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Abstract In this paper we consider the complementarity problem NCP(f) with
f(x) = Mx+¢(x), where M € R"*" is areal matrix and ¢ is a so-called tridiagonal
(nonlinear) mapping. This problem occurs, for example, if certain classes of free
boundary problems are discretized. We compute error bounds for approximations
X to a solution x* of the discretized problems. The error bounds are improved by
an iterative method and can be made arbitrarily small. The ideas are illustrated by

numerical experiments.
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1 Introduction

Let f : R" — R" be a given mapping. A nonlinear complementarity problem, denoted
by NCP(f), is to find a vector x* such that
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x*>0, fx =0, x*Tfx*=0. (1)

The inequalities are meant componentwise. NCP( f) has many real world applications,
in engineering, for example. We refer to [13] for source problems of it.

Assume that we have computed an approximation X to a solution x™ of (1) by some
numerical algorithm (see, e.g., [11]). Then it is important to estimate the distance of
% to x*. Without such an estimation the approximation X is of doubtful utility.

This distance is usually measured by some norm or may be defined componentwise.
Error estimation in this sense has been extensively studied up to now in the papers
[8,9,12,14,15,17] and the monograph [11]. In the papers [1, 3] a verification method
for the existence of a solution of NCP( f), defined in (1), was given. If the method is
successful, error bounds are delivered automatically.

In [6,7] we studied the complementarity problem NCP(f) with the mapping f of

the form
F) = Mx + p(x), @)
where M € R"*", and
@(x) = (@i (xi)). (3)

@ is a so-called diagohal mapping. This problem comes, for example, by considering
the following free boundary problems. )

Example 1.1 Let g : [0,1] x R — R be a given function, let , B > 0 be given
constants. We consider finding a function u : [0, 1] — Ry such that

u’(t) = g(t, u(t)), teDy,
u0) =q«, _ 4)
u(l) =8,

where the set D := {t € (0, 1) : u(¢) > 0} is unknown.
We can approximate u(¢) from Example 1.1 by a vector x* = (x) € R", using the

well-known second order approximation of the second order derivative. This glves us
an NCP(f) of the form (2) and (3), where

2 -1

M= -1 2 . 5

and where @(x) = (@i (x;)) with
0 (xi)) = h?g(ti,x)), i=12,....n,
X0 =, Xpt+1 = B.

Here h = 1 is the stepsize, t; = ih,i = 1,...,n,and u(t;) = x;.
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However, using the so-called Mehrstellenverfahren (see [10], Table III, p. 538,
second to the last line) we can approximate the free boundary problem from

Example 1.1 by (1), where
f(x) =Mx + o(x). » (6)

M is the same matrix as in (5). The mapping ¢ : R" — R” is now a so-called
tridiagonal (nonlinear) function '

p(x) = (@i (xi—1, Xi\ Xi+1)) (7N
with
h2
@i (Xi=1, Xi, Xi+1) = 'l‘i(g(ti—-l,xi—l) + 10g (@i, xi) + 8(ti+1, Xi+1)), (8)
i=1,2,...,n, where again xo = @ and x,+1 = f.

Example 1.2 Let g : [0, 1] x R x R — R be a given function, let @, 8 > 0 be given
constants. We consider finding a function « : [0, 1] — Ry such that

u’(t) = g(t,u(t),u'(t)), teDg,
u0) =a, )]
u(l) =4,

where the set D := {t € (0, 1) : u(z) > 0} is unknown.k

This is also a free boundary problem. However, in contrast to Example 1.1, also
the first order derivative occurs in the differential equation. We can approximate u(t)
from Example 1.2 by a vector x* = (x}) € R" using the well known second order
approximations of the first and second order derivatives. This gives us an NCP(f),
defined by (6), where M is defined by (5) and ¢(x) is again a tridagonal (nonlinear)
function ¢(x) = (@i (xi-1, Xi, Xi+1)), wWith

X — Xi—1 -
@i (Xi—1, X, Xi+1) = h’g (ti,x,r, —’—"—Ll—z—h——'———) (10)

i =1,2...,n. In¢ we have to set xo = « and correspondingly x,+1 = B in @y.
In the present article we prove some general results on the existence of solutions
and error bounds of NCP( f) with
fx) = Mx+ o), (1)

where M € R™"*" is a given matrix and where

o(x) = (@i (xi=1, Xi, Xi+1)) | (12)
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is a tridiagonal (nonlinear) function. We focus on conditions on g from Example 1.1

and 1.2.
The paper is organized as follows. In Sect. 2 we introduce the notations and some

frequently used results. In Sect. 3 we compute under certain conditions on the matrix
M and the tridiagonal nonlinear function ¢ error bounds for an approximate solution
of NCP( f) defined by (11).In Sect. 4 we introduce and investigate an iterative method,
which allows to improve the error bounds systematically. Finally, we present results
from numerical experiments in Sect. 5.

2 Preliminaries

Let us make some theoretical preparation for the presentation of the results of this
paper. Denote by R} the non-negative orthant of R". Denote by “<” the natural (or
componentwise) partial ordering in R". For any x, y € R" we denote by max{x, y}
and min{x, y} the componentwise maximum and minimum of the two vectors, res-

pectively. _
Subsequently some basic facts from interval analysis are used. Let A = (g;;), A=

(aij) € R withg_ij <aj,i=1,.. Lnj=1,..., n. We denote by [A] = [A, Al
an n X n interval matrix, which is a set

[A] := {A = (a;j) e R"" : g;; < aij <Gij}.
We denote by IR"*" the set of all n x n real interval matrices. The (i, j)th element
of [A] is denoted by [a;;]. Letx, X € R" with x < X. We denote by [x] = [x,X] an
interval vector, which is an n x 1 real interval matrix. We denote by IR” the set of all
real interval vectors with n components. The ith component of [x] is denoted by [x;].

For an interval vector [x] = [x, X] we denote the midpoint and the radius by m([x])
and r([x]), respectively. They are defined by

m([x]) = -;-(1 +%), r(xD:= -;-(35 —X). (13)
Let [x], [y] € IR" be given, it can be verified that
r(lxl+ D) =r(xD) +rdyD, (14)
‘and if the intersection [x] N [y] is not empty
r([x]1 N [y]) < min{r([x]), r(yD}. (15)
We define the interval operator max{0, tx]} for an interval vector [x] = [x, ¥] by

max{0, [x]} = [max{0, x}, max{0, x1].
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Notice that the operator is inclusion monotonic, i.e.,
[x] € [y] = max{0, [x]} € max{0, [y]}.
Furthermore,
r(max{0, [x]}) < r([x]). | (16)
For an interval matrix [A] € IR™*" we define the absolute value |[[A]| € R**" by
ILA]] = (max{lay; . [@71).

For more details on interval analysis and computation we refer to [2] or [16], for

example. _

Let A € R™", denote by A and —B the diagonal and off-diagonal part of A,
respectively. A is called a Z-matrix if B > 0, that is each off-diagonal element of A is
non-positive. A is called an M-matrix if it is a Z-matrix and has a non-negative inverse,
that is each element of A~! is non-negative. The diagonal elements of an M-matrix
are positive. If A is an M-matrix and A is a non-negative diagonal matrix, then A + A
is also an M-matrix. A is called an H-matrix if the so-called comparison matrix

(A) = |A| = |B|

is an M-matrix. The diagonal elements of an H-matrix are different from zero.
Let f : R" — R” be given, let ¥ € R” be arbitrary but fixed. A slope of f with
respect to X and x € R”, denoted by §f (X, x), is an n X n matrix such that

fx)— f(x) =6f(x,x)(x — X).
We denote the ith row of §f (X, x) by fi (X, x). Let [x] € IR" be given; let X € [x]

be fixed. An interval extension of the slope 8f (¥, x) over [x], denoted by 8 f (X, [x]),
is an n x n interval matrix such that for any x € [x] .

fx) = f&) € 6f (&, [xD([x] — X).

For slopes, its interval extension and their properties we refer to [2,16], for example.

3 Error bounds for an approximate solution

In this section we study bounding a solution of NCP( f) defined by (11), where ¢(x)
is a tridiagonal nonlinear function. At first we give the following existence theorem,

- which holds for (1).

Theorem 3.1 Let[x] = ([x;]) € IR" be given and let x = (X;) € [x] be chosen fixed.
Let D = diag(d;) € R*"" be a given diagonal matrix withd;, > 0,i = 1,...,n.
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Denote by 8f (%, [x]) € IR™" an interval extension of the slope of f over the interval
[x]. Define

(&, [x], D) := max{0,% = D f() +( - Dsf &, xI)(x1 - D} AT

@ If
G DSl (18)
then NCP(f) has a solution x* € '(x, [x], D).
(b) IfNCP(f) has a solution x* € [x], then x* € T' (X, [x], D).
Proof The proof is omitted since it is very similar to that for Theérem 2.1in[5]. O

We use Theorem 3.1 to construct an interval [x] containing a solution of NCP(f),
defined by (11) and (12), that is, f(x) = Mx + ¢(x), where M € R"*" is a given
matrix, and @(x) is a given tridiagonal function. In the remainder of this paper we
impose the following assumptions on the matrix M and the tridiagonal function ¢.

Assumptions 3.2 Let 7] be a given interval vector and let £ = (%;) € [z] be arbitrary
but fixed. Assume that

e there exist non-negative constants Viiel, i =2,...,1, such that forx = (x;) € [z]
|03 (ki1 Xi» Xi1) — @i (Rim 1, Xiy XieD| < Vii—11%i=1 — Xl (19

~e there exist non-negative constants y; i+1, i=1,...,n—1,suchthat forx = (xj) €

[z]
lo;i (Ri—1, Xi» Xi41) — @i (Ri—1, Xis Zig D = Vii+1lXi41 — Xit1l; (20)

e there exist non-negative constants vii, i = 1,...,1, such that for x = (x;) € [z]
withx; #X%,i=1,....,n

0i (Ri_1, Xi» Xig1) — @i (Xi-1 Xi, Xig1)
~ : > Yiis (21)
xi — X

e the matrix M = (mij) € R"%" is an M-matrix, where 7;; is defined using M =
(mlj) E RIan by

—yiiel = Imiipql if j=i+1

= Yii + Mii if j=1I,

mij = LA 22

Y —yiio1 = |mii—1l if j=i-1, (22)
— |mij] otherwise,
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e there exist non-negative constants yi’,-,i =1, ..., n, such that for x = (x;) € [z]
withx; £#x;,i=1,...,n

j./%f._ ,Xf,.ff - f/{.‘-—ly-ff"i“
@i (Xi—1, Xi, Xi+1) (f:(l i vl+1) < l,l (23)
Xi — X;

Now we are going to find an interval vector [x] such that the inclusion (18) holds,
and as a result of Theorem 3.1, this interval vector [x] contains a solution of the com-
plementarity problem NCP( f) defined by (11) with a tridiagonal nonlinear function.

Theorem 3.3 Let Assumptions 3.2 be fulfilled for an interval vector [z], let M =
(rij) € R™*", be defined by (22). Let & = (X;) € [z] be a given vector with £ > 0.
Letr = M~ \M%+@(%)| and suppose that [x]1° = [£ —r, £+r] C [z]. Then NCP(f),
defined by (11) with the tridiagonal nonlinear function ¢, has a solution x* € [x1°.

Remark 3.4 Since in Assumptions 3.2 it is assumed that the matrix M is an M-matrix,
we have M~! > 0, and therefore r = M~1|M% + ¢(%)| > 0, and the interval vector

[x]° in Theorem 3.3 is well defined.

Proof We write

@i (Xi—1, Xi\s Xi+1) — Qi (Ri=1, Xi, Xi+1) = @i(xio1, Xi, Xit1) — @i (Xi—1, Xi, Xig1)
+ @i (Xi—1, Xi\ Xi+1) — @i (Xi—1, Xi, Xit+1)
+ @i (Xi—1, Xi, Xi+1) — @i (Xi—1, Xi, Xit1).

Assumptions 3.2 give an interval extension of the slope é¢(X, x) of ¢(x) over [x]°:

. O V [ylla )/]/]] lf J = 1,
[Be1(x, [xI)]j = { [=y12, v12]  if j =2,

|0 if j>2;
[[~yii-1, vii—1] if j=i—1,
oyl if j=i
P ,)e,xO C— ii» v;;] 1 =1L
[8i Cx, 1¥1)); [=Vii+1s Viig1] A j=i+1,
_O otherwise,
wherei/=2,...,n— 1;
A 0 if j<n-—1,
[5(/711()2, [x]o)]j = [")’n,n—l, Vn,n—-l] if j=n-— 1,

[Vnm y,:n] if j =n.

From this we obtain an interval extension § f (X, [x]1°) of the slope of f(x) over [x1°:
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[ mu+ Lyl if j=1,
1%, [xI0]; = { mi2 + =iz, yi2] if j =2,
| m1;j otherwise,
[(mii—1 + [~Vii-1, Viie1] if j=i—1,
. i+ i, v if j=i,
SFE, [xI] J i i ol
[8£iCx eI miiv1 + [=Viist, Viiwr] if j=i+1,
| mij otherwise,
fori =2,...n—1;
0 My p—1+ [“‘Vn,n—ls )’n,n—l] if J =n-1,
[81n (%, [x] )]j = {1 Mpn + [Van, )/,;n] if j=n,
otherwise.

myj
For later use we set
[A]° = [A%, A0) = 87 (%, [x17). (24)

Set D = diag((m;; + yi’i)_l), i=1,...,n. Then we have

[ 1—di(mi+y11) if j=1,
I = DSf&, X1 = { di(lmial +y12)  if j=2,
| dilm;] otherwise;
[ di(Imiji—1| + vii—1) if j=i-1,
A 1 —d;i(mj; + yii) it j=i,
[ —D§F(E, [x19)]; = | A U
| F&x D di(lmiiz1l +vii+1) f j=i+1,
| di|mij] otherwise,
fori=2,...,n—1;
v dy(Impn—1| + Ynn—1) if j=n—1,
| — D 5f()?, [x]O)I,,j =1 1 =dpn(mpyn + Yun) if j=n,
di|my;| otherwise.

Now we have

I = D8f &, [xI)] =11 — D (8f &, xI))I.

From (22) we know that (§f (%, [x]°)) = M, where §f (%, [x]°) denotes the lower
bound of the interval matrix §f (X, [x]°). Therefore we have

Il — D §fE, x| =] — DM| = D(D~! — M).
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We use this relation to verify the inclusion (18). Let

I, [x1% D) = [T, [x]°, D), T, [x]° D)]

for (17). Then we have

(%, [x1°, D) = max{0, £ — D(MZ + ¢(&)) — [ — DSf(Z, [x]°)|r)

= max{0, £ — D(MX + ¢(&)) — D(D~! = M)r},
I'(%, [x]1°, D) = max{0, £ — DM + ¢(%)) + |1 — DSf (%, [x1°)|r}
{0, £ — D(MZX + @(2)) + D(D™' — M)r}.

= max

From r = M~ M% + ¢(%)|, we obtain Mr = IM% + @(R)|, 50 Mr > MZ + (%),
and so

—~D(MZ% + o(%)) — D(D™! = M)r > —r.
From this we achieve
£—DWMi+¢@®)— DD ' -~ Myr=%-r,
therefore

[(%, [x]° D) = max{0, £ — D(M% + ¢(£)) — D(D™! — M)r)
> % — D(MZ + &) — DD~ = M)r

—r.

IV
=

In a similar way we can show that
£—=DMZ+¢R)+DD ' —Mr <z+r,

which, together with the fact that x + r > 0, yields

(%, [x]%, D) = max{0, % — D(M£ + ¢(%)) + D(D™' = M)r}
<Xx+4r.

Therefore FrG&x19D)CcxllP=[f-r %+ r]. From Theorem 3.1 it follows that
NCP( f) has a solution x* in [x]°. O

Remark 3.5 For the linear complementarity problem, that is, for the problem NCP( f),
where f(x) = Mx+q, M € R"" and g € R” is a constant vector, Assumptions 3.2
are fulfilled if M is an H-matrix with positive diagonal elements. Hence, Theorem 3.3
delivers for this problem the error estimation

B —x" < (M) M5 +q]. (25)
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In [9] Chen and Xiang gave an error bound for this linear complementarity problem
|% = x*llp < | max{Z, DUM) " || min{£, M2 + g}l p. (26)

It is not easy to compare these bounds theoretically. On the other hand, it is clear that
the right hand side of (26) approaches zero if X approaches x*, which is not the case
for (25). However, note that (25) is a componentwise error bound, whereas in (26) the
norm of X — x* is bounded.

4 Improving the error bound

In this section we give an iterative method for improving the enclosure of x* given by
[x]° of Theorem 3.3.

Algorithm 4.1 Let f be defined by (11). Let X > 0 be given. Let Assumptions 3.2 be
fulfilled. Let M be defined by (22). Let [x]° € IR" be given by
X1 :=[R—r, 2 +7r] with r=M "M%+ Q).

Let [A]° = [A®, AQ] be defined by (24) for the interval vector [x1°, and set k := 0.
Denote by m([x]%) the midpoint of the interval vector [x]K, k=0,... (see (13)).

Step 1 Let [A]f = [_A_k , _A_"] be defined analogously to (24) for the interval vector
[x]%; |

1 1 1 :
Step 2 Set D* := diag(:—, —_ ..., _——__—);\
Ak Ak Akyy,

Step 3 Generate a sequence {[x]* 122, of interval vectors by the method
I = TOm((x1Y), k1%, D N [ 27

where 8f (m([x]%), [x10) = [A*, AK] and T (m([x]¥), [x]¥, D¥) is defined by
(17);
Step 4 Setk :=k -+ 1and go to Step 1.,

Remark 4.2 Since the matrix M, defined by (22) is assumed to be ag_l_\/l—matrix, its
diagonal elements are positive. Therefore also the diagonal elements of A* are positive,
and Step 2 of Algorithm 4.1 is well defined.

Remark 4.3 Since_:[x]O contains a solution x* of NCP( f), from Theorem 3.1 it follows
I = Dm(x1h), x5, DY N [x]* £ 0.

Theorem 4.4 Let the assumptions of Theorem 3.3 be fulfilled. Let {[x]k},f‘_i_O be the
sequence generated by Algorithm 4.1. Assume that for the interval matrix [ATF from
Step 1 it holds

(Al ciel=[2Q], k=12..., (28)
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and assume that Q and Q are H-matrices, whose diagonal elements are all positive.
Then

(a) the problem NCP(f) has a solution x* which is contained in each [x]X, k =
0,1,...;
(b) {[x]¥}2, is nested, that is [x]° D [x]' 2 --- D [x]¥ 2 -+ ;
@ {[xIF)2 = X%
(d) for each [x]¥, we have for the approximate solution x* = m([x]*) the error
bound

ek — x*| < r(ix]%).

Remark 4.5 Therelation (28) can be fulfilled if f” has an interval arithmetic evaluation
over [x]°.

Proof (a): Theorem 3.3 guarantees that the problem NCP( f) has a solution x* in [x]°.
From (b) of Theorem 3.1 it follows that for each k = 0, 1, ..., we have x* € [x]*.
(b): The result follows directly from the iterative formula (27) given in Algorithm 4.1.
(c): Denote by r([x]¥) the radius of the interval vector [x]¥ (see (13)). From (14), (15),
(16) and (17) we have

r(x = r(Cm([x1%), [x15, D¥) N [x15)
< r(C(m((x1%), [x]¥, DY)
= r((I — D*8f (m([x1%), xT))(x1* — m([x1%)))
= r((I — D*[A%, AR (IxTF — m(1x15)))
< |I — DAk, ARYIr([x1%),

where 8f(m([x]k), [x]6) = [AX, F], Dk is the inverse of the diagonal part of Ak,
From the assumptions of the theorem we have:

[AF C Q] :=[R, Q.

Denote by [D] = diag.;([-s—i,;—i1 , Qi—i]]). From the choice of D*, we know D¥ e [D]. We
obtain the relation

I — D*[AK, AR C T — [D][Q].

Therefore we have the further estimation of the radius r([x]¥th:

r(xITY < |1 — DF[AK, AFYIr([x15)
< |1 — [DIILAIr ([x]).

From the assumptions of this theorem we know that each matrix in [€2] is an H-matrix
whose diagonal elements are positive. Hence, we have p(|I — [D][2]]) < 1 (see [4]).
(d): The result is straightforward. n O
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5 Application and numerical experiments

In this section we move on to application of Algorithm 4.1 to complementarity
problems NCP(f), where f(x) = Mx + ¢(x), M is defined by (5), and ¢(x) is
defined by (8) or by (10), respectively. This problem arises from approximating the
solution of the free boundary problem given in Examples 1.1 and 1.2, respectively.

5.1 Study of Example 1.1

For the free boundary problem formulated in Example 1.1 we make the following
assumptions. ‘

Assumptions 5.1 Assume that dg; (¢, s) is continuous with respect to s, and assume
that there exist non-negative constants y and ¥ such that

0<y < dg(t,s) <y forall (z,5) € [0, 1] xR,

where dg1(z, s) means the partial derivative with respect to the second variable.

Let the tridiagonal mapping ¢(x) = (¢;(xj—1, Xi, Xi+1)) be defined by (8). From
the mean value theorem and Assumption 5.1 we know that

e thereare &_| € (min{x;_1, x;_1}, max{X;_1, x;—1}), such that

lpi (xi—1, Xi\ Xit1) — @i (Xi—1, Xi, Xit+1)]

1 .
= Ehzlg(ti—l, xXi—1) — 8(ti—1, Xi—1)|

1 . 1 __ "
= Ehzlagz(ti—l,éi—l)llxi—l —Xi—1| < T-z-}/h2lxi-! — Xi—1l;

e there are i1 € (min{X;+1, xj+1}, max{X;+1, x;x1}), such that

li (Xi—1, Xi, Xiy1) — @i (Xi=1, Xi, Xi+1)]

| N
= Ehzlg(ti+1,x,‘+1) — g(tip1, Xig1)|

1 A — A
= '1—2h2|382(ti+1,§i+1)||xi+1 —Xit1] < Eyhzlxm — Xit+1l;

e there are ¢; € (min{X;, x;}, max{x;, x;}), such that

@i (Xi—1, Xi, Xix1) — @i (Xi—1, Xi, Xit1)
Xi —;%,:
1 10g(t;, x;) — 10g(¢;, X; 5 5
_ L2 1080 x) = 10si, 4) “h?3ga(ti, 6i) = Zyh?;
12 X; — Xj 6 6—
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e and

i (Xi—1, Xi, Xip1) — @i(Xi—1, Xi\ Xi+1)
Xj — X

5 5_
= =h*ga(ti, i) < Z¥h°.

That is, (19), (20), (21) and (23) are fulfilled with

|
Vi,i—l—_-'l-zhz , {=2,...,n,
1 2_ .
yl.l+l = Eh ) 1= 19 s — 19
5 ) \
)’ii=ghzz, i=1,...,n,
5
m:#Ei=hwm

Furthermore, the elements m;; of the matrix M = (mij) € R"™", defined by (22)
have the following form

1
(—EM7—1ifj=i+L
5,
Zhty 42 if j=i,
}’h” = 1 6 -

1
mEHV—Iifj:i—L

| O otherwise,

i = 1,...,n. M is a symmetric Z-matrix, therefore it is a Stieltjes matrix if it is
positive definite. See Definition 3.4 in [19]. By Corollary 3. in Section 3.5 of [19] it
then is an M-matrix. By Theorem 1.7 in [19], M is positive definite if

S5y > 7. (29)

Therefore, Assumptions 3.2 hold under Assumptions 5.1 and under the conditions (29).

Consequently, under Assumptions 5.1 and under the conditions (29), we can apply

Algorithm 4.1 to problem NCP( f), defined by (6), (7) and (8), which comes from the

free boundary problem (4). We illustrate this by the following problem. ‘
Consider finding a function u(¢) : [0, 1] — Ry such that

( 1 3
u”(t) = E + m + arctan(u(t)) + 2u(t), t €Dy,

1 u(0) =035,
L u(l) =0.15,

where the set D4 := {t € (0, 1) : u(¢) > 0} is unknown.
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It is clear that Assumptions 5.1 hold with y = 2 and 7 = 3. We choose n = 99,
and so the condition (29) is fulfilled:

Sy=10>3=%.

We can apply Theorem 3.3 and Algorithm 4.1 to the nonlinear complementarity pro-
blem NCP(f), where f(x) = Mx + @(x), M € R**% is defined by (5), and
o(x) = (p;j(xi—1, X;i, xj+1)) 1s defined by

| 1 3
Qi(Xi—1, Xi, Xig1) = -1—2-h2 [(-2- -+ T2 + arctan(x;—1) + 2xf_1)

1 3
+10 (.2_ + m + arctan(x;) + 2xi)

1 3 ‘
+| -+ -+ arctan(x; + 2x; )],
(2 fil +2 ( 1+1) i+1

i =1,...,99, with xog = 0.35, xj00 = 0.15, t; = ih. We code Algorithm 4.1 with
Intlab 5.3 (see [18]) and terminate the algorithm when

1T Dlloo < €llr(x1)loe for € = 1072, (30)

We take the midpoint of [x]**! as numerical approximation to x* and plot it in Fig. 1.
From Fig. 1 we conclude thatDy := {t € (0, 1) : u(¢) > 0} ~ (0,0.35]U[0.7, 1).
(Note, however, that we have not taken into account the discretization error).

0.35

03 \

025 . .

R _
.\;\ A

0 01 02 03 04 05 06 07 08 09 1

Fig. 1 Numerical results: Example 1.1
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5.2 Study of Example 1.2

For the free boundary problem formulated in Example 1.2 we make the following
assumptions.

Assumptions 5.2 Assume that dg;(¢, s, v) is continuous with respect to s, and that
there exist non-negative constants y and t such that

-

a2g(t,s, U) 2 )/
4 1R xR,
193g(t, 5, V)| < T for all (¢,s,v) € [0, 1] x R x

where dg(t, s, v) and dg3(t, s, v) mean the partial derivatives with respect to the
second and the third variable, respectively.

Let the tridiagonal mapping ¢(x) = (¢;(x;—1, Xi, X;+1)) be defined by (10). From
the mean value theorem and Assumptions 5.2 we know that:

e there are &_| € (min{x;_1, x;—1}, max{X;_1, x;i—1}), such that
@i (xi—1, Xis Xig1) — 0 (Fi—1, Xi, Xig1)]

Xi+1 — Xi—1 Xit1 —Xi-1)
hzg (tj,X[, _,:1-_2—];_1-—) ~hzg (ti9xi9 Lzh—l_)l

Xl — &1
0g3 (fi,xi, iazgl—)

h

2

|xi—1 — Xi—1]

< —tlxi—; — Xi—1l;

oS

e there are {41 € (min{X; 4, x;+1}, max{Xx;11, X;+1}), such that

i (Riz1, xis Xig1) — @i (Rim1, X0, i)

Xitl — Xi—1 Xit1l — Xi—1
hzg (ti,xi, —L—Fz—h—t—) - hzg (fi,xi, —£+—2'h—l—)’

Cit1 —fi—l)

h
=3 ags | &, xi, %

|Xit1 — Xit1l

< =Tl|xig1 — Xit1l;

NS

e and there are ¢; € (min{X;, x;}, max{x;, x;}), such that
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@i (Xi—1, Xi, Xig1) — @i (Xi—1, Xi, Xix1)

x;—fc,-
- Xip1 = Xi-1 Y P Xig1 — Xi—1
:hzg Ly My 2h Ly 7Vl 2h
xi — X
2 Xit1 — Xi-

> h%y.
That is, (19), (20) and (21) are fulfilled with

1
Yii-1 = 5}”’ i=2,...,n,

|
Viii+l =-2-hf, i=1,...,n—1,

vi =h*y, i=1,...,n.

In order to fulfill (23), we proceed as follows: we compute the vector r = M __l |Mx +
@(%)|, and [x]® = [£ — r, X + r] from Theorem 3.3. Then we set [z] = [x]°. Since
dga(t, s, v) is bounded by some non-negative constant, say  on a compact set, we
obtain

Qi (Xi—1, Xi, Xig1) — @i (Kiz1, X, Xiv1) o Xig1 — Xiz r—
- =h“dg\ti, Gi, ———— | < h7Y.
Xi — Xj 2h

Therefore wé define Vi,i = h27, i =1,...,n,for this example and (23) holds.
Furthermore, the elements m;; of the matrix M = (; ;) € R"*", defined by (22)
have the following form

(_Zhr—1 if j=i+1,
Wy +2 if j=i,

1
—=ht—1 if j=i-1,
5 it j=i

0 otherwise,

i=1,...,n. Again, if

1

<h=
- n—+1

: @31)

< 1=

then M is an M-matrix. We apply Theorem 3.3 and Algorithm 4.1 to problem NCP( f),
defined by (6), (7) and (10), which comes from the free boundary problem (9).
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Fig. 2 Numerical results: Example 1.2

Remark 5.3 The stepsize limitation (31) is dependent on the constants T and y. In
the limiting case that the right hand side of the differential equation in Example 1.2
is independent on the derivative u/, there is no limitation with respect to A. Otherwise
the lower bound for 4 is given by the relation of 7 and y.

To be specific, we consider finding a function u(¢) : [0, 1] — R such that

| 3 1 §
u"(t) =5+5+5 u(t)3 +100u(t) + —u 't), teDy
1 u(©) =0.3,
L u(l) =0.6,

where the set D := {¢t € (0, 1) : u(¢) > 0} is unknown.
Itis clear that Assumptions 5.2 hold with y = 100 and v = 0.1. We choose n = 99,
and so 4 satisfies the restrictions (31):

1

n+1 100

10 3==-<h=

1=

We apply Algorithm 4.1 to the nonlinear complementarity problem NCP( f ); where

fxX)y=Mx+ o), M € R99X99 is defined by (5), and ¢(x) = (¢; (xi=1, Xi, Xi+1))
is defined by

Qi(xi—1, Xi, Xi+1) = lh2 + — 3 — n? 4 1h2x3 + 100h%x; + -—l—h(x~ 1 — Xi—1)

I\A =1y Ay A4 9 t + ) 2 1 20 i+ i ’

i =1,...,99, with xg = 0.3, x190 = 0.6, t; = ih. We terminate the algorithm by

criteria (30). We take the midpoint of [x]¥*! as numerical approximation to x* and

plot it in Fig. 2.
From Fig. 2 we conclude that D.,. ={te,1):u() >0}~ (0,0.32]U[0.6, 1).
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6 Final remarks

The iterative method (27) may be considered to be a kind of Jacobi-method. It is
also possible to use the idea of the so-called Gauss—Seidel-method. We omit the
necessary details for the modification of Algorithm 4.1 and mention without proof
that Theorem 4.4 holds also for the Gauss—Seidel modification (see [20] for the case
of linear complementarity problems). From practical experience we can conclude that
in general it delivers much tighter enclosures than the Jacobi-method if both are started
with the same enclosure [x]°. In our examples we had to perform approximately 50%
steps less, compared with the total step method, if the same stopping criterion was used.
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