x n P-matrices by &,. A is called an H-matrix if
the so-called comparison matrix (A) = ({@))nxn hasa nonnegative inverse,
where

|l i=j,
(az) = . .
7 [—Iaijl i#J

We denote the set of all n x n H-matrices by #, and denote the set of
all 7 x n H-matrices with positive diagonal elements by #;. A is called a
Z-matrix if each off-diagonal element of A is nonpositive. We denote the
set of all 7 x n Z-matrices by Z,. A is called an M-matrix if A is a Z-matrix
and has a nonnegative inverse. The set of all n x n M-matrices is denoted
by M.

The following theorem holds.

Theorem 2.1. For P-matrices, H-matrices, and M-matrices, we have the
following properties:

1. A is nonsingular if A € Py;

2. P D HE D Mns

3. A € P, if and only if each of its principal minors is positive;

4. A € #, if and only if there 1s a vector x > 0 such that for the comparison
matrix (A), we have (A)x > 0;

A € Z, is an M-matrix if there is a B € JM, such that B < A;
I,—D+DAe®, ifAc P, and D = diag(d;) with d; € [0,1].

SN
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The proof of statements 1-5 can be found in [28], for example.
Statement 6 can be proved by using 1-5.

We recall some notations from interval analysis, see also [2] or [19],
for example. Let [a] = [a,a] with —oo< a <@ < oo be a compact interval
in R. Then we denote by IR the set of all real compact intervals in R. Let
A= (g_ij), A= (a;) € R™" with a; < a;; for any indices i and j. An interval
matrix, denoted by [A] = [4, A], is defined as a matrix with each element
[Ay] = [_qij,ﬁ,-j] e TRR. An interval matrix [A] is the set of the matrices that
are element-wise bounded by A from below and bounded by A from above.
Denote by IIR™*" the set of all m x n real interval matrices. For the case of
n = 1, the interval matrix is also called an m-dimensional interval vector;
we denote by TR™ the set of all m-dimensional interval vectors.

Let % : R* — RR” be locally Lipschitzian, i.e., for any x € R" there is a
neighborhood /(x) and a constant L such that:

Ih(u) — h(o)ll < Lllw— vl Yu,v e N(x).

From Rademacher’s theorem [12], it follows that if % is locally Lipschitzian,
then % is differentiable almost everywhere. The generalized Jacobian of h
in the sense of Clarke, denoted by dk(x), is defined as the set of matrices

Oh(x) == 'CB{H = I}im B (x"*) : x* — x with & differentiable at each xk},
where 7o denotes the convex hull.

Theorem 2.2. For the generalized Jacobian Oh(-), we have:

1. 0h(x) is nonempty, convex and compact;
2. (mean-value theorem)

h(x) — h(y) € dh(To{x,y})(x — ¥),
where

oh(@lx,y) = | or@.

z€co{x,y}

For the proof, see [10]. ;

For completeness, we recall that a mapping h:R"— R is called
isotone if from x < y it follows that h(x) < h(y). The matrix norm used in
the paper is always assumed to be subordinate to given vector norm.
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3. ERROR ESTIMATION FOR NCP(f)

Let x* be a solution of NCP(f), let x € R" be a given fixed vector,
which could be the result of an iterative method for approximating x*, for
example. We are interested in the problem of estimating the error

e(x) = x — x*. (3.1)

Subsequently, we always assume that f:R" — R" is continuously
differentiable at any point of interest.

Let A = diag(J;) be an arbitrary but fixed diagonal matrix with d; > 0,
i=1,...,n. Clearly, x* solves NCP(f) if and only if x* is a solution of the
equation

ha(x) := min{x, Af(x)} = 0. (3.2)

Remark 3.1. Usually, the case A = I, (identity matrix) is only considered
in the literature (see [21]). The choice of a A different from I, can have
a striking effect concerning the quality of computed error bounds. See
Example 5.1, e.g., and the second to the last column in Tables 1 and 2.
A theoretical discussion of the dependency of the error bounds on the
choice of A is nontrivial problem, which must be left for future research.

It is noted that As(-) is locally Lipschitzian, so from Rademacher’s
theorem it follows that hy(-) is differentiable almost everywhere. We study
the generalized Jacobian 0ha(x) of ha(+) in the sense of Clarke [10].

Definition 3.2. Let x € IR” be fixed. We define three index subsets of .7:
o =oa(%):={i:% < dfi(x)},

B =Ba(®) = {i:%=0/i(X)}

It is clear that aa(X) U Ba(x) Uya(x) = J.
Proposition 3.3. Define the set of matrices

=0 i€ aa(X)
II,(%) := { I, — D+ DAf'(%) : D = diag(d;), d; { € [0,1] i€ fa(x)
=1 i€ ya(k)
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Then we have:

1. TTo(x) is compact and convex;
2. Tx(%) C Py if (f'(X))zz € Py
3. dha(x) C A (%).

Remark 3.4. Let W € R™" be a matrix contained in II;(k). Denote by
w! and (f'(%))7 the ith row vector of W and f'(X), respectively. Then it
holds

¢ L€ O‘A(';C)r
w; = { (1 = d)e+ did:i(f'(0)i i € Pa(®),
0:(f' (%)) i € ya(%).

Remark 3.5. The proof of Proposition 3.3 is a special case of (2.5) in
[8], as was pointed out by Chen (personal communication) and by an
anonymous referee.

The next proposition shows that the error e(x) = x —x* can be
represented as the solution of a linear system of equations.

Proposition 3.6. Suppose that for a solution x* of NCP(f) formulated by (3.2)
and a fixed x € R", a set D is known with to{x*, x} € D € R". Then there are
¢ € D and D = diag(d;) with d; € [0, 1] such that

(I, = D+ DAf'(E)(k — &) = ha (). (3.3)

Proof From Theorem 2.2 and Proposition 3.3 and from ha(x*) =0, it
follows

ha(%) = ha(}) — ha(x") € Oha(To{%, x*}) (& — x7)
e Mo (G — ),

YD
which, together with the expression for ITo(+) yields (3.3). O

Remark 3.7. If f'(x) € &, holds for any x € 9, then from Proposition 3.3
we know that (I, — D+ DAf'(§)) € %, and so it is nonsingular by
Theorem 2.1. This guarantees the unique solvability of the system (3.3).

System (3.3) has the unknown data £ € @ and D = diag(d;) in its
coefficient matrix. We establish an interval matrix [[]ua such that

e(R)=x—x"e{xeR": Jx=m%),] € VAEDS:

for a fixed % € @ and a solution x* of NCP(f) contained also in <.
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Theorem 3.8. Suppose that for a solution x* of NCP(f) and a fixed x € R",
o{x*,x} € D S R" for some given set B. Suppose

—00 < f'? < inf{(f'(w)); : u € D}
. ij=12...,m (3.4)
+oo>fy = sup{(f'(u)); : u € D}

Define the malrices

j_‘_/% = (f’g) and ]—’% = (]_‘_’Zb)

—ij

Then the error e(%) = & — x* is included in the solution set

S o ha(3)) 1= [x € R™: Jo = ha(R).] € Uloal,

where the interval matrix [z s defined by

. o s =2 s
(U lo)s = pmnlo oo Tl 2 (35)
[min{l,éiﬂj},max{l,éifjl] j=i

Proof Observe that the elements of the matrix I, — D + DAf'(&) from
(3.3) are

d0i(f'(£))y J#

(I, = D+ DAf'(€))5 = {1 —di+ didi(f (&) J =1

Because d; € [0,1] and (f'(£)); € [}_‘_’Z’,]—’?], we have

di6:(f' (&) €10, 1][@1?,5,-7?] i,
1 — di+ did,(f'(8))i € [min{l,éit‘j},maxh,aifff}] i=i
and noting that
[0, 11[ /7. 6775 =0 min{0,/}, 5imax{o,77f.f.}], (3.6)
we conclude that for any & € 9
I, — D+ DAf'(&) € [Jlaa,

from which, together with Proposition 3.6, the assertion follows. O



Downloaded By: [Universitaetsbibliothek Karlsruhe] At: 14:17 27 March 2009

250 G. Alefeld and Z. Wang

Remark 3.9. The assumption (3.4) will be replaced by a different one at
the end of the section. For LCP(q, M), we have for any & C IR"

=7 =M

Remark 3.10. In general, we cannot guarantee that [[]g,a contains no
. . . —9 . .
singular matrices, even if [f’%, 1 C P Consider, for example, the matrix

53 2
M=|55 3]e%,.
211

For any @ C R?, we have /'* — 77 = M. With A = I, we find for (3.5)
[1,5] [0,3] [0,2]
[J1za = | [0,5] [1,5] [0,3]
[0,21 [0,11 [1,1]

The matrix

U T —
Pt
Pt ek

is contained in [J],a and is singular.

The diagonal matrix A = diag(0;), 0; >0, i= 1,...,n, was chosen
arbitrarily but fixed in (3.2), and therefore also in Theorem 3.8. We now
discuss how to choose A to ensure that [[]s,4 contains no singular matrices.

g g —% —D
Theorem 3.11. L [~ = (f_';) and = (f;) be defined by (3.4), and
suppose [f_’gb,]T/j] C #F. Then [Jlaa C %, fA= diag(0;) with

1
0<8; <8 =—, i=1...,n (3.7)

Proof. LetJ € [[]ua. From (3.5), (3.6), and (3.7), it follows

(Ulsa)y = 10,152,675 ] i)
()i € .
o) = [5201] ifi= ).
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Therefore we have

K

(sl = smax{ |2 |75}

(il = 87

and so (J) > A(R), where A = diag(5;), R = (rj) with 7; =}i’? and for j # ¢

—% L |==D
flij if \f/y > lj/?b ,

L
T —7?5‘<Lf/95‘
f_ij if \fl] =151

It is clear that R € [f’%,j_‘—’%], and from the assumption [/’ %,]_’%] C HF, we
know that R € #*, and so A(R) € AM,. Together with the fact that (J) >

n

A(R), we obtain from statement 5 of Theorem 2.1 that (J) € My, hence
Je#t. d

Tij=

Remark 3.12. [/]g, may contain singular matrices if the condition (3.7)
is not fulfilled. Consider, for example, LCP(g, M) with the matrix (see [9])

_(? -1 +
M= (_1 9 ) ex,.
For any @ C R?, we obtain /=7~ = M. With the choice §; = 1 > 07 = L

for i = 1,2, we find

/2 (10
m‘*’”‘"([—l,m [1,21>

for the matrix [J]g, defined by (3.5). The singular matrix
1 -1
-1 1

Remark 3.13. If [f’%,]_‘—’%] is contained in &, but not contained in 7,
[J1e,a might contain singular matrices even if the condition (3.7) is
fulfilled. To demonstrate this, we consider the matrix from Remark 3.10
with the choice A = diag(%, %, 1), for which (3.7) is fulfilled with 0; = 0%.

is contained in [[]za-
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We find for (3.5)

1 [0,0.6] [0,0.4]
Jlaa = | [0,1] 1 [0,0.6]
[0,21 [0,1] 1

The matrix
1 0 04
1 1 06
2 1 1

is contained in [[]g, and is singular.
Let us go back to the system (3.3):
(I, — D+ DAf' (&) (& = x7) = ha (%).

Because I, — D + DAf'(¢) is dependent on the unknown point ¢ € P and
the unknown diagonal matrix D, we consider the mapping Joa : [0,1]" x
g — R™" with

Jea(d,u) = I, — D+ DAf'(w) (3.8)
where D = diag(d;) and d = (d) €10,11", u € <.

Lemma 3.14. Let f'(u) € P, for any u € 9. Then Joa(d,u) € Py, and
Jan(d, )™t is continuous w.r.t. (d,u).

Proof. Because f'(u) € P,, it follows from Theorem 2.1 that Joa(d, u) €
%,. Because f is continuously differentiable, Joa(d, u) is continuous W.r.t.
(d, w), from which together with 2.8.3 of [20] the conclusion follows. O

Theorem 3.15. Let to{x*, &} € D C R” for some fixed €D and let x* €D
be a solution of NCP(f). Let f'(u) € P, for any u € 9 and assume that (3.4)
holds. Let Q = [0,11" x @. Then we have for any A = diag(6;) with 0; > 0,
i=1,...,n, the error bounds

()1 - o
T AR Tl <l < maxguenll (s (d w) ' nhux():.g)

Proof. The error bound is the direct result of (3.3) and Lemma 3.14. O
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Remark 3.16. The error bound (2.3) in [9] for the linear
complementarity problem is the special case of (3.9) with the choice
A=1,.

Remark 3.17. In general, the error bounds (3.9) are not easy to
compute. However, as we will see in the next section, the difficulty of the
computation is greatly reduced for ALCP(®, M) and LCP(q, M ).

Thus far, we have established two approaches of error estimation for
NCP(f):

1. Componentwise error estimation via the solution set 3([J1a,a5 ha(x)) for
the interval matrix [[]g,a and the vector ha(%) (see Theorem 3.8), and
2. Computing bounds of |% — x*|| (see Theorem 3.15).

For both of them, we have to suppose (3.4). In the special case that
g = R", Theorem 3.8 and Theorem 3.11 simplify to the following two
theorems, respectively.

Theorem 3.18. Let x* be a solution of NCP(f), and x € R™ be fixed. Suppose
that [’ is bounded in R", that is

—oo < ™" <inf{(f'(w); : w € R"}
+oo>f1y = sup{(f'(u)); : u € R"}

Define the matrices

o= () ana 7= ()

Li
Then the error e(x) = & — x* is included in the solution set
S([Jlrna, ba(%)) = {x € R": Jx = ha(%),] € el
where the interval matrix [J1rn.a S defined by
. JR™ ——IIR" . .
[5imln{0,]iij Lo max{0, 77 }] i,

(el = [min{l,5i£§n},max{l,5i]7’§n}] j=1t
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Theorem 3.19. Let]i’mn = (fﬂ;") andfw = (77]::") be given by (3.10), and
suppose [T 1 C ;. Then [lpna C #; if A = diag(5;) with

. 1
0<6;, <0 '=—== i=1...,m
In the case that @ = R", Theorem 3.15 simplifies to the following
result.

Theorem 3.20. Letf’]R" = (f’l,‘_{") andfw = (77];”) be given by (3.10), and
— —ij
let x* be a solution of NCP(f) and let k € R" be given. Define the mapping

Ja(d,U)=1,— D+ DAU

where D = diag(d;) with d = (d) €10,1]", and U € [j_‘iw,f’w]. Suppose

[f’an,]_ﬁ]Rn] C P,. Denote Q :=1[0,1]" x [f’]Rn,jT’]Rn]. Then we have for any
A_=diag(5i),5,~>0,i=1,...,n, -

()] L L
@ i S 18X S maxaoelGald, U - T

4. THE SPECIAL CASE ALCP(®, M)

In the preceding section, we gave a pointwise inclusion of the error
(3.1) by Theorems 3.8 and 3.18, respectively. After that, we gave lower
and upper norm bounds of the error by Theorems 3.15 and 3.20,
respectively. In this section, we specialize the results to ALCP(®, M) and
LCP(q, M), respectively. We first construct a convex set % C IR™ containing
a solution x*. From 9, the approximation % is also chosen. The condition
7o{x*, x} € 9 was required in Theorem 3.8.

Theorem 4.1. Let ® = (®;(x;)) be isotone and continuously differentiable. Let
M € %, and denote by A and —B the diagonal and off-diagonal parts of M,
respectively. Then ALCP(®, M) has a unique solution x*, which s included in the
interval vector @ = [X — r, X + 7], where X is a certain fixed vector and

r o= 4] (M) max{0, —M& — (&) — (M)|%}. (4.1)

Proof Let[x] =[&% — 7, % + r] and assume that for any x € [x]
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and let ¥ = diag(¢y;), Py = diag(¢z:), and set A = (A + P))7". Let
[(%,[%],A) := max{0, x — A(M&+ P(%)) + (I, — A(M + [P}, D)) ([x] — %) }.

In Theorem 2.1 of [5], it was proved for the interval vector I'(k, [x], A) that
if the interval inclusion

I(%,[x],A) S [x — 7, & + 1]

holds, then x* € [x — r, X + 7], where x* is a solution of ALCP(®, M). Note

that
I, — A(M + [, ®,]) = A(A™ = (A — B+ [P}, %4))
=A(A+<I)’2—[A—B+CI)/1,A—B+CD’2])
= A[B,B+ &, — d!]
and

(L, — A(M + [P, CD;]))([Sc] —x)=A[B,B+ CD’2 — P [—7, 7]
= A(IBI+®, — B})[-7, 7]

Let I'(x,[%], A) = [T(#, [x], A), (%, [X], A)]. Then we have
[(x,[x],A) = max{0, x — A(Mx + ®(x)) + A(IBI+®'2 — CI)’l)r}
(%, [#], A) = max{0, ¥ — A(M& + ®(%)) — A(|B|+®) — D))r}.
We verify at first I'(%, [¥], A) < & + r. Considering

(L, — A(IBl+®} — ®)))r = AA™" — |B|—®} + ®))7
= A(A — @) — |B|-D) + D))r
= A(A+ @, — |B)r
> A(A — |B))r = A(M)r

and

(M)r = (M)|x|+max{0, —M% — ®(&) — (M)[%]}
(M)|%]-Mx — ®(x) — (M)]x]
—Mix — P(k)

v

\%
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we have
(I, — A(|B|+®, — @)))r = —A(Mx + P(x))
and so
X — A(M& + ®(%)) + A(|B|+Py — P)D)r < x+ 7,

from which, together with the fact that X +7r> & +[x] = 0 by (4.1), it
follows that

max{0, X — A(M& + ®(&)) + A(|B|+D) — D)7} < x+ 7.
Using again r > ||, and so ¥ — r < x —|x| <0, we have
max{0, & — A(M% + (%)) — A(IBl+®) — )1} = & — 1.
The proof is complete. a

Remark 4.2. If ®(x) = (®;(x,)) is isotone, M € #;, then ALCP(P, M)
has a unique solution. The proof can be found in [5].

Theorem 4.3. Let ®(x) = (P;(x;)) be isotone and continuously differentiable,
M € %, and denote by x* the unique solution of ALCP(®, M). Let x € R" be
fixed, let v be defined by (4.1). Suppose that for any x € D = [x —r,x+7]

_“S¢2i) i=1,.4.,’n, (42)

and let @ := diag($1:), ¥y = diag(¢s;). Let A = diag(0;) with

1
(< =————, i=1...,n (4.3)
mij'l'd)?z‘

0<9d
Then
e(x) = x — x* € Z([[1lua, ha(%)) :={x e R": Jx = ha(%),] € [Jlsa}, (4.4)

where the interval matrix [[1a,a is defined by

[6; min{0, m;}, 6; max{0, m;}] j # %

(U]%’A)ij - {[51(7”” + Qbil), 1] ] =i

Moreover, [Jlaa C #, and so contains no singular matrices.
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Proof. The proof is an immediate consequence of Theorems 3.8
and 3.11. O

The next discussion is concerned with LCP(q,M). In this case,
d'(x) = 0, and we obtain from Theorem 4.3 the following result.

Corollary 4.4. Let M e ¥, q € R™. Let x* denote the unique solution of
LCP(q, M), and let % € R” be given. Let A = diag (0;) with
1

0<6; <0 :=—, i=1...,n. (4.5)

(13

Then

o(x) = & — x° € S([Irna ha(8)) = {x € R" 2 Jo = ha(%),] € !
(4.6)

where the interval matrix [J1rna i defined by

5i i 01 if ’51' 0: if ] ”
(U]Rn’A)ijz{Eé‘n?nl{] my}, 6; max{0, m;}] iiz

Moreover, [[1r»a € Hr, and so contains no singular matrices.

Now we reconsider the norm estimation for e(%) = x — x* given in
Theorem 3.15. This result is in general not easy to apply. For the case of
ALCP(®, M) with M € #+ and ® isotone, an efficient and computational
bound can be given, however. We need the following theorem. See [91,
Theorem 2.1.

Theorem 4.5. Let M € #;F with diagonal part A. Then for1 < p < +00 and
D = diag(d;), d; € [0, 1], we have

mnax, (I, = D +DM) 7', = |l (M)~ max{A, L},-
Theorem 4.6. Let M € #; with diagonal part A, and let ®(x) = (Pi(x;))
be isotome and continuously differentiable. Let % € R™ be fixed. Let v be defined
by (4.1), D= [ — 7, &+ 7], and let D} = diag(¢p1;) and Py = diag (pa:) be
defined by (4.2). Then for any A = diag(d;) with 0; > 0,i=1,...,n, we have
for the solution x* of ALCP(®, M)

& — %", < (M + &)~ 'max{A + @, A, - Iha (), = EX (R). (4:7)
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Proof. Because M € #; and @ is isotone, it is clear that A(M + ®'(u)) €
7+. For the matrix (3.8) we obtain

Jua(d,u) =1, — D+ DAM + d'(u)),

which together with Theorem 4.5 and (4.2) yields
I Jona (s u)) 7 lp < IKAM + @' (u))) 'max{A(A + ®'(u)), L}l

Because

(AM + P ()" < (AGM) + &)~
and

max{A(A + (1)), I,} < max{AA + @), L},

we obtain, using the monotonicity of || - [l

1 (ds )Ml < IAUM) + 7)) max{AA + ), L}l
= [[((M) + @) AT max{A(A + @), Ll
< (M) + @)~ max{A + @5, A7l

Therefore we obtain (4.7) from (3.9). a

As a special case of Theorem 4.6, we obtain the following result for
LCP(q, M).

Corollary 4.7. Let M € #; with the diagonal part A. Let A = diag(6;) with
6;>0,i=1,2,...,n. Forany x € R”, we have the following error bound for the

solution of LCP(q, M):
i — «*ll, < (M) max{A, A7 - s () = E{ (). (4.8)

For ALCP(®, M) with ® having a bounded derivative for all x € R",
we have the following results.

Corollary 4.8. Let ®(x) = (Pi(x;)) be isotone, M € #, and denote by X"
the unique solution of ALCP(®,M). Let x € R" be given. Suppose that for all
x € R"”

———'§¢2i, i=1,...,n, (49)
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and let
| := diag(¢r:), Py = diag(¢ai).
Let A = diag(9;) with

1
0<6<&=——y) i=1l...,n. (4.10)
mi; + Po;

Then

8(5\6) =x—x"€ E(U]]R",A, hA(.;C)) = {X e R"” I].X’ = hA(,;C),] € U]]R”,A}’
(4.11)

where the interval matrix [J1r» s 15 defined by:

[6; min{0, m;}), 6; max{0, my}] j # %,

([]]R",A)ij = {[5i(mii + q[),q), 1] ]—_.-' 1.

Moreover, [[Irna € Fr, and so contains no singular matrices.

Corollary 4.8 is a special case of Theorems 3.18 and 3.19.

Theorem 4.9. Let M € # with diagonal part A, and let ®(x) = (Pi(x;))
be isotone and continuously differentiable. Let X € R™ be given, and assume that
(4.9) holds for all x € R™. Then for any A = diag(d;) withd; >0,i=1,...,n,

we have

i — x*[l, < (M + @) max{A + @, A7}l - [a (@), = E(%).
! (4.12)

Proof. It can be proved in a similar manner as in Theorem 4.6. O
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5. NUMERICAL EXPERIMENTS

In this section, by using MATLAB with the support of INTLAB [25],
we perform the numerical experiments for five test problems:

one LCP(q, M) with M € &, but M ¢ #F (Example 5.1);

two LCP(q, M) with M € #+ (Examples 5.2 and 5.3);

one ALCP(®, M) with M € #; and @ diagonal isotone (Example 5.4);
one ALCP(®, M) with M € % and @ diagonal isotone and having
bounded derivative (Example 5.5).
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TABLE 1 ¢, k., and i for Example 5.2

0e, € = 0.001 0, € =0.01 0e,€=0.1 0e,€=1 Ke,€=1 K

m 1.2376e+03 1.2867e+-02 1.7016e+01 4.7560e+4-00 4.0126e+02 8.0251e+04
o 3.0961e+03 3.1067¢+4-02 3.4189¢+01 5.8566e+00 7.8831e+02 1.5766e+-03
3 6.4719¢+-02 6.6442¢+01 8.1716e+00 1.5259e+00 1.1000e+01 2.4200e+-01
Ty 4.3448e+4-02 4.4590e+01 6.4868e-+-00 3.1684e+4-00 7.3882¢+01 2.5787e+02

The exact solution x* of each test problem is known beforehand for
the numerical experiment. For Examples 5.2 to 5.5 the test point x = (%)
is generated in the following way:

% = max{0, v; — 0.5} x 101709,

where w; and v; are random numbers in [0,1]. The function “verifylss.m”
of INTLAB is used to include the solution sets (4.4) and (4.11) for
ALCP(®, M), and (4.6) for LCP(q, M), respectively. Denote by [x — x*]a
the enclosure returned by “verifylss.m,” and define

Ef (%) = max{|]yllo : y € [¥ — &'}

Here the acronym ‘lis means ‘linear interval system’ which is a linear
system with interval data. Subsequently, we denote El" (%) (see Eq. (4.12))
by E"(%) for convenience. We choose A = eA* with 0 < € < 1, where A* =
diag(8}) with 07, i =1,...,7n,1s defined by (4.3) or (4.10) for ALCP(®, M)
and by (4.5) for LCP(q, M), respectively. The goal of the numerical
experiments is to investigate

e the impact of A on the enclosure of 3([J1aa, ha(%));
e the impact of A on EJ"™(%).

In order to demonstrate the impact of A, we report the ratio

o= EX.(%)
e T T
for € € (0,1].
TABLE 2 g, ., and ik for Example 5.3
0e, € = 0.001 ge, € =0.01 0c,€=0.1 0, €=1 Ke,€ =1 K

n =20 2.1954e+01 3.6319¢+00  2.9310e+00  1.5218e+00  3.1440e+01 1.2619e+03
n =50 5.3807¢+03  5.4831e+02  6.2486e+01  1.9011e+00 1.2389¢+02  6.3177¢+03
n =100 1.1618e+4-03 1.1801e+02  1.4986e+01  3.1231e+00  7.3378e+02 5.1208e+04
n=2900 8.8857¢+03  59513¢+03  6.525le+02  6.9192¢+00 2.8929¢+03  1.7705e+05
n=500 6.5660e+03  2.6104c+03  3.0057¢+02  8.6819¢+00 1.5437¢+04  1.0642e+06
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In order to demonstrate the impact of A on Eg* (%), we plot the
logarithm of the ratio

ER (%)

€ = TX
% — %*[loo

for € € (0, a] with @ > 1. The data are plotted for Example 5.2 in Figure 1
and for Example 5.4 in Figure 2. Very similar numerical results are
obtained for Examples 5.2 to 5.5.

The values of k. for € =1 are listed in the tables to compare the

preciseness of E4. (%) and E;%(k). We also list the value

_ B

T lE =l
where E!"(%) is the error bound (2.4) given by Chen et al. in [9], which
is obtained from (4.7) by choosing A = I, and p = co.

In reporting the numerical results, the notation “NaN” indicates that
no meaningful result is returned by “verifylss.m.”

25 T T T T T T T T T

201

15

loglx,)

101

FIGURE 1 log(x.) for Example 5.2.
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16 T T T T T T H 1 7

141 -1

iz

logix,)

|
|
|
x

0 1 2 3 4 5 6 7 8 9 10

FIGURE 2 log(x.) for Example 5.4.

Example 5.1. An LCP with a P-Matrix. We consider an LCP(q, M) with

the data
1 —4 -1

which has the unique solution x* = (1, 0)”. One can verify that M € &, but
M ¢ 7. This example was studied in [9]. We obtain for = (1,17

EP(3) = max [|( — D+ DM) ™ | lmin{x, Mx + g}llco = 20.

del0,1)2

Considering now the solution 2([JIr»eas, heax (X)), where 0 < € < 1,

_(lell 4601\ (0 —4e
mm”‘“‘([o,ge] [€, 1] ) “‘*(x)“(min{1,1—;”e})‘

It can be verified that [[]gre+ contains no singular matrices. For
any 0 <e<1, we compute the enclosure of its solution set by
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Cramer’s rule:
[ — 2] [—%,—4 + ¢min{1, Ze}]
X=X lear = emin €
(S 2 4 i, e

For € € (0, 1], it holds

A FO [—4,0]
[x"‘x]eA*Q[x_x]A*=<7 27)
(2,2

From this we get

Ei(x)=4<20= E;;"d(ic).
By choosing A equal to the inverse of the diagonal of M, we get from (10)
X — x*||oo = 4. This is also obtained from (2.2) in [9] if applied to r(x) =

min{x, A(Mx + ¢)}, as was pointed out by the referee.

Example 5.2. An LCP with an H-Matrix. Let M = (m;) € R™" with

c, j=1i+1,
b+ psin <i>, j=1,

a, j=1i—-1,
0, otherwise.

The example was also studied in [9]. We generate the exact solution
x* = (x7) by setting

%7 = max{0, v; — 0.5} x 10109

Then the column vector ¢ = (¢;) is generated in the following way:

) (Mx"), x>0,
VT = (Mxr), + max{0, 3 — 0.5} x 1010@09) = 0.

Here w;, v;, w;, and 7; are random numbers in [0,1]. We report the
numerical results in Table 1 for the following choices of the parameters
n=(U,a,b,c):

= (0,-1,2,-1), 7= (n"%-15,2,-0.5),
s =(1,-1.5,3,—-15), @ =(n? —15,2.2,—0.5).

For these choices, we even obtain M-matrices.
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Example 5.3. An LCP with H-Matrix Arising from Journal Bearing
Problem. The following problem arises in discretizing the free boundary
problem for a journal bearing by a finite difference method [6]. Let
M = (my) € R™" with

_ 3 .
hz.+%, j=1+1
3 3 .
_ hi—%+hi+%’ ]—2,
My = 3 L.
—hi_%, j=1i-1,
0, otherwise,

and let ¢ = (g;) with

q; =,u(hz-+% "hi—%)’ 1=1,2,...,n.

The details of computing p and #;,_1 can be found in [11]. The
numerical results for u = 0.8 are reported in Table 2 for the choice of

n = 20,50, 100, 200, 500.

Example 5.4. An ALCP Arising from Obstacle Bratu Problem. Let n
be the square of a positive integer k, ¢ € R” be constant, and let
O(x) = (e",e2,...,e)T +¢,

H -1
1|-1I H
M=7’L—§
.. _I
-1 H
Whereh=ﬁT,
4 -1
-1 4
H: G.ﬂﬁ
-1
-1 4

Set x* = (0,1,0,1,...,1)T € R" and choose ¢ = ()T € R™ as in [3]:

)i+ e x>0,
T (Mx*); + ¢ — ¢; otherwise,
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TABLE 3 ¢, k., and ||rllo (See Ref. 4.1) for Example 5.4

Oe, € = 0.001 0e, € = 0.01 0e,€=0.1 0e,€ =1 Ke,€=1 7Moo

n=25 1.2693e+4-03 1.2704e+02  1.2831e+01  1.4950e+00  4.2502e+00  8.9571e+00
n =49 1.2310e4-03 1.2497e+02  1.4253e+01  2.6267e+00  1.0962e+01  2.7047e+00
n =81 2.8601e+03 2.8863e¢+02  3.1093e4+01  4.7700e+00  2.0011e+01  3.1352e+00
n=225  4.5441e+03  4.5613¢+02 4.7048¢+01  5.3182¢+00  3.1561e+01  1.2153¢+01
n = 400 NaN NaN NaN NaN 3.8036e+01  1.1382e+4-01

where ¢; is a random nonnegative number. The ALCP(®, M) models the
obstacle Bratu problem [24] and was studied in [3]. The matrix M is an
H-matrix with positive diagonal elements, and & is an isotone diagonal
mapping. We treat the problem as an ALCP(®, M) with the enclosure
computed by using Theorem 4.1 and report the numerical results in
Table 3 for the different choices of the dimension n = 52, 72,92, 152, 202.

Example 5.5. An ALCP(®, M) with Bounded Derivative. We study an
NCP with all the data being randomly generated. Take f(x) = D(x) -+
Mx + p with M = ATA + B, where the elements of A € R™" are randomly
generated in the interval [-5,5], and B is a skew symmetric matrix
generated in a similar way. The vector p € R" is generated from a
uniform distribution in the interval [—500, 500]. We take D(x) = diag(a, +
ajarctan(x;)) with @; generated randomly in [0, 1] and gy > 0 large enough
such that f'(x) is an H-matrix for all x € R". Then we have ®(x) = D(x) +
p. Similar problems were studied in [18, 26]. Obviously, f has a bounded
derivative. The numerical results are reported in Table 4 for the choices
of the dimension n = 10, 20, 50, 100, 200.

6. CONCLUDING REMARKS

In the paper, we formulate the error estimation for NCP(f) as
enclosing the solution of a linear system of equations with its coefficient
matrix contained in a known interval matrix. Based on this formulation,
upper bounds of the error of an approximate solution x for ALCP(®, M)

TABLE 4 ¢, K, and ||r]l (See Ref. 4.1) for Example 5.5

0e,€=0.001 g, €=0.01 0c,€=0.1 0,€=1 e, € =1 17100

n=10 3.8574e+02 6.6436e+01  9.6348e+00  1.2362¢+00  4.6768¢+00  9.5349¢+00
n =20 1.2310e+03 1.2497¢+02  1.4253e+01  2.6267e+00  1.0513e+01 2.4407¢+00
n = 50 NaN NaN NaN 1.6596e+00  1.5936e+01 1.9735e+01
n =100 NaN NaN NaN NaN 4.4943e+01 1.1382e-+01
n = 200 NaN NaN NaN NaN 7.8151e+01 4.8426e+01
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and LCP(gq, M) are given. The following phenomena can be observed in
the numerical experiments without exception.

e The error estimation obtained from the formulation of LIS is quite
precise, in fact it is mostly of the same order of magnitude as that of the
exact error when choosing A = eA* with € — 17.

e When € <« 1, then the interval matrix contains a matrix that is
approximately singular. The estimation becomes bad. Numerical results
show that the estimation delivered by “verifylss.m” becomes worse and
worse as € — 0 and cannot return meaningful results completely when €
is relatively close to 0.

e For both ALCP(®, M) and LCP(gq, M), with the choice of A = €A*, the
upper bounds (4.7) and (4.8) of the error obtain a minimum at € =1
(i.e., with the choice A = A*). They are always sharper than the bound
with the choice A = I,. For Example 5.3, the bounds are sharper by two
orders of magnitude. This phenomena is observed for all the cases in the
numerical experiments, although the data is plotted just for Example 5.2
and for Example 5.4 (Figs. 1 and 2).

e Recently, Rohn developed a software (a MATLAB function
“intervalhullm” based on INTLAB) for computing the smallest
interval vector containing the solution set of a linear system with
interval data. This vector is usually called the interval hull of the
solution set. This software can be downloaded at http://www.cs.cas.cz/
rohn/matlab/index.html. The interval

N [—4’ O]
[x — x"]a» = < 7 7 )
l57: 7

for Example 5.1 can be computed with this software. For the other
examples, the preciseness of “intervalhull.m” is better compared with
that of “verifylss.m.” The difference is not obvious, especially for
problems with large dimension.
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