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Abstract. Richardson splitting applied to a consistent system of linear equations Cx = b with a
singular matrix C yieJds to an iterative method ..1+1 = Axk + b where A has the eigenvalue one. It
is known that each sequence of iterates is convergent to a vector x* = x*(xO)if and onJy if A is
semi-convergent. In order to enclose such vectors we consider the corresponding interval iteration
[X]k+1 = [A][x]k + [b] with p(I[AJI) = I where I[A]I denotes the absolute value 01' the interval matrix
[A]. If I[A]I is irreducible we derive a necessary and sufficient criterion for the existence 01'a limit
[x]* = [x]*([x]o) of each sequence 01' interval iterates. We describe the shape 01'[x]* and give a
connection between the convergence of ([x]k) and the convergence 01'the powers [At of [A].

1. Introduction

Many practical problems finally lead.to systems of linear equations

Cx=b, CEJRIlXIl, bEJRIl. (1.1)

Mostly C is regular and therefore (1.1) is uniquely solvable. Sometimes, however,
C is singular but the system is consistent, i.e., it is solvable. This situation occurs,
e.g., when discretizing a Neumann problem, problems for elastic bodies with free
surfaces or Poisson's equation with periodic boundary conditions. The stationary
distribution vector of a finite homogeneous Markov chain grows out from a singular
system as weIl as sometimes the production vector of a Leontief input-output
economic model. Details can be found in [2], Chapters 7.6, 8.4, 9.4.

Whensolvinglinearsystemsofequations(1.1)theRichardsonsplittingC =[-A
(see the discussion in Sections 3.3 and 3.4 of [15]) leads to the equivalent fixed
point form

x = Ax + b



166 GÖTZ ALEFELD AND GÜNTER MAYER

which is the starting point for the iterative method

Xk+l =Axk + b, k =0,1,... (1.2)

For consistent systems (1.1) it is well-known (cf. [2, Lemma 6.13, p. 198], e.g.)
that each sequence of such iterates converges to some solution x*(xo) of (1.1) if and
only if A is semi-convergent, i.e., if AOO:= lim Ak exists. (By the notation x*(xo)k~oo

we express the fact that the limit x* may depend on the starting vector xo.) This
criterion is certainly fulfilled ifthe spectral radius p(A) is less than one. In this case,
A is called convergent, C is regular, A00= 0 and each sequence of (1.2) has the
same limit which is the unique solution of (1.1). The remaining case which yields
to a convergent sequence (Ak) requires p(A) = 1 with some additional conditions
(cf. Theorem 3.1). In this case, C turns out to be singular, AOOf:.0, the limit of
(xk) exists, but depends on the starting vector xo. It is one of the infinitely many
solutions of the system (1.1) which we assumed to be consistent. It is this singular
situation on which we focus in the present paper. To this end we start with the
interval iteration

[X]k+l = [A][x]k + [b], k =0, 1, ..., (1.3)

where the n x n interval matrix [A]and the corresponding interval vector [b] can
be thought to be enclosures of a given matrix A E ]R1lX1l and a given vector b E ]R1l

or they are used to consider the variety of linear systems

(I - A)x =b, AE[A], bE[b] (1.4)

simultaneously. In Section 2 we define the absolute value I[A]I E ]R1lXIl of [A].
If p(I[A]j) < 1 each matrix C = I - A in (1.4) is regular, and it is known by
O. Mayer's paper [10] that each interval sequence ([x]k) from (1.3) converges to
the same interval vector [x]* which contains all solutions of (1.4). If p(\[A]j) > 1
there maybe singularmatricesin [A],andnothingis knownon theconvergenceof
([x]k) up to now. We will address to this problem in Section 4 for the case that I [A] I

is irreducible extending the result of O. Mayer.
By the continuity of the interval arithmetic it is immediately clear that the limits

[x]* of the convergent sequences ([x]k) are the algebraic solutions of the interval
system

[x] = [A][x] + [b]. (1.5)

These solutions were completely studied in [9] if I[A]Iis irreducible. A necessary
and sufficient criterion was derived there which guarantees the existence of such
vectors. In addition, their shape was given. Unfortunately, simple examples already
show that ([x]k) does not need to converge if such a solution exists, even if \[A]I
is restricted to be semi-convergent. In Section 4 we show that particular classes
of matrices [A] with semi-convergent absolute value have to be excluded. With
Theorem 4.1 we will prove a necessary and sufficient criterion for the convergence
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of every sequence ([X]k) of (1.3). It implies [b] == b E JRIl in the case p(i[A]j) = 1
which certainly means a restriction when considering linear systems with inexact
input data. The criterion in Theorem 4.1 is nearly the same as it was stated in [6] for
the convergence of the powers [A]k of interval matrices to a non-zero matrix [A]00 .
A certain relation between these two problems is studied at the end of Section 4.

If our criterion of convergence is fulfilled the limit [x]* = [x]*([x]o) of ([X]k)

contains all solutions of linear systems (1.4) which are limits of (1.2) withxo E [x]°.
(The notation [x]*([x]o)expresses again the fact that the limit [x]*may depend on
the starting vector [x]°.) The element relation is a simple consequence of the
incIusion isotonicity ofinterval arithmetic (cf., e.g., [1] or [11]). In this respect [x]*

is an encIosure of the-and in the singular case: of selected-solutions of the linear
systems (1.4).

In passing we note that iterative methods even for rectangular systems have
already been discussed very intensively in [4].

We have organized our paper as folIows: Section 2 contains the notation used
throughout the paper, Section 3 presents auxiliary and known results in order to
understand better the statements and concIusions of the main part of this paper
contained in Section 4.

2. Notations

By I(JR),I(JRIl),I(JRIlXIl)we denote the set of intervals, the set of interval vectors with
n components and the set of n x n interval matrices, respectively. By "interval"
we always mean areal compact intervaI. We write interval quantities in brackets
with the exception of point quantities (i.e., degenerate interval quantities) which we
identify with the element which they contain. Examples are the null matrix 0 and the
identity matrix I. We use the notation [A] = [A,A] = ([ah) =([gij,aij]) E I(JRllXIl)

simultaneously without further reference, and we proceed similarly for the elements
of JR'z,JRIlXIl,I(JR) and I(JRI1).We call. [a] E I(JR) symmetric if [a] = -[a], i.e., if
[a] = [-r, r] with some real number r > O. For intervals [a], [b] we introduce
the midpoint Cl:= (g + a) / 2, the absolute value l[a]1 := max{lgl, lai}, the radius
rad([a]) := (a-g)/2 and the (Hausdorff) distance q([a], [b]) := max{lg-QI, la-bi}.
For interval vectors and interval matrices these quantities are defined entrywise, for

instance I[A]I := (I[a]ijj) E JRIlXll.We assume some familiarity when working with
these definitions and when applying the interval arithmetic

[a] 0 [b] := {a 0 b la E [a], bE [bJ} E I(JR),

[a], [b] E I(JR), 0 E {+, -, .,/}, 0 rI [b] in case of "/".

Note that [a] 0 [b]can be expressed by means ofthe bounds g, a, Q,b ofthe operands
[a]and [b].For details see, e.g., the introductory chapters of [1] or [11].
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For intervals [a], [b], [c], [d] we mention the basic relations

rad([a] :!: [b]) = rad([a])+ rad([b]),

rad([a][b])> I[a]lrad([b]),

q([a] + [c], [b] + [cD = q([a], [bD,

q([a] + [c], [b] + [d]) < q([a], [bD + q([c], [d]),

q([c][a], [c][bD < I[c]Iq([a], [bD.

These relations yield at once to similar relations with vectors and matrices.
Since the multiplication between interval matrices is not associative (cf.

[1, p. 1242], e.g.) we must explain what we mean by the k-th power of an interval
matrix. Following [5] and [6] we define

[A]O:= I, [A]k+l := [A]k . [A], k = 0,1, ...

and

O[A]:= I, k+l [A] := [A] . k[A], k = 0,1,...

It is shown in [5] that[A]3 can differfrom 3[A]. If lim [A]k exists (with respectto the
k->oo

Hausdorffdistanceq) then we write [A]OOforthis limit, andAoo if[A] == A E JRI1XI1.

As usual we call the matrix A E JRI1XI1non-negative if aij > 0 for i,j = 1, ...,n,
writing A > 0 in this case. By A > 0 we denote non-negative matrices whose
entries all are positive. We call them positive. ForA, B E JRI1XI1 the inequality A < B
means B - A > 0, and A > Bis equivalent to B < A. For vectors we apply these
definitions analogously.

According to the Theorem of Perron and Frobenius for irreducible non-negative
matrices A the spectral radius p(A) is a simple eigenvalue of A, and there are two
positive eigenvectors v,w such that

Av =p(A)v, WTA =p(A)wT, wT v =1 (2.1)

hold (see [14], e.g.). We call such vectors (right and left, respectively) Perron vectors
of A. In our paper we will use v, w exdusively for such vectors. Note that we do

. 11 11

not require the normalization L Vi = 1 or L Wi = 1 as was done in [3, p. 497] in
i=1 i=1

order to make Perron vectors unique. In the sequel we denote by span {w} the linear
space spanned by w, and by (span {w}).1 its orthogonal complement.

In matrix theory one often divides non-negative irreducible matrices A into

two dasses according to the number h of eigenvalues Aj, j = 0, ..., h - 1, with
IAI = p(A): The elements of the first dass are called primitive matrices. They are
definedby A > 0, A irreducible,h =1. Here the theoryof Perronand Frobenius
yields to Ao=Ah -1 =p(A) which is a simple eigenvalue of A. The elements of the
second dass are called cydic matrices. They are defined by A > 0, A irreducible,

h > 1. Here the theory guarantees Aj =p(A) e t .21Ci, j = 0, 1, ..., h - 1 where these
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eigenvalues are again simple eigenvalues. The number h > 1 is called the index of
the cyclic matrix A. Cyclic matrices A of index h can be brought into the so-called
cyclic normal form

0 AI2 0 0
0 0 A23 0

0
0

PApT = (2.2)
0 0 ... 0 Ah-2,h-1 0
0 0 ... 0 0 Ah-I,h

Ah, , 0 ... 0 0 0

by means of some appropriate permutation matrix P. This shows that Ak > 0 can
never occur for cyclic matrices in contrast to primitive ones for which there is a
smallest integer ko (the so-called primitivity index) such that Ak > 0 holds for all
k > ko =ko(A). (See [2] or [14], e.g.)

LetA E ]RIlXIl, and let ko be the smallest integer such that rank(Ak+l) =rank(Ak).

This integer ko is called the index of A. It should not be confused with the index
of a cyclic matrix. As in [2, Definition 4.10, p. 118], we define the Drazin inverse
ADE ]RIlXIl of a matrixA of indexkoas that generalizedinverseX which satisfies
the three conditions

XAX =X, AX =XA, AkO =XAko+'.

Since the concept of Drazin inverse is not so widespread we shortly recall some of
its basic properties. One can show that ]R/1 is the direct sum of the column space
R(Ako) of Ako and the null space N(Ako) of this matrix, i.e., ]R1l = R(AkO) EB N(Ako).
SinceAD Ais the projector on R(AkO)along N(Ako) (cf. [2, p. 118]) the Drazin inverse
is the unique matrix given by

D

{

Y' if Ay =
.

X, x,y, E R(Ako), Y - YI E N(Ako)
A x=

0 if Akox = 0,
(2.3)

(cf. [2, p. 197], with obvious corrections). Note that in the case x E R(A/q)) one

can always choose the solution y in (2.3) such that y E R(A/q)), i.e., Y =YI. Let the
Jordan canonical form J of A =SJS-1 be represented by

J:=(~ f),
where10 and Jn respectively, are square block diagonal matrices whose diagonal
blocks are just the singular Jordan blocks of J, and the non-singular ones, respec-
tively. If A is non-singular then Jo is missing; if A has zero as the only eigenvalue
then Jr is missing.The index koof A is given by the number of columns of the largest
JordanblockbelongingtoJ0, and the Drazin inverseADof A can be expressed as

D (
0 0

) -I

A = S 0 (1r)-1 S .
(2.4 )
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Hence A D =A -I if A is non-singular.
By D = diag( 0"1,..., O"n)E jRllxn we denote the diagonal matrix whose diag-

onal entries are 0"1, ..., O"n. If IDI = I holds then we calI D E jRnxll a signature
matrix. Note that D-1 = D for such matrices. We finally mention the vector
e =(1, ..., l)T E ]R1l.

3. Known Results

In this section we cite some known results which are necessary forthe understanding
of Section 4. We start with some classical results on semi-convergent matrices A
(cf. [2], [3]).

THEOREM 3.1 (Cf. [2], p. 152). The matrix A E jRllxn is semi-convergentif and
only if thefollowing conditions hold:

(i) p(A) < 1.
(ii) lf p(A) = 1 and if I\., is an eigenvalue of A with 11\.,I = 1 then I\.,= 1 and every

Jordan block associated with I\.,= 1 is of size 1 x 1.

THEOREM 3.2 (Cf. [3],8.2.11, p. 500 or [6], Lemma 3). Let A E jRllxnbe semi-
convergent. Then Aoo =0 if and only if p(A) < 1. lf Ais, in addition, irreducible
and nonnegative with p(A) = 1 then

AOO = vwT , v, w as in (2. 1). (3.1)

THEOREM 3.3 (Cf. [2], Lemma 6.13, p. 198, with obvious corrections). Let( 1.1)
be consistent. Then each sequence (xk) of iterates defined by (1.2) is convergent
if and only if A is semi-convergent. The limit is independent of xO if and only if
p(A) < 1.In any case this limit x* is a solution of (1.1). By means of Drazin inverses
it can be expressed as

x* =(/ - A)Db + {I - (/ - A)(/ - A)D}xO. (3.2)

Now we restate O. Mayer's result mentioned in Section 1.

THEOREM 3.4 (Cf. [10] or [1], pp. 143 ff). Forevery starting vector [x]oE I(]RIl)
the sequence ([x]k) of iterates defined by (1.3) is convergent to the same vector
[x]* E I(]Rn) if and only if p(I[A]1) < 1. In this case [x]* contains the solution set

S := {x E jRll I (/ - A)x =b, A E [A], b E [bJ) (3.3)

and is the unique solution of (1.5) .

If p(I[A]I) 2: 1 things change. This can be 'seen from the folIowing simple
example.
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EXAMPLE 3.1. Consider the iteration

[x] k+I = [a][ x]k , k =0,1, ...,

where [a] E I(JR), i.e., [A] = [a] in (1.3). Note that if [a] ~ 0 then l[a]1 ~0, hence

the I x 1 matrix l[a]1is irreducible by definition.

(a) If l[a]1> 1eachsequenceofiterates is divergentfor [x]o ~ o.Thiscanbeseen
from the iterates xk+ I = {ixk, k =0, 1, ..., with ä E[a], läl > 1, 0 ~xo E [x]°.
We obtain xk E [x]k and lim /[x]kl > lim Ixkl= 00.k ---> 00 k ---> 00

(b) If [a] = [0, 1] we get

{

[x]o, if 0 E [x]o

}

[x]*= [x]k= [O,xo], if 0 < !o ,

[!o,O], if xo ::; 0

i.e., we obtain convergence to [x]*= [x]*([x]o)for each sequence of iterates.

(c) If [a] = [-1,0] and [x]o = [-1,0] we see at once that [xfk+I = [0,1] and
[xfk = [-1,0] hold whence ([x]k) cannot be convergent in this case. If one
starts with [x]o =[-v, v], v >0, then [x]* = [x]k =[x]o,k =0, 1, ..., since now
the starting vectors are exactly the solutions of the equation [x] = [a][x].

(d) If[a] =[-1, l]weget[x]* =[x]k =l[x]oH-l, 1],k = 1,2, ...,i.e.,convergence
to [x]*= [x]*([x]o)is guaranteed for each sequence of iterates. Note that the
iterates of (c) are contained in the corresponding iterates of (d) if one starts in
both cases with the same interval [x]o.Thusthe iteratesin (c)are boundedbut,
as we already saw, they are not necessarily convergent. The bounds depend
on [x]o.

k = 1,2, ...,

It will turn out in Section 4 that Example 3.1 is typical for the situation in the
case p(I[A]I) > 1. Theorem 3.4 lets expect that Theorem 3.3 remains true if one
replaces p(A) by p(/[A]I) when dealing with (1.3) instead of (1.2). Example 3.1(c)
showsthat this is not true.Notethat in (1.3)thestartingvector[x]o is allowedto be
an interval vector. This initiates the transition from p(A) to p(I[A]!)even if [A], [b]
are degenerate.

By the continuity ofthe interval arithmetic the limit of each convergent sequence
([x]k)of iterates of (1.3) is a solution of (1.5).Therefore it is natural to study all solu-
tionsof(1.5) first.ForirreducibleabsolutevaluesI[A]I acomplete characterization
was given in [9]. In view of Section 4 we repeat the main result.

THEOREM 3.5. Let I[A]I be irreducible with p(j[A]I) = 1, choose any Perron vector

v > 0 of I[A]I.Denote by Msymthe set of all indicesfor which the columns of [A]
contain at least one non-degenerate symmetrie entry. Construct [B] E I(JRIlXIl)from
[A]by replacing the j-th column of [A]by the j-th column of the identity matrix I

0 0

for allj E Msymand let A E [B] be the unique matrix which satisfies IAI= I[B]I.
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(a) The interval system (1.5) has a solution if and only if [b] is degenerate, i.e.,
[b] == b E ]Rn, and

0

X = Ax + b (3.4)

is solvable. In this case, there is at least one solution Z of (3.4) which satisfies

Zi = ° for all i E Msym. (3.5)

(b) lf[b] is degenerate, i.e., [b] == bE ]R'\ thenfor any solution Zof(3.4) satisfying
(3.5) andfor any real number t > tmin with

tmin :=

{

rad([a]ij) IZjl IZjl

I

.. v

}max 0, IV I . -, - 1 < l, J < n, aij~0, rad([a]ij) ~ ° (3.6)aij Vj Vj .

the interval vector [z]; := Z + tv[-1, 1] is a solution of (1.5).

Conversely, if[z]* is any solution of(1.5) then [b] is degenerate, i.e., [b] == bE

]R'\ and [z]* can be written in the form [z]* = z* + tv[-1,1] where z* solves
(3.4), (3.5) and t satisfies (3.6) with z:=z*.

(c) lf Msym~0, i.e., if there are at least two different matrices A,Ä E [A] with
lAI = IÄI = I[A]I, then (3.4) has at most one solution which satisfies (3.5).

(d) If Msym =0, i.e., ifthere is exactly one matrix A E [A] with lAI = I[A]I, then
0

Ä =A, (3.5) istrivially true and one ofthefollowing mutually excluding cases
occurs:

(i) p(A) < 1, whence (3.4) has a unique solution.

(ii) p(A) = 1 and A ~ DI[A]IDfor every signature matrix D, whence (3.4) has
a unique solution.

(iii) p(A) = 1 and A = DI[A]IDfor some signature matrix D. Here, (3.4) has
no solution if and only if b is not in the range of I - A, i.e., if and only
if b cannot be represented as linear combination of the column vectors of
I - A. Otherwiseit has infinitelymanysolutions.Theyaregivenby

v v* Dz = z + s v, (3.7)

where z* is any fixed particular solution of (3.4) and s is any real number.

(e) lf(1.5) has a solution [z]*thenfor any linear system (1.4) there is at least one
solution which is contained in [z]*.In particular, eachsuch system is consistent.

The following result was proved in [5] (case p(I[A]1)< 1, see also [12]) and [6]
(case p(I[A]i) = 1). Its crucial assumptions are the same as in our main result in
Section 4.

THEOREM 3.6. Let I[A]I be irreducible with rad([A]) ~ O. Then the powers [A]k

are convergent to a matrix [A]00 if and only if the following two conditions hold:

(i) The matrix I[A]Iis semi-convergent.
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(ii) If p(1 [A] j) = 1 and if [A] contains only one matrix Ä with IÄ 1 = 1 [A] I then
Ä f:. - DI[A]IDfor any signature matrix D.

We end this section with an auxiliary resuJt which can also be found in [6].

LEMMA3.1.Let [A]E I(]RIlXIl)and let D E ]RIlXIlbe a regular diagonal matrix or

a permutation matrix. Then D[A]kD-l =(D[A]D-1 )k.

4. New Results

We start our results with two lemmas which will be needed in the proof of OUfmain
resuJt, Theorem 4.1.

LEMMA 4.1. Let ([x]k) be a sequence of iterates defined by (1.3) with limit [x]*.

(a) If[y]* is a solution of(1.5) with [y]* s;;;;[x]o then [y]* c:;;;; [x]*.Ifone replaces
"c:;;;;" by ":J" one gets an analogous result.

(b) If ([y]k) is another sequence of iterates defined by (1.3) and if [y]o s;;;;[x]o

then [y]k s;;;;[x]k for k = 0,1, ... If, in addition, [y]* := lim [y]k exists thenk->oo

lv]* c:;;;; [x]*. If one replaces "c:;;;;"by ":J" one gets an analogous result.

(c) If xo E [x]o and if x* = x*(xo) is the limit of xk+1 =Axk + b for some fixed
A E [A], bE [b], thenx* E [x]*.

Proof The proof of this lemma is immediate using the incIusion monotonicity
and the continuity of the interval arithmetic. 0

LEMMA 4.2. Let I[A]I be irreducible and semi-convergent with p(I[A]j) = 1, let
v > 0 be a fixed Perron vector of !(A]I and let (1.5) have a solution [z]* which,
according to Theorem 3.5, can be represented as [z]* = z* +t*v[ -1,1],0 < t* E IR.
Then [b] == b E ]R1l,and for any sequence ([x]k) of (1.3) the following assertions
hold.

(a) There exists areal nLllnber a = a([x]o) > 0 with lim rad([x]k) =av.
k->oo

(b) There exists areal mllnber ß = ß([x]o)> 0 with lim q([x]k,[z]*)= ßv.
k->oo

(c) There exists areal number y = y([x]o) > 0 with lim lik - z*1 = yv.
k->oo

(d) There is a convergent subsequence of([x]k).If[y]* is its limit then

51*=z*+ yDv, D E ]RIlXIl,IDI =I,
with y as in (c), independent of the particular convergent subsequence.

Proof Let w be a left Perron vector of 1 [A]1 satisfying wTv = 1 and let
{w, w2, .." Wll} be an orthogonal basis of]RIl, Then (span{ w})1- is the space spanned
b {

2 Il
} d . ,T - 1 h { ,2 Il }

'

I b
.

f lfl)1l BY w",., w an, SInce w v-, t e set v, W ,., " W IS a so a aSlS 0 .Il"I... Y
virtueof the existenceof [z]* Theorem 3.5 implies [b]== b E ]R1l.
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(a) Define ak E IR and Sk E IRnby rad([x]k) = akv+sk with sk E (span{w})1-.

Using

rad([x]k+l) =rad([A][x]k + b) =rad([A][x]k) > I[A]lrad([x]k) (4.1)

results in

ak+lv+l+l > akv+ I[A]lsk.

Multiplying from the left by wT yields to

ak+l > ak.

Since we assumed [z]* to be a solution of (1.5) its midpoint z*satisfies (3.4),
(3.5). Therefore, according to Theorem 3.5, the vectors [z]: :=z*+ tv[-1,1]
are also solutions of (1.5) for all sufficiently large t > O. Choose t so large that

[z]: :J [x]oholds. By Lemma 4.1(b) with [y]o := [z]: and ":J" instead of "<;;;;;"
we have

[X]k <;;;;; [z];,

whence

k =0, I, ...

akv + sk =rad([x]k) < rad([z]7} = tv.

Multiplying by wT as above results in

ak < t, k=O,I,...

Hence (ak) is a monotonously increasing sequence which is bounded from
above and which therefore has a limit a. Now we show

lim sk =O.
k->oo

We have

tv > ak+mV + sk+m = rad([x]k+m) > I[A]lkrad([x]m)

= amv + 1[A]lksm. (4.2)

Let k tend to infinity in (4.2). Tben it turns out that the components sf are
bounded so that

s:= (limsuPsf ),
k->oo

~ := (' liminfsf)k-> 00

are vectors in IRn.Moreover,

tv > av + s > av + ~ > amv + j[A]IOOsm= amv + vwTsm = amv,

holds, where we used (3.1). With m + 00 we finally get

tv > av+s > av+~ > av,

hence

(t - a)v > s > ~ > O.
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Assurne Sio > 0 for some index io. Then there is a subsequence (skj) such that

.lim st~ =Sio' By virtue of ~ > 0, Sio > 0 and W > 0 we obtain the contradiction
J-+OO

11

Tk k "" k k 1 k
0 =W S J =WioSi(:+ ~ WIS/ > wiosig - 2WioSil~> 0

1=I
1f: io

for sufficiently large kj. Therefore, 0 > S > ~ > 0, i.e., S =~ =0 holds, whence
lim sk = 0 folIows. This proves (a).

k-+oo

(b) Define ßk E IRand tk E IRnby q([x]k, [z]*) = ßkV + tk with tk E (span{w})..L.
Since [z]* = [AHz]*+ b we obtain analogously to (a)

0 < q([x]k+l, [z]*) < I[A]lq([x]k, [z]*),

0 < ßk+lv + l+1 < ßkV+ I[A]ll,

0 < ßk+I < ßk.

Therefore, (ßk) has a limit ß. We show

lim tk =O.
k-+oo

The steps are analogous to those in (a). We start with

0 < ßk+mV + tk+m =q([x]k+m,[z]*)

< I[A]lkq([x]m, [z]*) = ßmv + I[A]lktm.

Let k tend to infinity in (4.3) and define the vectors

t := (lim sup tf ), t := (lim inftf ).
k-+oo k-+oo

(4.3)

Then

0 <ßv+t< ßv+t < ßmv+ I[A]IOOtm=ßmv+ vwTtm = ßmv,

and m ? 00 leads to

-ßv < t < t < O.

Assume tio < 0 for some index io and consider a subsequence (tkj) such that

.lim tt: =ti . Then we obtain the contradiction
J-+OO 0

11 1
Tk k '""" k k k

0 =W t J =wiotil~+ ~ wlt/ < wiotil~ + 2Wio Iti(~I < 0
1=I
1f:io

for sufficiently large kj, and (b) follows analogously to (a).

(c) From the representation

q([a], [b]) = la - hl + Irad([a]) - rad([b])l, [al, [b] E I(IR)
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(cf. [11, 1.7.1, p. 25]) we get at onee

q([x]k, [z]*) = Ixk - z*1+ Irad([x]k) - rad([z] *)1

whieh implies

lim Ixk - z*I = yv > 0
k ---> 00

using (a), (b) and y:= ß -la - t*l. In partieular,y > 0, wheneeß > la - t*l.

(d) The existence of aconvergent subsequenee follows from (b). If [y]*is its limit
we get from (c)

Iy* - z*1 =yv,

whenee y* - z*= yDv, IDI =I. Note that i.n(c) the limit exists for the eomplete
sequence. Therefore, y is independent of the particular subsequenee which we
used in (d). 0

Now we present our necessary and sufficient condition for the convergence of
all sequenees of iterates defined by (1.3) using the notation of the Drazin inverse
defined in Section 2.

THEOREM 4.1. Let I[A]I be irreducible and let (1.5) have a solution [z]* (which
implies[b]== bE ]R1l in the casep(I[A]!)=1).Theneachsequence([x]k)of(1.3) is
convergent if and only if the following two conditions hold:

(i) The matrix I[A]I is semi-convergent.

(ii) If p(I[A]!) = 1 and if [A] contains only one matrix Ä with IÄI = I[A]I then
Ä f:. - DI[A]ID for any signature matrix D.

In case of convergence the limit [x]* = [x]*([x]o) of ([x]k) is a solution of (1.5). It
contains the set S([x]o) of all solutions of (1.4) which one obtains as limit of the
sequences (xk) of iterates defined by (1.2) with xo E [x]o, i.e.,

S([x]°)

= {x* I x* =(/ - A)Db + {I - (I - A)(/ - A)D}xO,

A E [A], xO E [x]O}

~ [x]*([x]o). (4.4)

Proof. Let v, w be right and left Perron vectors of 1 [A] 1 according to (2.1), respee-
tively. In the ease p(I[A]!) = 1 let [z]* = z*+t*v[-1,1] as in Theorem 3.5 and notify
[b] == bE ]R1lby Lemma 4.2.

'=}'

Let eaeh sequence of iterates from (1.3) be eonvergent. If p(I[A]1) < 1 the
assertions follow immediately. Therefore, two eases are still to be eonsidered.
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Case 1: p(J[A] I) > 1.
Choose [x]o = [-v, v]. Repeated application of(4.1) yields to

rad([x]k) > I[A]lkrad([x]o) =p(i[A]I)kv,

hence the sequence (rad([x]k)) is divergent contradicting the convergence of ([x]k).
Thus Case 1 cannot occur.

Case 2: p(I[A]I) = 1.

First assume I [A]I to be cyclic of index h. Without loss of generality let I [A]I be
in cyclic normal form (2.2). Otherwise use Lemma 3.1 and consider the iteration

p[x]k+1 =(p[A]pT)(p[x]k) + Pb

with an appropriate permutation matrix P such that p[A]pT has this form.
Choose [x]o = [z]*+ el[-I, 1] where el denotes the first columnof I. Then

we get

q([X]k, [z]*) < I[A]lkq([x]o, [z]*) = J[A]lkq(el[-I, 1],0) = I[A]lkel.

For k = 111h+ 1 this implies

0 <q([x]mh+I,[z]*)1< (J[A]lmh+I)11 =0.

For the limit [x]* of ([x]mh+1)mENoand therefore also for ([X]k)mENowe get

[x)7 = [z]7 = (z* +t*v[-I, 1])1.

By virtue of

(4.5)

rad([x]k) > I [A] Ikrad([x]o) = I [A] Ik{rad([z] *) + el } = t*v + I [A] Ik el

we obtain for k =111h

rad([x]mh) ~ t* v + I[A]Il11h el . (4.6)

According to [2], proof of Theorem (2.30) on p. 35 with p =1, the power I[A]lh is
a diagonal block matrix with h primitive diagonal blocks Ci, i = 1, ..., h, for which
p(CJ =p(J[A]l)hholds. By the primitivity of Ci and the Theorem of Perron and
Frobenius A = 1 is the only eigenvalue of Ci such that lAI =p(C). It is a simple
one. The matrices Ci are therefore semi-convergent with lim C;n > O. Taking intom --> 00

account (4.5), (4.6) and 1[A]lmh=diag(C), ..., ChI)we get the contradiction

rad([x]7) = t*vI > lim (t*v+ I[A]lmhel), = t*vl + lim (C;n)]1> t*V].111-->00 m-->oo

Thus I[A]I cannot be cyclic of index h, it must be primitive, hence I[A]I is semi-
convergent, and (i) holds.

In order to prove (ii) we assume that [A] contains exactly one matrix Ä such
that IÄI = I[A]I and Ä = -DI[A]ID with some signature matrix D. We want to
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derive a contradiction. Without loss of generality we may assume Ä =-I[A]I =A.
Otherwise consider the iteration

D[X]k+l =(D[A]D)(D[x]k) + Db, k = 0, 1,... (4.7)

and take into account Lemma 3.1. Since Ä is the only matrix satisfying IÄI =I[A]I,
there is areal numbere E (0,1) such that

[A] c [-I[A]I,el[AJI] =[-l,e]I[A]1 =: [B].

Consider the iteration

{y]k+l = [B][y]k + b, k=O,l,...

Choose

[y]O= [x]o := [z* - 17tv, z*+ tv], 17E(e,l)

with t > 0 so large that
v* 0 v*
Z - 17tv< < z + 17fv. (4.8)

Using (3.4) this implies

i = !l=-I[A]I(z*+tv)+b=Äz*-tv+b=z*-tv,
xl < yl = sup([-l,e]I[A]I[x]o+b)i, i= 1,...,n.

Moreover,

sb := -I[a]ijl(zj* -17fVj) = -I[a]ijlzj* + (17- e)tl [a]ijIVj+ etj[aJulvj,

sv := el [a]ijl(zI + tVj) = el[a]ijlzI + etl[a]ijlvj.

By virtue of 17- e > 0 we can choose t > 0 so large that, in addition to (4.8), we
can fulfill

-1 > -2
Sij - Sij' i,j = 1, ...,n,

l.e.,

[y]1 = [B][x]o+ b = [- I[A]I(z* + tv), -1[A]I(z* - 17tv)]+ b

= Äz* + b + tv[-l, 17]=z*+ tv[-1,17] =[z* - tv, z*+ 17tv].

Moreover, we obtain

X2 = y2 = -1[A]I(z* - tv) + b =z* + tv,

!l > i =inf([-l,e]I[A]I[y]l +b)i,

§.b := -1[a]ijl(zI + 17tVj)= -1[a]ijlzI - (17- e)tl[a]ijlvj - etl[a]ijlvj,

§.v := el[a]ijl(z/ - tVj) = el[a]ijlz/ - etl[a]ijlvj-
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By inereasing t onee more, if neeessary, we end up with
1 2S
I!)
" < S"- - -I}' i,j = 1, ...,n,

l.e.,

[X]2 ~ [y]2 = [B][y]1 + b = [- I[A]I(z*+ l1tv),-1[A]I(z* - tv)] + b

= [z* - l1tv,z*+ tv] =[y]o.

One easil y reeognizes

[]k [y]k =
{

[z* - l1tv, z*+ tv], if k is even,
x ~ [z* - tv, z* + l1tv], if k is odd,

with xk =yk if k is even and J.k =yk if k is odd. This results in

X2k = z*+ tv > z*+ 17lv=y2k+l > x2k+1,

henee ([x]k) eannot be eonvergent eontradieting the assumption. This proves (U).

'<=:'

Let (i) and (ii) hold and let ([x]k)be a sequenee defined by (1.3). If p(I[A]I) < 1
then eonvergenee follows from Theorem 3.4. Now let p(I[A]1)= 1. Aeeording to
Lemma 4.2(d) there is a subsequenee ([x]kj)eonverging to some limit [y]*,o. By
virtue of [x]kj+l = [A][x]kj+ b the subsequenee ([x]kj+l)eonverges to some limit
[y]*,1which fulfills

[y]*' I = [A][y]*'o + b. (4.9)

Moreover, eaeh subsequenee ([x]kj+m)eonverges for fixed m E No to some limit
[y]*,m. By Lemma 4.2a) we have

rad([y]*,m) = ,lim rad([x]kj+m) = av,
J~OO ,

0 < a E JR.independent of m, (kj).
(4.10)

Prom Lemma 4.2(c) we obtain

y*,m ::::z* + yD(m)v, ID(m)I = I, 0 < Y E JR. independent of m, (kj). (4.11)

Combining (4.10) and (4.11) results in

[y]*,m = z*+ yD(m)v + av[ -1,1]. (4.12)

ChooseA E [A] with lAI = I[A]I.Use (4.9) and (4.12) with m =1 in order to get

Ay*'o + av[ -1,1] + b =Ay*'o + aAv[-1,1] + b =A[y]*,o + b

}~ [A][y]*'° + b = [y]*' I = z* + yD(l)v + av[ -1, 1].

(4.13)
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Since both sides of (4.13) have the same radius the inclusion can be replaced by
equality. This yields to

A[y]*'O = [A][y] *,0 (4.14 )

and

Ay*'O + b = z*+ yD(I)v. (4.15)

BYvirtue of

Ay*'o + b =Az* + yAD(O)v + b = z* + yAD(O)v,

which is a consequence of (4.11), (3.4), and (3.5), the equality (4.15) leads to

yAD(O)v =yD(I)v. (4.16)

Case 1: y =O.
Here, Lemma 4.2(c) guarantees lim xk =Zkand together with Lemma 4.2(a)

k~oo

we obtain lim [x]k =z*+ av[-I, 1] =: [x]*. Taking this limit in (1.3) reveals that
k~oo

[x]* is a solution of (1.5).

Case 2: y > O.
From (4.16) we get

AD(O)v = D(l)v. (4.17)

Analogously to (4.16) we can prove

yAD(m - I)v =yD(m)v

for arbitrary In E N. Thus we finally obtain

AmD(O)v =D(m)v. (4.18)

Case 2.1: p(A) < 1.
Here, (4.18) implies the contradiction

0 < v = ID(m)vl = JAmD(O)vl ---+0 for In ---+00.

Therefore, Case 2.1 cannot occur for y > O.Hence p(A) < 1 implies y =O.

Case 2.2: p(A) = 1 and Msym f. 0, where Msym denotes the same set of column
indices as in Theorem 3.5.

Since Msym f. 0 there exist at leasttwo differentmatricesA,Ä E [A]satisfying
lAI = IÄI = I[A]I. According to Theorem 3.5 we have zj = 0 for i E Msym and
Az* + b = Äz* + b = Z*, hence (4.17) can also be proved with Ä instead of A.
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Therefore, (Ä - Ä)D(O)v = D(1)v - D(l)v = O.Let D(O) := diag(aI, ..., an), ai = :t1.

ChooseÄ,Ä suehthat IÄI = IÄI = I[A]I and

{
aij,

äij = a..,-IJ

{
(lij'

äij = aij,

if CJj = 1

if CJj= -1

if CJj= 1

if CJj= - 1

and [a]ij symmetrie,

and [a]ij symmetrie,

and [a]ij symmetrie,

and [a]ij symmetrie.

Then

{

0, if [a]ij not symmetrie,

äij - äij = (~ij - (lij)' ~f CJj: 1 and [a]ij symmet~c,
-(aij - (lij)' If CJj- -1 and [a]ij symmetne.

Sinee Ä ~Ä there is at least one symmetrie entry [a]io,jo~O. This leads to the
eontradiction

0 ={(Ä - Ä)D(O)vho > (aio,jo- f!:.;oJo)Vjo = 2aio,joVjo > O.

Henee Case 2.2 cannot oeeur for r > O.

Case 2.3: p(Ä) = 1 and Msym =0, i.e., Ä is the only matrix in [A] with IÄI =
j[A]I.

Lemma 5 in [6] and the assumption (ii) yield toÄ =DI[A]ID, D E JRl1xn, IDI =I.
Without loss of generality we may assume

Ä = I[A]I, (4.19)

otherwise eonsider (4.7). Sinee the matrix I[A]I is irredueible and semi-eonvergent
by assumption, A =1 is its only eigenvalue satisfying lAI = p(I[A]I). Aeeording to
the Theorem of Perron and Frobenius A = 1 is a simple eigenvalue, hence I[A] I is
primitive and there is an integer p sueh that

.P .(p)
A = (aij ) > O. (4.20)

With D(O) = diag(al,...,an) E JRI1XI1,D(P) = diag(Tl,...,Tn)E JRnxl1, lail= ITi! =1
we get from (4.18) with m = p

v = D(P) ÄP D(O)v = (TiCJjä~»)v.

Together with (4.20) this implies 'riCJj=1for i,j =1,..., n, whenee D(P)=D(O) =aI,
lai = 1. Again from (4.18) we obtain D(m)v=av, i.e., D(m) =aI, m =0, 1, ..., and
from (4.12) the equation

[y]*' m= z* + ayv + av[ -1, 1] =: [y]* (4.21)

folIows. This veetor is a solution of (1.5), Le., it satisfies [A][y]* + b = [y]* as ean
be seen from the next to last equality in (4.13).
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It remains to show that the whole sequence ([x]k) converges to [y]*. To this end
we start with

q([X]kj+I,[y]*)= q([A][x]kj+I-1+b,[A][y]* +b)

< I[A]lq([x]ki+I-I,[y]*) < ... < I[A]11q([x]'9, [y]*).

Since I[A]I is semi-convergent according to (i), there is a matrix K > 0 with
I[AW < K, l =0,1, ..., hence

q([x]kj+l, ly]*) < Kq([x]ki, [y]*) l =0,1,...

Choosing j sufficiently large makes the right-hand side arbitrarily small indepen-
dently of l. Hence

lim q([x]k, [y]*) =O.
k-+oo

The last assertion ofTheorem 4.1 follows immediately from the incIusion isotonicity
of the interval arithmetic and from Theorem 3.3. 0

Remark 4.1.

(a) The cases y = 0 and y > 0 yield to the cases in Theorem 3.5 in which
(3.4), (3.5) have exactly one solution (cf. Theorem 3.5(e) and (d)(i)), and
infinitely many ones (cf. Theorem 3.5(d)(iii)), respectively. The case mentioned
in Theorem 3.5(d)(ii) is excIuded by the condition (ii) in Theorem 4.1.

By virtue ofthe assumption (4.19) the equation (3.7) occurs only with D =1 in
the proof above. In order to recover this equation let s =GY in (4.21). See also
Theorem 4.2 in this respect.

(b) If I[A]I is not semi-convergent, then according to Theorem 4.1 not every
sequence of iterates can be convergent. Nevertheless (1.5) can have solutions.
This can be seen from Example 3.1(e) or from the iteration

k+l k
[x] = [A][x] , k =0, 1, .. " (4.22)

with the matrix [A] = ([O~ 1] [001]) whose absolute value is cyclic of
index 2. The eigenvalues of I [A]I are therefore::!::l, hence this matrix is not semi-
convergent, but the system [x] = [A][x]has the solutions [x]* =se + te[-1, 1],
s E IR, Isl < t E IR,as can be seen from Theorem 3.5. Starting (1.3) with
[x]o= [x]* yields trivially to convergent sequences.

THEOREM 4.2. Let the assumptions of Theorem 4.1 hold including (i) and (ii),
let p(I[A]I) = 1 and let ([x]k) be a sequenee of (1.3) with limit [x]*. Choose
any Perron veetors v, w of I[A]Iaeeording to (2.1) and let [z]* be defined as in
Theorem 4.1. Denote by [Z]~in = z*+ tminv[-1, 1] the solution of (1.5) with the

same midpoint as [z]* and with tmin > 0 from (3.6) applied to Z = z*. Denote by
[z]~ax = z*+ tmax v[ - 1, 1], tmax > 0, the smallest solution with midpoint z* whieh

eontains [x]o.
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(a) If [A] contains exactly one matrix Ä with IÄI = I[A]I and if Ä =DI[A]IDfor
some signature matrix D then [x]* can be represented as

[x]*= sDv+z* +tv[-I, 1]

with s = s(v, [x]o) E JR,t = t(s, v, [x]o) > 0, and we obtain [x]* ~ [z]~ax.

(b) If [A] does not fuljill the two additional assumptions of (a) then [x]* can be
represented as

(4.23)

[x]* = z* +tv[-I, 1]

with t = t(v, [x]o) > 0, and we obtain

[Z]~in ~ [x]* ~ [z]~ax'

In particular,

(4.24)

(4.25)

[x]* =[Z]~in whenever [x]o~ [Z]~in-

(c) We have Isl + t < tmax in case (a) and tmin < t < tmaxin case (b).

(d) If
k . k

[A][x] =A[x] , k =ko,ko + 1, ... (4.26)

for some Ä E [A] with IÄI = I[A]Iand if rad([x]k) = akV+ sk, sk E (span{w} )1-,

as in the proof of Lemma 4.2( a) then

t = ab k =ko,ko + 1, ... (4.27)

In particular, [x]* = z*+ akov[-I, 1] in case (b). (Note that z*is the unique
solution of(3.4) and (3.5) in this case.)

Proof (a)-(c) are immediate consequences of Lemma 4.1, Theorem 3.5, and
Theorem 4.1. In order to prove (d) use

ak+l v + sk+l = rad([x]k+l) =rad([A][x]k) =rad(Ä[x]k)

= IÄlrad([x]k) ="akv + \Älsk (4.28)

with sk, sk+l E (span {w})1- and multiply (4.28) from the left by wT. This results in
ak+1 = ab k > ko, and (4.27) follows from t = lim ak which is contained in the

k-+oo

proof of Lemma 4.2(a) with a instead of the present t. 0

Remark4.2.Theassumption(4.26)certainlyholdsif one replaces[x]k by the limit
[x]*. This follows from (4.14) with [y]*'o = [x]*.By virtue ofthe continuity ofthe
interval arithmetic one can hope that (4.26) also holds if k is sufficiently large.

If [A][x]k = Ä[x]k holds for some k = ko this relation (4.26) does not nec-
essarily hold, however, for all k > ko. Therefore, (4.26) cannot be weakened in
this respect. This can be seen from the subsequent Example 4.1 starting with
[x]o = o. Here, [A][x]o= 0 = Ä[x]o, but [A][x]I ~Ä[x] 1 = Äb E JR2 since

rad([A] [x] 1) = rad([A]b) ~ O.
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It is an open question, how the (unique) limit [x]* of the sequences ([x]k)
defined by (1.3) looks like if p(i[A]I) < 1. Some progress was made in [7] and [8]
für particular classes of matrices [A]but the general solution is still missing.

It is also open how sand t in (4.23), (4.24) must be chosen for arbitrarily given
[x]o.

The following example illustrates this problem.

EXAMPLE 4.1. Let

[A ] =

(

~ [- ~,O]

)
A =

(

~ a

)
1 1 ' a I I '- - - -
2 2 2 2

I
-- < a < 02 - -, b=(~).

Then Ä := A-\J2 is the only matrix in [A] with IÄI= I[A]I.Since p(I[A]j) =p(IÄI) =
1, p(Ä) = 1/ J2 < 1, every solution of (1.5) has the representation (4.24). With the
notation of Theorem 4.2 we have

tmin =2,
v* (

0

)Z = 2 = Äz* + b, v=(~), (
[- 2,2]

)[Z]~in= [0,4] .

By virtue of

2

(
1 2a

)(/-Aa)-1=1-2a 11 '

1
-- < a < 0

2 - - ,

and

2(1 + 2a) =- 2 + 4 =: - 2 + ß1 - 2a 1 - 2a

the solution set S in (3.3) reads

S = { (/ - Aa) -I b 1 -1 < a ~ 0} ={( - ~ )+ß ( ~) 12 < ß < 4} ,

hence its interval hull OS, i.e., its smallest enclosure by an interval vector, is
given by

0 (
- 2

) (
1

) ([0, 2] )
*

S = 0 + [2,4] 1 = [2,4] ~ [Z]min-

The subset property was already predicted by Theorem 3.5(e). From (4.25) we see

that in our example each limit of (1.3) overestimates S at least as much as [Z]~in'
For (1.3) we chose different starting vectors [x]o and computed several iterates

using Rump's MATLAB toolbox INTLAB (see the INTLAB horne page

http://www.ti3.tu-harburg.de/-rump/intlab/index.html
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or [13]) with the multiplication mode "SharpIVMult". Actually we used MATLAB
Version 6.5 and INTLAB Version 4.1.2. We stopped the iteration (1.3) whenever
the criterion

[it = [i]k-l

was fulfilled for some k = ko, where here and in the sequel the tilde denotes
computed, i.e., rounded quantities. Since by the outward rounding of the machine
interval arithmetic (cf., e.g., [1]) we have [x]k ~ [i]k, k = 0,1, ..., we get

[x]k~ [i]ko, k = ko,ko + 1, ...,

whence

[x]* ~ [i]ko. (4.29)

Without further knowledge on a relation between [x]* and [x]o we cannot, of
course, assessthe qualityof the approximation[i]ko with respectto the true limit
[x]*. Assumingthat [i]kodiffers from [x]*only slightly-say at most one unit
in the last place (here 0.0001) printed out for an interval bound-our numerical
experiments in Table 1 can provide a starting point for further research on the
dependency of tin (4.24) on [x]o. .

The first line below the header of Table 1 shows [x]o = [z]~1in which must be
containedin everylimit [x]*. In the nextline we startwith the degenerateinterval
vector (6,6)T, which is contained in the starting vectors of all subsequent lines.
The smallest solution [z]~axof (1.5) enclosing (6,6)T is given by the starting
vector of the last line with t = tmax = 6. Starting with [x]o = (6,6l yields to
[i]6 =([-3.0000,2.2813], [-0.8750,4.4063])T with q([x]6,[i]6) < 10-4. I.e., [i]6
coincides with the exact iterate

6 ([
73

] [

7 141

] )
T T

[x] = -3'32' -8' 32 =([-3,2.28125],[-0.875,4.40625])

within rounding when rounding as described above. Since 0 E [x]1 we obtain
[A][x]6 =A[x]6 and by virtue of [Z]~in~ [x]6 one gets [Z]~in~ [x]k and 0 E [x]~
for k =6,7,... Therefore, [A][x]k =A[xt, k =6,7, ..., and Theorem 4.2 guarantees

Table 1. Starting vector vs. computed "limit."

starting vector ([x]ol tin (4.24) computed "limit" ([i]kol ko

([ - 2,2], [0,4]) 2 = tmin ([- 2,2], [0,4]) 1

(6,6) 2.6407 ([-2.6407,2.6407], [-0.6407,4.6407]) 111

([4,6], [4, 6]) 2.7501 ([-2.7501,2.7501], [-0.7501,4.7501]) 110

([4,6], [6, 8]) 3.0626 ([- 3.0626,3.0626], [-1.0626,5.0626]) 111

([-6,6], [-6,6]) 6.0001 ([-6.0001,6.0001], [-4.0001,8.0001]) 106

([-6,6], [-4,8]) 6 ([-6,6], [-4,8]) 1
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[x]* =Z*+O{)v[-I, l]with[x]6 =x6+(O{)v+s6)[-I, 1],0{) E 2.6407+[-1,0].10-4,

s6 =0 E (span{w})-L =(span{(0.5,0.5)T})-L. .

While Example 4.1 deals with an interval matrix for which Theorem 3.4 does
not apply and for which [C] = I - [A] is regular our next Example 4.2 is based
on an interval matrix [Al for which [C] =I - [A] is singular whence Theorem 3.4

does not apply either.

EXAMPLE 4.2. Let

[A ] =
(

~ [O'~]

)
A =

(

~ (X

)
I 1 ' all '- - - -
2 2 2 2

I

0 < (X < 2' b=(_~).

ThenA =AI/2 is the only matrix in [A] with lAI = I[A]I.Moreover,A = I[A]I,hence
every solution of (1.5) has the representation (4.23), i.e.,

[x]* =sv+z*+tv[-I, 1], S E JR, t > 0,

where z*satisfies z*=Az*+ band where v is any Perron vector of I[A]I.Hence

v* (
1

)z = -1 ' v=(~)
are possible choices, and

[x] * = s ( ~ ) + ( - ~ ) + t ( ~ ) [-1, 1]

with appropriate s E JR, t > O. The matrix [C] = I - [A] contains the singular

matrix {; ~ ( - t - t ) whose columns are multiples of b. With the same starting
vectors [x]oas in Table 1 and the same stopping criterion as in Example 4.1 we got
the resuIts in Table 2.

Table 2. Starting vector vs. computed "limit."

starting vector ([x]o/ s in (4.23) t in (4.23) computed "limit" ([i]ko/ ko

([- 2,2], [0,4]) I 2 ([0,4], [-2,2]) 2

(6,6) 3.5 2.5 ([2,7], [0, 5]) 61

([4,6], [4,6]) 3.5 2.5 ([2,7], [0, 5]) 60

([4,6], [6,8]) 4 3 ([2,8], [0, 6]) 60

([-6,6], [-6,6]) 0 6 ([-5,7], [-7,5]) 2

([ -6,6], [-4,8]) I 6 ([ -4,8], [-6,6]) 2
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In order to illustrate (4.4) we first remark that the Drazin inverse (I - A)D
coincides with the inverse (I - A) -I whenever this latter inverse exists-see (2.4).

Iterating by

Xk+l =Aaxk + b, k=O,I,...,

thus yields to the unique limit

x' = (!-Aa)-Ib= ( -i -t) -I(-~)

= 2 (~2;) ( - ~ )=(~) (4.30)

for any a E [0, k) . It is a particularity of our example that this limit does not depend
on a. By virtue of the Theorems 3.4 and 4.1 it must be contained in the interval
limit [x]* = [x]*([x]o) of (1.3) for every starting vector [x]o.

1
If a = 2then

(

1 1

)
. 2 2 0 0 -1

Aa=AII2=A= k k =s(o l)S

. -
(

11
)

-1_1
(

1-1
)wlthS - -1 1 ' S -"2 1 1 . Hence

D (
1 0

) -1
(I - Al!2) = S 0 0 S =I - Al /2

(I -Al!2)Db = (-~) =b.

By virtue of Theorem 3.3 and (3.2) the iteration

and

(4.31)

Xk+I =A l!2Xk + b, k =0, 1, ..., (4.32)

is convergent to
* ° D { I D

}
° b A °

x (x ) = (I - Al!2) b + 1-( - Al/2)(I - A1I2) x = + l!2X

= (-:)+U Dxo
as can be seen, e.g., from (4.31) and Af/2 =Al /2. From x*(xo) E [x]*([x]o) for any

xo E [x]o we get

[y]* =b +A1I2[X]Ok [x]*([x]o).
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Denote by 0([y]* ,X*) theinterval huB ofthe two operands, i.e., the sma]]est interval
veetor whieh eontains [y]* and the limit x* = (2,Ol from (4.30). It is obvious
that this interval huB is a subset of [x]* = [x]*([x]o). An easy eaJculation shows

that 0([y]*, x*) eoineides with the eomputed "limit" [i]ko in aB eases of Table 2.
Therefore, by virtue of (4.29), we have

[x]* = [i]ko = D([y]*,x*)

in Table 2. In partieular, this table reports the eorreet limits [x]*.
Note that [y]* is a solution of [x] = A 1/2[X] + band henee a Jimit of (4.32). This

follows from A 1/2b= 0 andfromA I/2(A1/2[X]O)= A f/2[X]Owhieh holds sineeA 1/2
is degenerate and non-negative. But [y]* is generaBy not a solution of (1.5) with
[A], b as given in the present example.

The final part of this seetion is devoted to some eonneetion between the The-
orems 3.6 and 4.1 for whieh the eonditions (i) and (ii) eoineide. We show how

the eonvergenee of ([A]k) in Theorem 3.6 ean be derived from Theorem 4.1 if the

remaining assumptions of Theorem 3.6 hold. To this end we first remark that these
assumptions for [A] hold if and only if they hold for [A]T. Sinee [A]k = (k([A]T»T

and k[A] = (([A]T)k)T it ean be seen at onee that

[A]OO:= lim [A]k exists if and only if OO[A]:= lim k[A] exists.
k --'> 00 k --'>00

(4.33)

Trivially,

[A]OO = (OO([Af») T and OO[A] = (([A]T)oo) T (4.34)

hold. Denote by [a]l the L-th eolumn of [A] and let [x]*([a]l) be the limit of the
iteration

[x]O = [a]l

[x]k+1 = [A][x]k, k = 0, 1,... (4.35)

whieh exists aeeording to Theorem 4.1. (Note that [z]* = 0 is a solution of [x] =

[A][x].) Then [x]f = (k+I[A])il' i = 1, ...,n, henee

lim k[A] = ([x]*([a] \ ..., [x]*([at»)
k --'>00

(4.36)

exists and (4.33) proves the eorresponding part of Theorem 3.6.

Remark4.3. Let the assumptions ofTheorem 3.6 hold, in partieular, let rad ([A]) -:Jo.

(a) If p(I[A]1) < 1 then OO[A]= [A]OO= O. This follows direetJy from (4.34), (4.36)
sinee Theorem 3.4 yields to [x]*([a]l) = O.

(b) If p(I[A]i) = 1 then OO[A]-:J0, [A]OO-:JO. With v, w as in (2.1) this ean

be seen from rad(k[A]) > I[A]lk-1 rad([A]) whieh beeomes rad(OO[A]) >
vwT rad([A]) -:} 0 if k tends to infinity.



ENCLOSING SOLUTIONSOF SINGULAR INTERVALSYSTEMS ITERATIVELY 189

(e) Let p(I[A]!) = I, let Msymas in Theorem 3.5 and ehoose A E [A] sueh that
IA I = I [A] I.The representation (4.36) shows that the eolumns of 00 [A] are limits
of (4.35). Therefore, they are solutions of [x] = [A][x].Taking into aeeount
[z]*= 0 and eombining the eases in Theorem 4.2 we get

[x]*([a]/) = sdjv + tlV[-1,1], SI,tl E IR, IDI =I, (4.37)

t[ > 0 sufficiently large, bounded from below by tmin= tmin.[ in (3.6) with
Z=s[Dv. The ease t[ =0 is possible.

If Msymf; 0 or if Msym=0 and p(A) < 1 then aeeording to Theorem 3.5 the
midpoint of a solution of [x] = [A][x] is unique. Therefore it eoineides with
z*= 0 of [z]* =O. Henee s[ =0 in (4.37) for I = I, ...,n, and ooA =0, i.e.,
oo[A]= -(oo[A]). This proves parts of the Corollaries 3-5 in [6].

If Msym = 0 and A = D![A]ID, IDI = I then the first summand in (4.37) eannot
be skipped,D =D, and (3.6) reads

t[ > tmin.[

{

rad([a]ij)
I

. . v...j. ...j.

}= max 0, laijl . Si, s[ 1 < 1,J< n, aij .,...0, rad([a]ij) .,...0 .
If s[ f; 0 for some I then (4.37) implies oo[A]f; - (oo[A]),and tmin.[> 0 follows

from the assumption rad([A]) f; 0 and Msym= 0 whieh guarantee the existenee
of at least one non-symmetrie, non-degenerate entry of [A].

If s[ = 0 for all I then (4.37) yields to oo[A]= vtT[-1, 1] = - (oo[A]) with
0 < t = (tl) E IRn.Without loss of generality we may assume A = I[A]I.From
Aoo= I[A]loo= vwT E OO[A]we get w < t. From [A] k [-8, 1]I[A]1for some
8 E (0, I) we obtain oo[A]k [-8, 1]I[A]loo= [-8, l]vwT, whenee -8w < -t.
This results in the eontradiction w < t < 8w < wand shows that this ease
eannot oeeur.

Thus we have proved the subsequent theorem whose first part ean already be
found as Theorem 4 in [6] for [A]oo.

THEOREM 4.3. Let I[A]Ibe irreducible and semi-convergent with p(I[A]!) = 1,
and let rad([A]) f; O. Then OO[A]f; - (oo[A]) and [A]oof; - [A]OO, respectively, if
and only if the following two conditions are fulfilled:

(i) [A] contains exactly one matrix A with lAI = I[A]I.

(ii) The matrix A in (i) has the representation A = DI[A]ID, where D is some
signature matrix.

In this case OO[A]=DvsT +vtT[ -I, I] and [A]OO= swTD+lwT[ -1,1], respectively,
where v is any fixed right Perronvector,w is any fixed left Perronvector and
s, t, s, I E IRn are appropriate vectors with t,l > O. Otherwise OO[A] = vtT[ -I, I]
and [A]OO =IwT[-1, I], respectively.
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Final remark. In the present paper we have considered the convergence of the
interval iteration [x]k+l = [A][x]k + [b], k =0, 1, .., We have completely discussed
the case where I[A]I is irreducible with p(I[A]I) = 1. For reducible matrices I[A]I
with p(I[A]I) = 1 things are more complicated. This case is studied in H.-R. Amdt's
thesis which will be published separately. For p(1[A]I) < 1 convergence can be
guaranteed by O. Mayer's result [10] mentioned in Section 1. For p(I[A]I) > 1
Case 1 in the proof of Theorem 4.1 shows that there are starting vectors [x]o for
which the sequence ([x]k) is divergent.
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