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Abstract

The paper establishes a computational enclosure of the solution of a non-
linear complementarity problem r > 0,I{x) > 0.:Ti{z) = 0, where I{x} =
Mz + ®{x) is a so-called almost linear mapping with an H-matrix M with
positive diagonal elements and an increasing diagonal mapping ®. The pro-
cedure also delivers a simple proof for the uniqueness of the solution.
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1 Introduction

Let there be given a (nonlinear) mapping

[:DCR*=R"

We consider the problem of finding a vector & such that

= g
i{z) > 0O (1)
2l{z) = 0

(or to show that no such r exists). This problem is called nonlinear comple-
mentarity problem {NCP} and has many applications. See [6] and [7], for
example. It is easy to show that (1) is equivalent to solving the nonlinear
system of equations

min{z,{{z}} =0. (2)

8
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Verification of solutions for almost linear complementarity problems

If A is a nonsingular diagonal matrix with positive diagonal elements, then
{2} is equivalent to the system

min{r, Al(z)} =0, (3)
which in turn is equivalent to finding a fixed point of the mapping p defined
b«;

p(z) = max{0, r — Al(x)}. (4)
In (2), (3) and (4} the minimum and the maximum are taken component-

wise, respectively.

Let h(x) = « — Al{x). Let the derivative I'{x) exist and denote by I([z]) its
interval arithmetie evaluation for the interval vector [¢]. Assume now that

x* € [z]. Then
R(x*) = h{x) = J(z*, 2} (z" — z) € K'{[z]}{[z] — =

for an arbitrary fived z € [z]. J(z*, ) denotes the Jacobian of  taken

row-wise at some intermediate point. Since

Wizy=TI— Al'(x),

we obtain

Riz*) € h{z)+ K {[z]){[z] — =) (5)
: (5
=z — Allz) + (I - AU{[z])){[z] — =) .
For a real interval [a] = [2.@] we define
0, .a<h
max{0, [e]} = { [0,a], 0€&]q] . (6)
[a] a>0

For an interval vector [a] = ([a;]), max{0, [a]} is defined componentwise. It
helds that
o] € 6] = max{0, [a]} € mex{0, b]}. (7)

Assume now that «* € [z] is a fixed point of p. Then using (5) and (7}, it
follows that
¥ = p{z*) =max{0,z* — Al{z"}}
C max{0,x — Al{z) + (I — Al'{[z])){[=] — =)} (8)
= Tz, [, A),

where = € [z] is arbitrary, but fixed.
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Verification of solutions for almost linear complementarity problems

The following theorem indeed guarantees the existence of a fived point =*
in [{x, [z], A).

Theorem 1  Let [r] be an interval vector and let I'{[z]) denote the interval
arithmetic evaluation of the derivative I'(x). If for some diagonal matrix A
with positive elements in the diagonal and some r € [z]

Iz, 2], &) € [z] (9

holds, then there exists a fixed point 2™ € [x] of the mapping p defined by
{4). By the preceding remarks, #* is also contained in I'(xz, [x]. A).

The proof of theorem 1 has been given in [5].

If (9) holds, we can try to improve the enclosure of ©* hy the following
method

k= [o
fie e T{;c"‘?[:ck}._ .-'_'}..jﬁ[l'k], k=012..., : (10}

where 2% = m([z*]) is the center of [£¥]

Note that in this iterative method we keep A and {[z]} = '{[=%]}, which
are used in the definition of I', fixed. See, however, remark 2, after the proof
of thecrem 2 belaw and the numerical examples.

It is easy to show that if [2%] contains a fixed point x* of p, then all iterates
contain r*, and therefore, that (10) is well defined and is converging to an
interval vector [z*] which contains all fixed points of p contained in [z°]. See
theorem 2, below.

Given the problem (1}, which means, given the mapping /, it remains the
question of how to choose A and to find an interval vector [x] for which
{9} holds. Furthermore, given [x] and assuming that (9) holds, under which
conditions will {10) converge to an interval vector with diameter equal to
the zero vector? In this case the limit is a solution of {1} and there exists
no other solution of (1) in [r]. In [5] these questions have been discussed for
the special case that [ is a so-called affine mapping

l{r)=Mx+yq, {11]
where the square matrix A/ € R®*™ and the vector ¢ € R® are given. If {
has the form (11}, then {1) is called linear complementarity problem (LCP)
in the literature. The purpose of this paper is to extend the results from [5]
to so-called almost linear mappings I. See [13].
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A mapping [ : D C B® — R” is called almost linear if [ can be written in

the form .
lz) = Mz + ®{x), (12)

where M is areal matrix and ® is a diagonal mapping. A nonlinear mapping
$: D CR* — K" is diagonal if, for ¢ = 1,2,...,n, the i-ih component p;
is a function of only the i-th variable z;.

If I is an almost linear mapping with an increasing mapping ¢ and an H-
matrix A/ with positive diagonal elements, we will show that {10) is always
convergent to a solution of (1) if we start with an interval vector [£7] : = [z]
for which (9) holds. We can construct such an [z] by solving a linear system
of equations. Finally, we give a simple proof that {1) has a unique solution
under our assumptions.

Finding an interval vector [r] which contains a solution of a given prob-
lem is usually called verification of a solution. In this sense theorem 1 is a
verification result for solutions of the (NCP). Diifferent approaches for the
verification of solutions of complementarity problems have been discussed
in [1] and [3]. Since no special assumptions concerning the mapping ! have
heen made in these papers, the verification procedures are much more com-
plex than those which we will derive for almost linear mappings. Finally,
we mention that in [4], [14] and [15] the case was considered, that the given
(LCP) has interval data.

2  Preliminaries and Notation

Subsequently some basic facts from interval analysis are used. See [2], [9]
or [12], for example. We denocte by a,b, ... real numbers and real vectors
a = (a;),b = (k),... . respectively. Compact intervals of real nnmbers
are denoted by [a] = [a,@].[5] = [B.B].... . Similarly [a] = ([ad]). [b] =
{[B:]}. ... denote vectors with interval components. Occasionally we write
an interval vector as [a] = [a, @], where for [¢] = {[a;]} the real vector a has
the lower bounds of the [a;] as its components and analogously for @. [4] =
{lei]), [B] = ([bi5]);- .. , denote interval matrices. Similarly as for interval

vectors, these are sometimes written as [4] = [A. 4], [B] = [B,B].... . For

an interval [a] = [a,@] we define the absolute value [[2]| by
]| = max{|al,|al}. | (13)
Similarly

dfe]) =a—a (14)
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denotes the diameter of []. If the intersection of two intervals is not empty

then
di[=] N [x]) < di[z]). (15)
difz] N [g]) < (fs]) (16)
and therefore
difz] N [g]} < m‘u{r’g[ )3, d([y]3}- (17)

For interval vectors and interval matrices the absolute value and the diam-
eter are defined via the components. If we use the componentwise partial
ordering then {15}, {16} and (17) hold analogously.

For completeness we recall that a mapping f : IR® — " is called monotone
{or increasing, or isotone) if from = < y it follows that f(z) < f(y), where
we use the componentwise defined partial ordering in E".

A real matrix A = D — B, where D denotes the diagonal part, is called an
M(inkowski)-matrix if it is nonsingular with B > 0 and A™! > 0. The diag-
onal elements of an M-matrix are positive. If A = D'— B is an M-matrix and
if D is a nonnegative diagonal matrix, then A = A+ D is also an M-matrix.
See [13] and [16].

A real (or complex) matrix 4 = D — B is called an H{adamard}-matrix if
the so-called comparison matrix

i e — |D|-—|B|

is an M-matrix. The diagonal elements of an H-matrix are different from
Zero.
Given a matrix 4, we call a splitting

A=R-

of A regular, if $ > 0, R is nensingular and R~ > 0. See [13] and [16].
Assume that A = R — S is a regular splitting of A. Then p(R71S) < 1 (p
denotes the spectral radius), iff A is nonsingular and A7 > 0. See [13] and
[16].

3 Results

Given (1), where ! is assumed to be almost linear. Let M be an H-matrix
with positive diagonal elements. We split A into

M=D-B,
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where D denotes the diagonal part and —B the off-diagonal part of A,
respectively. If ¢ is differentiable, then

Uir) =M+ &(z). (18)

Furthermore, assuming that © = {y;} is monotone, this is equivalent to

w54 =1,2....,n, being monotone. Let [z] = {[;]) be an interval vector. If
the derivative @' of ® exists and if @’ has an interval arithmetic evaluation
®'([x]} for [z], then ®{[z]] is a diagonal interval matrix. We use the notation

¥([2)) : = [8}, B (19)

] and P} are real diagenal matrices with ¢} < ®5. Since ® is monotone by
assumption, we can assume ®° > 0 subsequently without loss of generality.

pt E (I,]_ - q i o J
The interval arithmetic evaluation of I can be written as

V(le]) = AL + [}, T4, (20)

We define the diagonal matrix

,_
]
[y

f —

A:=(D+ &)= (D+|¥ ()™

and consider the iteration method (10} under the assumption (9}.

Theorem 2  Consider the problem (1) where [ is an almost linear map-
ping with an H-matrix A/ = D — B with positive diagonal elements in the
diagonal part D. The mapping ¢ is assumed to be increasing. Furthermore
suppose that the derivative ' exists and that it has an interval arithmetic
evaluation ®([x]j. If there exists an interval vector [z] for which (9} holds,
where A is defined by (21), then (1) has a solution z* € I'{x, [z], A) C [x].
The method (10) is well-defined, all iterates [«] contain the solution x* of
(1) and limy_ . [z*] = z*.

Proof 1If (9) holds, then by theorem 1, there exists a solution z* of (1)
which is contained in T'(x, [¢"), A}, and therefore &* € [¢1], where [¢!] is
defined by (10). By the remarks preceding theorem 1 it follows that z* &
[z, [£!], A) and therefore that

t e T, 'L, A n [z'] =: .

By mathematical induction we have r* £ [,rk], k > 0, and therefore the
method {10) is well-defined. Consider now the diameters of the sequence
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="}
A1) < d(T(a%, 4. A)) “
< d{z* - Al{z*) 4+ (T - AF({[*])([=*] - =)

d((I — AU = M)
|1 — AL([=*])]d ([24))
=A@ = LR
(D + &)™ (D + &, — D+ B — [#7, 4]} d{[="])
= |(D+ P52 ([0, 85 — #4] + B)| d([z*])
< (D+®,)7H (@, — @ +|B)di[+¥]). ,

H

{Here we have used the representation {20 of I'{[z*]). Furthermore [0, &% —
@] denotes a diagonal interval matrix. The lower bounds of the diagonal
entries are all equal to zero, the upper bounds are equal to the diameters
of the interval arithmetic evaluation ¢;([x;]) of the derivative of ¢;{x;).7 =
i 8 SR

Consider now the real matrix

M=D+@&,—|B|=D+ &, — (d, — &, +|B|)

=R—_5
where

R=D+9®, S=&,—®;+|B|

D is a diagonal matrix with positive diagonal elements. Since @ is increasing
it follows that ®) > 0. Therefore A = (D + ®4)! > 0, and since ®} > &,
we have also § > 0. Therefore the splitting A/ = R — S of M is a regular
splitting. See section 2. Furthermore, since the matrix is by assumption an
H-matrix, it holds that (D —|B|i™! > 0. By the remark in section 2 we also
have M1 = (D 4 &} — |B|)~! > 0. Therefore

p(R1S) = p((D + By~ N(® — ¥} + |B)) < 1.
By mathematical induction we obtain from (22} that
(f“ [E,‘+1]} S (R—-ls};»+1 dl[-ra]\’J

from which it follows that limz_. [_rk] =", gince

O

e [;ck] forall &> 0.

Remark I It is easy to see that limj_..[z"] = & also holds if we only as-

sume the existence of a solution £* € [2)]. (The assumption T'(z", [z"], A) C
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[c9] was only made to gnarantee the existence of a solution x* € [¢"].) O

Remark 2 One could think of computing ®'([x]} for each % and using the
new diagonal matrix in the next iteration step.
Let &'([zF]) = [) & - 5 1] be the interval arithmetic evaluation of $'(x) for
the interval vector [* ]
Let
Mp=D+® ; —|B|=D+®; — (D5, — T1 +|BI)
= Ry — 5%,
where
Rr=D+ (T}é__k » Sk =Py — 8 +IB]
Since by the inclusion monotenicity of interval arithmetic we have ©]; =<
D) jy1, it follows that
M L <M

Furthermore, by the same reasoning ®5 ;14 < @5, and therefore
P31 — Prpgr < Pop — Pk
which implies
Sk41 < 5.
Hence

i Ar—1le
U < -[;+1QI.‘+1 g "‘Ij; -‘:’k'

By the Perron-Frobenius theorem on nonnegative matrices we have
N 1
p(.-“.l* F\'.—I—lS’\‘i‘l ) < p{ hr CPJ‘J
Since o
p{M " Sk)
1+ p(MY.SE)

and since f{r} = /(1 + x) is increasing for = > 0, it follows that

PR Sy) =
P{R;_+1~f£+1’ % F"PL S5p) < 1.

If can easily be seen that the inequality
W[Ik—*_l]* < (R—— 3k+1(4l[' ]}

in the proof of the last theorem ecan be replaced by the estimation

i
a1 < (I R7*Sy) 4=

j=0
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. : : . . . s i . R
where, by the preceding discussion, the spectral radii of the matrices R 5 S5

are decreasing with increasing 5.
It is easy to see that

; b % R
lim p{R;'S;) = p{{R")7S%)
3—1.):: J >

where A[* = D + ®'{x*) — |B]land R* =D+ &'(z%), 5 =|B|. O

In the next theorem we show how to find an interval vector [z], for which
(9} holds. We need the following result, which was proved in [5].

Lemma 1 LetabceR* a<b and c> 0.
Then

max{0, [a, 5]} C [-c.€] ; (23)

it b= 0

1A

For the almost linear mapping {{x) = M+ ®{x} we obtain for r = m{[z]) =
0 (which means [z] = — [I]’

T — Al(z)+ ([ — AM + B, &) (] — 2) =
ﬂ’[f«] d[]

= —AD(0) + |AAT - (M + [, B[~ 2

n T

PRI TR Ay dife])
= —A2(0) + A, - # + B 2D, 4 ) |

By (23] we therefore have

r{o?[_d_(:[;ﬂ_ d{[x }]] apc -l dl

2

[

=
iff
Alel)  de),

—AD{0) + A(P;, — ) + |B|)

which iz equivalent to

; d{|z}) = :
(D+ &, — |B|) '*LI]-’ > —&(0). (24)
(From this inequality we get the proof of the following result.

Theorem 3 Let {{z) = Mux + ®(x) be an almost linear mapping with
an H-matrix with positive diagonal elements. Assume that & is increasing
and P’ has an interval arithmetic evaluation for interval vectors [x] with
[x] = —[z]. Let r be the solution of the linear system

— Bl =,
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where u = {1;) > 0 is defined as follows. Let $(0) = {¢:(0)). Then
u; = max{0, —g;{0}}.
If [z] =a[-r.r],a>1, then

I(0,[z], A) C [1].

Proof 1If ¢;(0) > 0, then »; = 0, and therefore |p;(0)| = w:. If ¢:(0) <0,
then w; = —;{0), and therefore |2:{0}| = w;. From these two remarks it
follows that

8(0)] = u,

and therefore that
—u < P(0) < . (25)

If « £ 0 it follows that
(ff[_;]) = 2ar = '20((9 — |B|:I_1H = 0.
Since
D+ ®, - |B|= D—|B|,

it follows that
(D~ |B)™ 2 (D+2, —[B)™ 20

and therefore that

0+, - 1B)LD — b+ e - 1BYD - 1B)

2
> a(D+ ¥, — |B}(D+ &, — |B|) tu

> auzu > —d{0),

where we have used & > 1 and (25). Because of {24}, the proof is com-
plete if u £ 0. If u = 0. which is equivalent to ®{0) > 0, then we can set

[z] = [0;0] =0. O

If « £ 0 then the proof of the preceding theorem shows that we can choose
d{[z]} arbitrarily large by choosing a large enough. Together with theorem
1 this gives us the proof of the following result in the case u # 0.

Theorem 4 If /() = Mz + ®{x) is an almost linear mapping with an
increasing mapping ¢ and an H-matrix M with positive diagonal elements,
then {1) has a unique solution. g

It remains to be shown that the theorem is also true in the case « = 0, which
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is quivalent to ${0} > 0. In this case (24) holds if we choose r = d{[z]}/2 in

such a manner that
(D+ &) — |B|jr = e >—9{0)
where e = (1....,1)T € BR”. If we solve
(D—|Bljr=e

and set [x] = a[—r r].a > 1, then we see as in the case u # 0, that (1) has
a unique solution.

Remark 3 The uniqueness statement of theorem 4 is not new. It is con-
tained as a special case in [11]. See also [10].

4 Numerical Experiments

We consider examples
lix) =Mz + ®(x)
where M is an H-matrix with positive diagonal elements and an inereasing
diagonal mapping ® = (y;). Let Al = D — B where D denotes the diagonal
part and —B the off diagonal part of M. According to theorem 3 the interval
vector
1]
[0 = [~ 7],
where 7 is the solution of the linear system

(D — |Bjr = max{0, —®{0)} (26)

contains the solution z* of problem (1). In all numerical examples we
have computed 7 (and therefore [;r:u]) by solving (26). By the definition
of T{0, ["]. A) == [11.72], (see (8} and (6)), its lower bound is nonnegative,
v1 = 0, and therefore, «* € T'(0,[z%), A} C [0,7]. Hence, instead of [—r,7]
we can use [z] = [0, 7] and, according to remark 1, following the proof of
theorem 2, the convergence of the iterative method (10) is guaranteed.

In our numerical examples we compare the original method (10 for [z%] =
[0, ¥] with two additional medifications of (10). In the original method we
compute the diagonal matrix [®], D3] for [z%] and this matrix is kept fixed
for all £ in order to save work. Therefore we have for all £ > 0

A=(D+®),

U = M + [0, 94,

and (10) reads
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(I) [£*+1] = T(e®, [, A) N [z%], &k = 0,1,2... .

In the first modification we only improve the upper bound &5, which means

that we use the enclosure [®), ®5,]. where &}, is an upper bound of ®* on
ey - hF -

the interval [z*]. Therefore, we have

Ap=(D+®)7,

U([*)) = M +[®, 844,

and the modified method reads
(I e F] =Tk 8 i 6% £=0.1.2.. ..

In the second medification we also improve the lower bound @] in each step.
Therefore, we have

Ap=(D+®5,)7",
f"g[_-z;;"]) =M + [(I}!l,f\‘? ‘I)f?k] s

and the modified method can again be written as
(11D} fek+l] = Teek, [29 A 5] k=082 .

We test the methods {I) - (III} for three examples with the above imple-
mentation details, via Matlab 6.5 on a PC. The methods will not terminate
until the radius r* of the computed interval is less than ¢ componentwise,
or the number of iterations is over 20000. The experiments are performed
for the choices ¢ = le — 5 and 1e — 10. Numerical results reported are as

follows:

N the number of iterations;
s s

As: I 111'111{;5};, Mz + ‘I‘-‘{;L:kj} lleses

cpu: the cpu time(seconds)} needed for the iteration.

Example 1 Let c € B® be constant, ®(z) = (1,72, -, e““‘")T + ¢,

B =]

A-f:% o s ETmEE
0= Al —'I
-1 H
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where h =1/{n +1),

Set z* ={0,1,0,1,---,1)7 € B® and choose ¢ = fc-g}T £ B" asin [3):

&, =

(Mzx*); +e%, if x7 >
(Mx*); + €5 — &, otherwi

where & is a random nonnegative number. The corresponding problem (1]
is the result of the application of centered five points difference method to
the equilibrium problem given in [8]. We generate the nonnegative random
mimbers in [0,1]. The matrix M is an H-matrix with positive diagonal
elements. ¢ is a monotone diagonal mapping.

By the definition of ®{z) we can set @] = I, &}, = diag(e”™), where r = (r;)
is the solution of {26).

Table A for example 1 (¢ = 1e —
T N 51 52 cpu
(L 21 1.7479e-007 4.9116e-005  4.7000e-002
g {II) 20 3.2243e-007 8.3099e-005  4.7000e-002
(III} 19 9.5806e-006 3.8612¢-003  3.1000e-002
(I) 64  3.7588e-(G06 1 01536 002 2.8100e-001

i

25 | (I 63 4.9967e-006 2.2765e-003 2.9700e-001
(III} 62 4.2047e-006 1.8347e-003  2.9700e-001

i 83 B.6689e-006 2.3886e-002  5.1600e-001

36 | (II) 87 6.5721e-006 1.7844e-002 6.2500e-001
(IIT) 87 6.2550e-006 1.6929¢-002  6.2500e-001

(I} 163 7.5861e-006 6.0866e-002 2.2660e+000

64 | (II) 161 7.8401e-006 6.2421e-002 2.9370e+000
(ITI} 161 7.5784e-006 6.0752e-002 2.9350e+000

(I} 278 7.0333e-006 1.4841e-001  6.5940e4000

100 | (II) 259  6.4748e-006 1.3299e-001  9.2810e+000
(III} 259 6.3179e-006 1.2912e-001  9.2970e+000
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Table B for example 1 (¢ = 1le — 10}

n N 3y da cpu
(I} 23 4.3838e-011 6.6316e-009  4.7000e-002

9 (I) 22 5.8G97e-012 3.7483e-010  6.3000e-002
(III} 20 1.2415e-012 5.6843e-014  3.1000e-002
(I} 69 2.0216e-G11 5.1912e¢-0068  2.9700e-001
25 | (II) 66 5.0349%-013 4.5475e-013  3.1200s001
1

2

2

1

7

(IIT} 65 2.2204e-015 5.0022¢-012  2.9700e-001
(I] 102 6.2330e-011 1.8679e-007 5.9400e-001
9348e 011

7046e-007  7.3400e-001

36 | () 101 :
5478e-007  7.3500e-001

S
(I} 101 §.3784e-011
(I 179 5.1870e-011
64 | (I 176 7.8307e.011
(IT) 175 7.5263e-011 6.
(I, 298 7.5705e-011 1.
100 | (I} 275 S$.0302e011 1.

(I} 275 7.6904e-011 1.

T094e-007  2.4370e4000
0722e-007  3.2190e+000
5269e-007  3.2810e+000
7902e-006 7.0

T890e-006  9.82 _
7322e-006  9.8530e+000

Example 2 Let

1 2 2 2
0.1 2 2
M=1D0 1 € Rmx®
o6 --- 0 1
and let ®(x) = ¢ + s5(x}, where s(z) = (8:{x:)) with s;{x;) = (z: + 1) — 4,
§=12 0 . Furthermore, let z* = = {z)T with

- { 0, ifimod7 =0

i otherwise.

g is chosen such that

i (M) — sz, i imed7=0
L —(Mz*); — s:(x3), otherwise.

M is an H-matrix with positive diagonal elements and ® is a monotone
diagonal mapping. It’s easy to verify that z” is the exact solution of the
problem. By the definition of ® we can set $] = 31, &, = diag(3{r; + 1)),
where r = (r;} is the solution of (26).

Extensive numerical experiments show that, if the row index 7 is bigger than
1/2, the radius of the components of the initial enclosure is very large, which
is mainly due to the fact that the elements of (D — |B|)™! increase strongly
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along with its column index. The larger the dimension of the problem is. the
more obvious the phenomenon is. Studying the case of n = 5, 10, 20, 50, 100,
we list the maxima and the minima of the radii of the components of the

initial enclosure, which are denoted by the abbreviations: rmax and rmin,

respectively.

n 5 10 20 50 100
rmax  [.500Se+04 2.3317e+07 1.0105e4+13 24212428  1.6210e+53
rmin  2.2600e4-02 1.34004-¢03 92800403 1.3270e+05  1.0304e4-06

Table A for example 2 (e = 1e — 5)
iy N o i 52 & p 11

(I) 20000 1.5274e+002 1.5274e+002 2.2350e-+001

5] {H‘] 528 9.7239e-606  0.0000e-000 6.85800e-001
(11T} 190 5.2661e-006 7.0218e-008 2.3400e-001

(I} 20000 2.8545e4005 2.8545e4+005 3.4141e4001

10 (I} 1949 §9.8942e-006 0.0000e-000  3.8120e4000
I - 363 2.6325e-007  2.753Ge-009  7.0300e-001

(I} 20000 1.2371e+4+011 1.2371e+4+011 5.9594e+4001

20 (II) 9246 9.9713e-006  0.0000e-000  3.3547e+4001
(I} 668 1.9975e-007  2.0453e-009  3.2660e+4-000

I 20000 2.9641e+026 2.9641e4026 1.6347e4+002

50 (IT) 20000 4.0363e+001 4.0010e+001 2.1833e+002
(ITI} 2594  5.1084e-007  1.1155e-009  3.4812e+0G01

(I} 20000 1.9845e+051 1.9845e4+051 4.7777e+002

166 | (II) 20000 9.5978e+001 9.5007e+001 7.3158e+002
(III) 9630 3.8565e-007  B.2764e-010  3.5580e+4-002
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7 N 0 do cpu
(I} 20000 1.8274e4002 1.8274e+002 2.2358e+001
5 { H:l 336 9.6792e-011  0.0000e-000  1.0950e++000
(IIT} 191 5.1196e-011  3.4817e-013  2.3400e-001
(I} 20000 2.8545e+005 2.8545e+005 3.4141e4-001
10 | (II) 2990  9.9249¢-011  0.0000e-000 5 Qi‘%(le—mﬁ{}
(III} 364  1.2795e-013  1.4211e-014  7.0300e-001
(I} 20000 1.2371e+011 1.2371e+011 5.9594e+4001
20 | {II} 20000 4.4928e-010  0.0000e-GG0  7.1218e+001
(IIT} 669  7.3330e-014  5.6843e-014  3.2820e+000
(I} 20000 2.0641e+026 2.0641e+026 1.6347e+C02
50 | (II) 20000 4.0368e+001 4.0010e+001  2.1833e-+002
(III} 2595 4.8178e-013  0.0000e-000  3.4828e+001
(It 20000 1.9845e4+051 1.9845e+4+051 4.7777e+002
160 | (II} 20000 9.5978e+001 9.5007e+4+001 7.3153e+002
(I1I) 9631 2.7480e013  0.0000e-000  3.5583e+002

Notice in the above data that at the end of the iteration of method {III},

one more iteration sharpens the enclosure to a surprising degree. Studyving

the case n = 5 that after 190 iterations of method (III) an enclosure with

the radius 719 = (5.2661e — 6,0,0,0,0)7 is obtained, and we record the
i 1903 ') ] R

matrix AM%N (B 3 100 — 1 100) =

9.7219% — 6 1.5385e—1 1.5385e—1 1.5385¢—1 1.535he—1
0 ] 7.1420¢ — 2 7.1428¢ — 2 7.1429& — 2
= 0 : 1] 0 4.0816e — 2 4.0816e — 2
4] 0 0 { 2.6316e — 2
0 0 0 0 0

It is verified that
AUV (B 4 Bh 105 — B 100)r "™ = (5.1196e — 11,0,0,0,0)7

that is, one more iteration reduces the maximum radius of the enclosure by
a factor of approximately le — 5. The similar phenomenon appears for the
remaining cases.

Example 3a Let g :E xR — R, gz, ¢J—?(u—~iz+1i° B(z) = (wulz:))

with p:(x;) = g{ts, :), t; =i/ (n + 1}.'_ i=1,---,n, and
Z "ol
M= =5 @ T c 2R
SO
-1 2
-226-
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The function {{x} = Mz + $(x) is obtained via discretizing a two-point
boundary value problem, see [13]. I{z] is an almost linear mapping with
an Homatrix M and an increasing diagonal mapping ®. In the numerical
experiments the phenomenon, similar to the example 2, is observed. We
also list the maxima and the minima of the radii of the components of the
initial enclesure, for the cases n = 5, 10, 20, 50,100.

n 5 10 20 ha 100

rmax  1.5508e4-03  6.0306e+05 4.6975e+10 1.1479%e+25 &.7401le+48
rmin  2.540Te+01  3.6648e+01 4.4354e401 4.9874e+01 5.188%e4+01

Table A for example 3a (¢ = le — 5}

n N 51 9 cpu
(I, 20000 5.2385e-.001 3.5397e002 1.6797e+001
{II} 300 9.4733e-006  2.2204e-016  3.1200e-001
{111} 205 8.9808e-006 1 0" 2e-007  2.1900e-001
(I} 20000 3.37538e+000 T58e+4-000  2.4078e+4+001
10| (I) 624  9.7657e-006 2213-19-016 9.0600e-001
3927008 6.0900e-001

(IIT) 426  9.6042e-006
{I) 20000 7.0287e+000 7.0287e+000 3.9782e+001
20 | (II) 1545  9.9252e-006 4409¢-016  3.8750e+-000
(I} 1011  9.8453e-006 0524e-009  2.5620e+000
(I} 20000 3.1985e+001 3.1985e4+001 1.0955e4-002
50 | {(II) 6825  9.9838e-006 5.0654e-016 5.3641e4001
(IIT) 4257  9.9806e-006  1.0134e-010  3.4250e+001
(I} 20000 1.2005e4+002 1.2005e+002 3.4120e+002
100 | (IT) 20000 1.7331e-004 1.1102e-015 5.8323e4002
(IIT) 14932 9.9848e-006 4.1072e-012  4.4539%e+002

o

@@"-thuw

[
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Table B for example 3a (e = 1le — 10)

7 N 91 2 cpu
M) 20000 5.23%e.001  3.5307e-002 1.6797¢+001
5 (1) 427 9.2691e-011  2.2204e-016  4.2200e-G01
{11} 236 R.1467e-011 95988013 2.3400e-001
(I 20000 3 3758e4+000 3.3758e+4+000  2.4078e+001
10 (II) a04 3050e-011 2.2204e-016  1.2970e+000
(I 510 9.37016-011 3.3135e-013 7.5000e-001
(L) 20000 7.0287e+000 T7.0237e+000 3.9782e4-001
24 (:H:] 2350 9.9243e-011 4 .4409e-016  5.8280e+000
(III} 1273  9.6921e-011  3.9693e-014  3.2030e+4000
(I} 20000 3.1980e4+001  3.1985e+001 1.0955e+002
51 {_II] 10994  9.9784e-011 5.0654e-016  8.5297e+001
(HI} HATR 9.9222e-011 1.6015e-015 4.5125=4-001
(1) 20000  1.2005e+4002  1.2005e4002  3.4120e4+002
160 | (I 20000 1.7331e604 1.1102e-015 5.8323e+002
(III} 19671 9.9919e-011 1.1102e-015 5.8147e+002

Notice that the methods (I} - (III} converge slowly for the above problem. In
fact the numerical performance depends not only on the matrix A/ but also

on the mapping ®. We use the spectral radii of the corresponding matrices

u(k) = p((D + ®5)71{| Bl + 5 — ¥1))
v(k) = p((D + @4 )7 (|B| 4+ P} ;. — D))
p(k) = P(1D+‘I’3L}_i'|3|+q’2;_‘i’laf

to explain the convergence rate. We compute the spectral radii for the case
7 =5 ulk) = w(l) = v{l) = p(1) = 9.99921e — 1 where k = 1,2,---, see
Fig.2 at the end of the paper for the decrease of the spectral radn v ul ) and
p{k) wrx.t. k. The spectral radii of the matrices at the points, where the
methods (I) - (III} terminate are reported below.

i D 10 20 50 160

v 9.9992e-1 1 1 1 1

v 9.1318e-1  9.6656e-1 9.8877e-1 9.981%-1 9.9953e-1
p G.876le-1 8.7320e-1 9.5718e-1 9.9132e-1 9.9757e-1

Studying the matrices (D+D5 )" ~Y|B|+®} . — ). i)» with a larger ®5 , and
a smaller ), — & e+ We can get the smaller p(k) = p({D + ®; . '_1f (| B| +
D5 — B k1)), and a more rapid convergence will be expected. The claim
holds also for the method (II).
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Example 3b To demonstrate this, we choose a function ® with a large
derivative ¢! and a small second derivative ¢} for its components ;. Set
Dir) = (3 + 1£HZ])%)T + ¢, where ¢ = ()T
numbers distributed in [0, 1000]. With the same matrix M given in case of
example 3a, we get the following results for the cases 17 = 5,10, 20, 50, 100.

. and ¢g, ¢, -, ¢, are random

Table A for example 3b (e = 1e — 5}

T N o1 iz cpu
(5 37 6.7092e-006 8.4631e-006  4.6000e-002
5 | (I 14 2.6593e-006 4.0522e-007  3.2000e-002
(II 12 5.7832e-006 2.4246e-005 1.5000e-002
gf) BT T.7647e-006  2.2974e-005  1.4100e-001
10 | (I 15 $.1186e-006 1.9215¢-006  4.7000e-002
(I} 14 3.1606e-006 1.4659¢005 4.7000e-002
(I} 121 8.7738e-006 1.3360e-005  6.2500e-001
20 | (I 18 9.7205e-006 7.1337e-007 1.0900e-001
(II 16 8.5548e-006 4.3016e-005  ©.4000e-002
{I) 221 9.1999e-C06 2.8874e-005 4.4680e+000
50 (11} 22 6.333Te-006 3.0242e-006 5.1600s001
(III} 21 4.6540e-006 2.2213e-005  4.8400e-001
([ 444 9.7295c.006 3.4103¢.005 4.0437e+001
100 | {II} 27 2.5037e-006  1.0994e-006 2.9850e+000
(III) 26 1.6306e-006 7.9528e-006 2.8280e+4000

Table B for example 3b (¢ = le — 16}

n N & da cpu
(I 60  S.8300e-011 3.4291e-011  7.8000e-002
b (I} 21 1.8932e-011 2.4158e-013  4.7000e-002
{III}) 18  2.5231e-011 1.0581e-010 3.1000e-002
] 93 7.2673e.011 1.0370e-010 2.1900e-001
10 | (II 22 5.7824e-011 9.7700e-013  7.8000e-002
[:IH} 20 1.3781e-011 6.3873e-011  6.3000e-002
(Tl 194 0.4062e.011 4.1506e.011 1.0000e-+000
20 | (I 25 25342011 4.4764e-013  1.4000e-001
(II) 22 3.0866e-011 1.8796e-010 1.4100e-001
(I} 354 6.2170e-011 1.4666e-010 7.1560e+4-000
50 | (II) 29 4.385Ge-011 2.9292e-012 6.8800e-001
(III; 27  3.2127e-011 1.5333e-010 6.2400e-001
(I 709 §.5834e-011 1.8690e-010 6.4609e4-001
100 | (II) 33 94371e-011 7.6934e-012 3.6580e+000
(III} 31  8.0705e-011  3.9339e-010  3.4060e4+000

The spectral radii of the matrices at the points, where the methods (I} -

(ITT} terminate are also reported:
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7 ] 10 20 50 100

u  6.1461le-1  7.3043e-1 8.6434e-1 9.2532e-1 9.6050e-1
o 1.8019e-1  1.833%e-1 2.0248e-1  2.0248e-1 2.0248e-1
p L1.377le-1 1.5590e-1 1.5984e-1 1.6430e-1 1.6547e-1
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