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Abstract. Richardson splitting applied to a consistent system of linear equations Cx = b with a
singular matrix C yields to an iterative method x**' = Ax* + b where A has the eigenvalue one. It
is known that each sequence of iterates is convergent to a vector x” = x*(x") if and only if A is
semi-convergent. In order to enclose such vectors we consider the corresponding interval iteration
)" = [A]x]* + [b] with p(|[A]]) = | where [[A]] denotes the absolute value of the interval matrix
[A]. If |[A]] is irreducible we derive a necessary and sufficient criterion for the existence of a limit
[x]* = [x]*([x]") of each sequence of interval iterates. We describe the shape of [x]™ and give a
connection between the convergence of ([x]%) and the convergence of the powers [A]F of [A].

1. Introduction

Many practical problems finally lead to systems of linear equations
Cx=b; CeR"™, beR" (1.1)

Mostly C is regular and therefore (1.1) is uniquely solvable. Sometimes, however,
C is singular but the system is consistent, i.e., it is solvable. This situation occurs,
e.g., when discretizing a Neumann problem, problems for elastic bodies with free
surfaces or Poisson’s equation with periodic boundary conditions. The stationary
distribution vector of a finite homogeneous Markov chain grows out from a singular
system as well as sometimes the production vector of a Leontief input-output
economic model. Details can be found in [2], Chapters 7.6, 8.4, 9.4.

When solving linear systems of equations (1.1) the Richardson splitting C = I—A
(see the discussion in Sections 3.3 and 3.4 of [15]) leads to the equivalent fixed
point form

x=Ax+b
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which is the starting point for the iterative method
KAk +b, k=0,1,... (1.2)

For consistent systems (1.1) it is well-known (cf. [2, Lemma 6.13, p. 198], e.g.)
that each sequence of such iterates converges to some solution x* (%) of (1.1) if and
only if A is semi-convergent, i.e., if A := lim A* exists. (By the notation S b

k— oo

we express the fact that the limit x* may depend on the starting vector x%.) This
criterion is certainly fulfilled if the spectral radius p(A) is less than one. In this case,
A is called convergent, C is regular, A = O and each sequence of (1.2) has the
same limit which is the unique solution of (1.1). The remaining case which yields
to a convergent sequence (A¥) requires p(A) = 1 with some additional conditions
(cf. Theorem 3.1). In this case, C turns out to be singular, A* # O, the limit of
(xk) exists, but depends on the starting vector x°. It is one of the infinitely many
solutions of the system (1.1) which we assumed to be consistent. It is this singular
situation on which we focus in the present paper. To this end we start with the
interval iteration

K = ANk + b, k=0,1,..., (1.3)

where the n x n interval matrix [A] and the corresponding interval vector [b] can
be thought to be enclosures of a given matrix A € R"*” and a given vector b € R”
or they are used to consider the variety of linear systems

(I—Ax=b, AeclAl, belb] (1.4)

simultaneously. In Section 2 we define the absolute value |[[A]| € R™*" of [A].
If p(|[A]]) < 1 each matrix C = I — A in (1.4) is regular, and it is known by
O. Mayer’s paper [10] that each interval sequence ([x]%) from (1.3) converges to
the same interval vector [x]* which contains all solutions of (1.4). If p(|[A]]) > 1
there may be singular matrices in [A], and nothing is known on the convergence of
([x]%) up to now. We will address to this problem in Section 4 for the case that |[A]|
is irreducible extending the result of O. Mayer.

By the continuity of the interval arithmetic it is immediately clear that the limits
[x]* of the convergent sequences ([x]¥) are the algebraic solutions of the interval
system

[x] = [A][x] + [B]. (1.5)

These solutions were completely studied in [9] if |[A]| is irreducible. A necessary
and sufficient criterion was derived there which guarantees the existence of such
vectors. In addition, their shape was given. Unfortunately, simple examples already
show that ([x]*) does not need to converge if such a solution exists, even if |[A]]
is restricted to be semi-convergent. In Section 4 we show that particular classes
of matrices [A] with semi-convergent absolute value have to be excluded. With

Theorem 4.1 we will prove a necessary and sufficient criterion for the convergence
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of every sequence ([x]¥) of (1.3). It implies [b] = b € R" in the case p(|[A]]) = 1
which certainly means a restriction when considering linear systems with inexact
input data. The criterion in Theorem 4.1 is nearly the same as it was stated in [6] for
the convergence of the powers [A]¥ of interval matrices to a non-zero matrix [A]*.
A certain relation between these two problems is studied at the end of Section 4.

If our criterion of convergence is fulfilled the limit [x]* = [x]*([x]°) of ([x]%)
contains all solutions of linear systems (1.4) which are limits of (1.2) with % & [x]%
(The notation [x]*([x]°) expresses again the fact that the limit [x]* may depend on
the starting vector [x]°.) The element relation is a simple consequence of the
inclusion isotonicity of interval arithmetic (cf., e.g., [1] or [11]). In this respect [x]"
is an enclosure of the—and in the singular case: of selected—solutions of the linear
systems (1.4).

In passing we note that iterative methods even for rectangular systems have
already been discussed very intensively in [4].

We have organized our paper as follows: Section 2 contains the notation used
throughout the paper, Section 3 presents auxiliary and known results in order to
understand better the statements and conclusions of the main part of this paper
contained in Section 4.

2. Notations

By I(R), I(R"), I(R"*") we denote the set of intervals, the set of interval vectors with
n components and the set of n x n interval matrices, respectively. By “interval”
we always mean a real compact interval. We write interval quantities in brackets
with the exception of point quantities (i.e., degenerate interval quantities) which we
identify with the element which they contain. Examples are the null matrix O and the
identity matrix /. We use the notation [A] = [A,A] = ([a]j) = (laj, aj)) € I(R™%)
simultaneously without further reference, and we proceed similarly for the elements
of R",R"™*" I(R) and I(R"). We call- [a] € I(R) symmetric if [a] = —[a], i.e., if
[a] = [—r, r] with some real number r > 0. For intervals [a], [b] we introduce
the midpoint & := (a + @) / 2, the absolute value |[a]| := max{]|al,|a|}, the radius
rad([a]) := (@—a)/2 and the (Hausdorff) distance ¢([a], [b]) := max{|a—b], la—b|}.
For interval vectors and interval matrices these quantities are defined entrywise, for
instance |[A]| := (|[a);]) € R™". We assume some familiarity when working with

these definitions and when applying the interval arithmetic

[a)o[b] := {aob|ac]a], be[b]} € I(R),
[a],[b] € I(R), o€ {+ —,-/}, O¢][b]incaseof /.

Note that [a] o [b] can be expressed by means of the bounds a, @, b, b of the operands
[a] and [b]. For details see, e.g., the introductory chapters of [1] or [11].
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For intervals [a], [b], [c], [d] we mention the basic relations

rad([a] £ [b]) = rad([a]) + rad([D)),
rad([a][b]) > |[a]|rad([b]),
g([a] + [c], [b] + [c]) = q([a], [b]),
g(lal +[c], [b]1 + [d]) < q([al, [D]) +q([c], [dD),
q([cllal, [c][b]) < [[cl|g([al, [DD.
These relations yield at once to similar relations with vectors and matrices.
Since the multiplication between interval matrices is not associative (cf.

[1, p. 1242], e.g.) we must explain what we mean by the k-th power of an interval
matrix. Following [5] and [6] we define

[A1° =1, [A1**! = [A)* - [A], k:o, 1, ...
and
O1A] =1, k1141 = [A] - %A, k=0,1,...

Itis shown in [5] that [A]? can differ from 3[A]. Ifklim [A]* exists (with respect to the

Hausdorff distance g) then we write [A]* for this limit,and A~ if [A] = A € R"™".

As usual we call the matrix A € R"*" non-negative if a;; > 0 fori,j = 1,...,n,
writing A > O in this case. By A > O we denote non-negative matrices whose
entries all are positive. We call them positive. For A, B € R"*" the inequality A < B
means B — A > 0, and A > B is equivalent to B < A. For vectors we apply these
definitions analogously.

According to the Theorem of Perron and Frobenius for irreducible non-negative
matrices A the spectral radius p(A) is a simple eigenvalue of A, and there are two
positive eigenvectors v, w such that

Av = p(A), wlA = p(Aw?, wiv=1 2.1)

hold (see [14], e.g.). We call such vectors (right and left, respectively) Perron vectors

of A. In our paper we will use v, w exclusively for such vectors. Note that we do

not require the normalization ) v; = 1 or Y w; = 1 as was done in [3, p. 497] in
i=1 i=1

order to make Perron vectors unique. In the sequel we denote by span{w} the linear

space spanned by w, and by (span{w})* its orthogonal complement.

In matrix theory one often divides non-negative irreducible matrices A into
two classes according to the number s of eigenvalues A;, j = 0,...,h — 1, with
|A| = p(A): The elements of the first class are called primitive matrices. They are
defined by A > O, A irreducible, # = 1. Here the theory of Perron and Frobenius
yields to Ay = A, —1 = p(A) which is a simple eigenvalue of A. The elements of the
second class are called cyclic matrices. They are defined by A > O, A irreducible,

h > 1. Here the theory guarantees A; = p(A)eﬁ‘z’”., j=0,1,...,h — 1 where these
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eigenvalues are again simple eigenvalues. The number & > 1 is called the index of
the cyclic matrix A. Cyclic matrices A of index A can be brought into the so-called
cyclic normal form

[0 Ay O O 0\
O O Ax O 0
papT = : : ey B Y : (2.2)
0 O = 0 Ajshi O
0 zm @ (0] Al i
\As1 0 .. O O 0

by means of some appropriate permutation matrix P. This shows that AK > O can
never occur for cyclic matrices in contrast to primitive ones for which there is a
smallest integer kg (the so-called primitivity index) such that A* > 0 holds for all
k > ko = ko(A). (See [2] or [14], e.g.)

LetA € R™", and let kg be the smallest integer such that rank(AK*1) = rank(A).
This integer kg is called the index of A. It should not be confused with the index
of a cyclic matrix. As in [2, Definition 4.10, p. 118], we define the Drazin inverse
AP e R™" of a matrix A of index kg as that generalized inverse X which satisfies
the three conditions

XAX =X, AX = XA, Ako = xpko+l

Since the concept of Drazin inverse is not so widespread we shortly recall some of
its basic properties. One can show that R" is the direct sum of the column space
R(Ak) of A% and the null space N(A%) of this matrix, i.e., R" = R(A%) ® N(AM).
Since APA is the projector on R(A¥) along N (A%0) (cf. [2, p. 118]) the Drazin inverse
1s the unique matrix given by

AP {y, if Ay=x, xy eR@AY), y-—y eN@A")
xX=

2.3
0 if A%e=0, e

(cf. [2, p. 197], with obvious corrections). Note that in the case x € R(A%) one
can always choose the solution y in (2.3) such that y € R(A%), i.e., y = y;. Let the
Jordan canonical form J of A = SJS~! be represented by

joO
Vi — =
(O Jr)’

where Jq and J,, respectively, are square block diagonal matrices whose diagonal
blocks are just the singular Jordan blocks of J, and the non-singular ones, respec-
tively. If A is non-singular then J is missing; if A has zero as the only eigenvalue
then J, is missing. The index ko of A is given by the number of columns of the largest
Jordan block belonging to Jg, and the Drazin inverse A” of A can be expressed as

B.wf @ @ il
A _S(O(jr)_,)s . (2.4)
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Hence AP? = A~ if A is non-singular.

By D = diag(oy,...,0,) € R™" we denote the diagonal matrix whose diag-
onal entries are oy,...,0,. If |D| = I holds then we call D € R"™™" a signature
matrix. Note that D! = D for such matrices. We finally mention the vector
e=(1,...,)T eR",

3. Known Results

In this section we cite some known results which are necessary for the understanding
of Section 4. We start with some classical results on semi-convergent matrices A

(cf. [2], [3D).

THEOREM 3.1 (Cf. [2], p. 152). The matrix A € R"™™" is semi-convergent if and
only if the following conditions hold:
(i) p(A) < 1.

(ii) If p(A) = 1 and if A is an eigenvalue of A with |A| = 1 then A = 1 and every
Jordan block associated with A = 1 is of size 1 x 1.

THEOREM 3.2 (Cf. [3], 8.2.11, p. 500 or [6], Lemma 3). Let A € R"*" be semi-
convergent. Then A~ = O if and only if p(A) < 1. If A is, in addition, irreducible
and nonnegative with p(A) = 1 then

A = va, v,w asin (2.1). (3.1)

THEOREM 3.3 (Cf. [2], Lemma 6.13, p. 198, with obvious corrections). Let(1.1)
be consistent. Then each sequence (x*) of iterates defined by (1.2) is convergent
if and only if A is semi-convergent. The limit is independent of x° if and only if
p(A) < 1. In any case this limit x* is a solution of (1.1). By means of Drazin inverses
it can be expressed as -

x* = —A)Pb+{I— U - AU -API. (3.2)
Now we restate O. Mayer’s result mentioned in Section 1.

THEOREM 3.4 (Cf. [10] or [1], pp. 143 ff). For every starting vector [x]° e I(R")
the sequence ([x]*) of iterates defined by (1.3) is convergent to the same vector
[x]* € (R") if and only if p(|[A]|) < 1. In this case [x]* contains the solution set

S:={xeR"|(—Ax=b, Ac [A], be [b]} (3.3)

and is the unique solution of (1.5).

If p(|[A]]) > 1 things change. This can be ‘seen from the following simple
example.
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EXAMPLE 3.1. Consider the iteration

k) = [allx)t, k=0,1,...,
where [a] € I(R), i.e., [A] = [a] in (1.3). Note that if [a] # O then |[a]| # O, hence
the 1 x 1 matrix |[a]] is irreducible by definition.

(a) If |[a]| > 1 each sequence of iterates is divergent for [x]° # 0. This can be seen
from the iterates Xt =axk k=0,1,..
We obtain x* e [x]* and llm |xJ¥| > lim |x

;‘]:oo

(b) If [a] = [0, 1] we get
[x1°,  if 0e [x]°

== 0F] 0= }; E=L2
[x°,0], if xX°<0

i.e., we obtain convergence to [x]* = [x]*([x]°) for each sequence of iterates.

(c) If [a] = [—1,0] and [x]° = [—1,0] we see at once that [x]**! = [0, 1] and
[x]?* = [—1,0] hold whence ([x]¥) cannot be convergent in this case. If one
starts with [x]® = [—v,v], v > 0, then [x]* = [x]* = [x]°, k = 0, 1, ..., since now
the starting vectors are exactly the solutions of the equation [x] = [a][x].

(d) If[a] = [—1, 1] we get [x]* = [x]* = |[x]°|-[—=1,1),k = 1,2, ...,i.e., convergence
to [x]* = [x]*([x]°) is guaranteed for each sequence of iterates. Note that the
iterates of (c) are contained in the corresponding iterates of (d) if one starts in
both cases with the same interval [x]°. Thus the iterates in (c) are bounded but,
as we already saw, they are not necessarily convergent. The bounds depend
on [x]°.

It will turn out in Section 4 that Example 3.1 is typical for the situation in the
case p(|[A]]) > 1. Theorem 3.4 lets expect that Theorem 3.3 remains true if one
replaces p(A) by p(|[A]|) when dealing with (1.3) instead of (1.2). Example 3.1(c)
shows that this is not true. Note that in (1.3) the starting vector [x]° is allowed to be
an interval vector. This initiates the transition from p(A) to p(|[A]]) even if [A], []
are degenerate.

By the continuity of the interval arithmetic the limit of each convergent sequence
([x]%) of iterates of (1.3) is a solution of (1.5). Therefore it is natural to study all solu-
tions of (1.5) first. For irreducible absolute values |[A]| a complete characterization
was given in [9]. In view of Section 4 we repeat the main result.

THEOREM 3.5. Let |[A]| be irreducible with p(|[A]]) = 1, choose any Perron vector
v > 0 of |[A]|. Denote by Mgy, the set of all indices for which the columns of [A]
contain at least one non-degenerate symmetric entry. Construct [B] € I(R"*") from
[A] by replacing the j- rh column of [A] by the j-th column of the tdenttty matrix |

forall j € Mgy and let A € [B] be the unique matrix which satisfies |Af = |[B]|
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(a) The interval system (1.5) has a solution if and only if [b] is degenerate, i.e.,
[b]=b e R", and

x=Ax+b (3.4)
is solvable. In this case, there is at least one solution Z of (3.4) which satisfies
o= forall i e Mgy, (3.5)

(b) If[b] is degenerate, i.e., [b] = b € R", then for any solution Z of (3.4) satisfying
(3.5) and for any real number t > tyin with

Imin =
fo radllaly) W5l Bl |y < j<m gy 20, rad(faly) 0} (36)
|f1ij| Vi Vi :

the interval vector [z)} = Z + tv[—1, 1] is a solution of (1.5).

Conversely, if [z]* is any solution of (1.5) then [b] is degenerate, i.e., [b] =b €
R”, and [z]* can be written in the form [z]* = Z* + tv[—1, 1] where Z* solves
(3.4), (3.5) and t satisfies (3.6) with 7 := Z*.

(c) If Mgym # 0, i.e., if there are at least two different matrices A,A e [A] with
|A| = |A| = |[A]|, then (3.4) has at most one solution which satisfies (3.5).

(d) If Msym = 0, i.e., if there is exactly one matrix A e [A] with |A| = |[A]|, then
A= A , (3.5) is trivially true and one of the following mutually excluding cases
OCCUrs:

(i) p(A) < 1, whence (3.4) has a unique solution.

(ii) p(A) = 1 and A # D|[A]|D for every signature matrix D, whence (3.4) has
a unique solution.

(iii) p(A) = 1 and A = D|[A]|D for some signature matrix D. Here, (3.4) has
no solution if and only if b is not in the range of I — A, i.e., if and only
if b cannot be represented as linear combination of the column vectors of
I — A. Otherwise it has infinitely many solutions. They are given by

Z=Z%"+sDv, (3.7)
where Z* is any fixed particular solution of (3.4) and s is any real number.

(e) If (1.5) has a solution [z]* then for any linear system (1.4) there is at least one
solution which is contained in [z]*. In particular, each such system is consistent.

The following result was proved in [5] (case p(|[A]]) < 1, see also [12]) and [6]
(case p(|[A]]) = 1). Its crucial assumptions are the same as in our main result in
Section 4.

THEOREM 3.6. Let |[A]| be irreducible with rad([A]) # O. Then the powers [A]"'
are convergent to a matrix [A]* if and only if the following two conditions hold:

(i) The matrix |[A]| is semi-convergent.
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(ii) If p(|[A]]) = 1 and if [A] contains only one matrix A with |A| = |[A]| then
A # — D|[A]|D for any signature matrix D.

We end this section with an auxiliary result which can also be found in [6].

LEMMA 3.1. Let [A] € I(R™*") and let D € R"*" be a regular diagonal matrix or
a permutation matrix. Then D[A]*D~! = (D[A]D ™).

4. New Results

We start our results with two lemmas which will be needed in the proof of our main
result, Theorem 4.1.

LEMMA 4.1. Let ([x]¥) be a sequence of iterates defined by (1.3) with limit [x]*.

(a) If [y]* is a solution of (1.5) with [y]* c [x]° then [y]* < [x]*. If one replaces
“c” by “2” one gets an analogous result.

(b) If ([y]*) is another sequence of iterates defined by (1.3) and if y1° < [x1°
then [y]k = [x]k for k = 0,1,... If, in addition, [y]* = klim [y]k exists then
1* < [x]*. If one replaces “C” by “2” one gets an analogous result.

(c) If x° e [x]° and if x* = x*(x°) is the limit of x** = Axk + b for some fixed
A € [A], b e [b], then x* € [x]*.

Proof. The proof of this lemma is immediate using the inclusion monotonicity
and the continuity of the interval arithmetic. O

LEMMA 4.2. Let |[A]] be irreducible and semi-convergent with p(|[A]]) = 1, let
v > 0 be a fixed Perron vector of |[A]| and let (1.5) have a solution [z]* which,
according to Theorem 3.5, can be represented as [z]* =z +t*v[—1,1, 0 <" e R.
Then [b] = b € R", and for any sequence ([x]*) of (1.3) the following assertions
hold.

(a) There exists a real number o = o([x]%) > 0 with kii_)mco rad([x]¥) = av.
(b) There exists a real number B = B([x]%) > 0 with kli_}mco gllxd* 2 =B,
(c) There exists a real number y = y([x]%) > 0 with kli_’mm Xk — 2*| = yv.
(d) There is a convergent subsequence of ([x]*). If [y]* is its limit then

y* =Z* +yDy, D e R™", |D| =1,

with y as in (c), independent of the particular convergent subsequence.

Proof. Let w be a left Perron vector of |[A]] satisfying w’v = 1 and let
{w,w?, ..., w"} be an orthogonal basis of R". Then (span{w})J- is the space spanned
by {wz, ...,w"} and, since wly =1, the set {v, w?, ..., w"} is also a basis of R". By
virtue of the existence of [z]* Theorem 3.5 implies [b] = b € R".
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(a) Define o4 € R and s* e R" by rad([x]¥) = ogv + s* with s* € (span{w})*.
Using
rad([x]**") = rad([A][x]* + b) = rad([A1[x]") > [[A]rad((x]°) 4.1)
results in
041V + 55 > oy + |[A][s5
Multiplying from the left by w’ yields to
Oyl = -

Since we assumed [z]* to be a solution of (1.5) its midpoint Z* satisfies (3.4),
(3.5). Therefore, according to Theorem 3.5, the vectors [z]} = Z* + tv[—1,1]
are also solutions of (1.5) for all sufficiently large ¢ > 0. Choose ¢ so large that
[z]7 2 [x]° holds. By Lemma 4.1(b) with [y]° := [z]} and “2” instead of “c”
we have

K clz, k=01,..
whence

ogv + s* = rad([x]%) < rad([z]}) = tv.
Multiplying by w as above results in

oy <t E=0.1,

Hence (o) is a monotonously increasing sequence which is bounded from
above and which therefore has a limit . Now we show

lim s*=0.

k— oo

We have
v > v+ = rad([x]**) > |[A]]*rad((x]™)
= o+ |[A]]5s™ 4.2)

Let k tend to infinity in (4.2). Then it turns out that the components sf‘ are
bounded so that

B (lim sup sf) 8= (liminfsf)
k— oo k— oo

are vectors in R”. Moreover,

TSm = a,,V,

tv>av+s> oav+s > o,y + |[A]|7s" = anv +vw
holds, where we used (3.1). With m — oo we finally get
tv>ov+sZ> av+s > ay,
hence

t—ay>s5>s52>0.
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(b)

(c)

Assume 5;, > O for some index ip. Then there is a subsequence (s%) such that
s ks . _ . -
lim s;) =5;,. By virtue of s > 0, 5;, > Oand w > 0 we obtain the contradiction
j—oeo
k " k ko1 k
T k; j g '_ Y
O=w'sY=wsi + Z wis;’ > wi,Siy — Ew,-“s;;; >0
=1
[#iy

for sufficiently large ;. Therefore, 0 > 5 > s > 0,i.e.,5 = s = 0 holds, whence
lim s* = 0 follows. This proves (a).

k— oo
Define B € R and % € R” by g([x]*, [2]*) = Bev + t* with tf e (span{w})*.
Since [z]* = [A][z]* + b we obtain analogously to (a)
0 < g(Ix**", [21%) < [[Allg([x]*, [2]"),
0 < Besrv+ 2" < By +|[ATlA
0 < B+ < B
Therefore, () has a limit . We show

=
<

lim * = 0.

k— oo

The steps are analogous to those in (a). We start with
0 < Besmv + 154" = q(IX]*", []")
< |[A1* (1", [2]*) = By + [[A]] 4. (4.3)
Let k tend to infinity in (4.3) and define the vectors

1= (lim sup rf), L= (llm infrf).
k— oo T

Then
0<Bv+t<Pv+i< Buv+|[Al7t" =By + ywTt™ = B,
and m — oo leads to '
—Br <t <i<0.
Assume f; < 0 for some index iy and consider a subsequence (¢%) such that
lim 7 = ;- Then we obtain the contradiction

Jr=reo

n
Tk _ .k k; koo k;
0=wlth =w, 1;/ + Z wit,) < wi il + Ew;{]|r,-t{| <0

i
=1
{#f[:

for sufficiently large k;, and () follows analogously to (a).

From the representation

q(la), (b)) = |a — b| + |rad([a]) — rad([b])|,  [a],[b] € L(R)
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(cf. [11, 1.7.1, p. 25]) we get at once

q(Ix]*, [21*) = [¥* — 2| + [rad([x]*) — rad({z]")|
which implies

Jim -2 =y >0

using (a), (b) and y := B — | — t*|. In particular, y > 0, whence 8 > |a — t*|.

(d) The existence of a convergent subsequence follows from (b). If [y]* is its limit
we get from (c)

" =g =pm
whence y* —Z* = yDv, |D| = I. Note that in (c) the limit exists for the complete

sequence. Therefore, y is independent of the particular subsequence which we
used in (d). O

Now we present our necessary and sufficient condition for the convergence of
all sequences of iterates defined by (1.3) using the notation of the Drazin inverse
defined in Section 2.

THEOREM 4.1. Let |[A]| be irreducible and let (1.5) have a solution [z]* (which

implies [b] = b € R" in the case p(|[A]]) = 1). Then each sequence ([x]*) of (1.3) is

convergent if and only if the following two conditions hold:

(i) The matrix |[A]| is semi-convergent.

(ii) If p(J[A]]) = 1 and if [A] contains only one matrix A with |A| = |[A]| then
A # — D|[A1|D for any signature matrix D.

In case of convergence the limit [x]* = [x]*([x]o) of([x]k) is a solution of (1.5). It
contains the set S([x]ﬂ) of all solutions of (1.4) which one obtains as limit of the
sequences (xX) of iterates defined by (1.2) with x° € [x]°, i.e.,

S([x1°)
= {x* | x* = — APb+{I - (I — AT - AP},
Ac[Al 2% e [x]o}
c (%) @A)

Proof. Let v, w be right and left Perron vectors of |[A]| according to (2.1), respec-
tively. In the case p(|[A]]) = 1 let [z]* = Z*+t*v[—1, 1] as in Theorem 3.5 and notify
[b] =b € R" by Lemma 4.2.

3 3

=

Let each sequence of iterates from (1.3) be convergent. If p(|[A]]) < 1 the
assertions follow immediately. Therefore, two cases are still to be considered.
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Case 1: p(|[A]]) > 1.
Choose [x]° = [—v, v]. Repeated application of (4.1) yields to

rad([x]%) > |[A]/Frad([x]°) = p(|[A1])* v,

hence the sequence (rad([x]%)) is divergent contradicting the convergence of (€15
Thus Case 1 cannot occur.

Case 2: p(|[A]]) = 1.
First assume |[A]] to be cyclic of index h. Without loss of generality let |[A]| be
in cyclic normal form (2.2). Otherwise use Lemma 3.1 and consider the iteration

PU** = (PIAIPT)(PI®) + Pb

with an appropriate permutation matrix P such that P[A]PT has this form.
Choose [x]° = [z]* + e'[—1, 1] where ¢! denotes the first column of /. Then
we get

g3k, [2") < [[A1l¢q(1a°, ) = [[A][qte' [—1,1],0) = |[A]*e'.
For k = mh + 1 this implies
0 < g(@™*', 21" < (TA)™*Hn =0.
For the limit [x]* of ([x]""*!),zen, and therefore also for ([x]*)ncn, We get
(1} = [} = @ +*v[-1, 1. 4.5)
By virtue of
rad([x]) > [[A][*rad([x]°) = [[A][*{rad([2]*) + '} = 1*v + |[A]| "¢
we obtain for k = mh
rad([x]™") > r*v + [[A]|""e". (4.6)

According to [2], proof of Theorem (2.30) on p. 35 with p = 1, the power [[A]|” is
a diagonal block matrix with h primitive diagonal blocks C;, i = 1, ..., h, for which
p(C)) = p(J[A]1])" holds. By the primitivity of C; and the Theorem of Perron and
Frobenius A = 1 is the only eigenvalue of C; such that |A| = p(C;). It is a simple
one. The matrices C; are therefore semi-convergent with lim C;" > O. Taking into

m—o0

account (4.5), (4.6) and |[A]|”"" = diag(C}", ..., C}") we get the contradiction
rad([x]}) = "y > lim (t"v + I[A]|™e'), = t*v) + lim (C)1 > 17w

Thus |[A]| cannot be cyclic of index A, it must be primitive, hence [[A]] is semi-
convergent, and (i) holds.

In order to prove (ii) we assume that [A] contains exactly one matrix A such
that |A| = |[A]| and A = —D|[A]|D with some signature matrix D. We want to
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derive a contradiction. Without loss of generality we may assume A = —|[A]]| = A.
Otherwise consider the iteration
D%t = (DIAID)D[XY + Db,  k=0,1,... 4.7)

and take into account Lemma 3.1. Since A is the only matrix satisfying |A| = |[A]],
there is a real number 8 € (0, 1) such that

[A] c [—][A]l, 0][A]]] = [—1, 6]|[A]| =: [B].
Consider the iteration
b1 = Bl +b,  k=0,1,...
Choose
D0 =x® =" —nv, 25 +0v],  nme(6,1)
with ¢ > 0 so large that
F—nv<0<Zt+nv (4.8)

Using (3.4) this implies

Y= 2 =A@+ + b= AT — v+ b =7 — 1,
;_cl.l £ yil = sup([—1, B]I[A]‘[x]o + b);, D= il
Moreover,
53 = —lalyl@ — ) = —|lalylz) + (1 — O)ellalyly; + 6rl[alyly;

52 o= 0|[alylz +v) = 6|[alylz + or|[alyly;

By virtue of n — 6 > 0 we can choose ¢ > 0 so large that, in addition to (4.8), we
can fulfill

5 EE . djeTeann
ne,
D' = [BIX +b = [ — |[A)|E" + ), —|[A]|&" — mev)] +b
= A*+b+tv[-1,n] =2 +0[-1,n] =[T* —tv, Z¥ + nv].

Moreover, we obtain

# = F=—|[AllG - m)+b=%+mw,

x? > y? =inf([—1, 0]|[Al|[y]' +b);,

sj = —|lalyl@E +nv) = —|lalylE; — (n — 6)t|laly|v; — 6rllalylv;,
s = ollalylz} — ) = 6llalyl% — orllalyly;
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By increasing r once more, if necessary, we end up with

gégsz S Laslly

_.1_;"
1e.,
X2 c 1? = [BID)' +b = [ — [[ANl@E" + nv), —|[A)|(Z" — )] +D
= [z — v, 2+ 0] =]
One easily recognizes

[Z2* — ntv, ¥ +tv], 1if k iseven,

k .
x]" < Iyl “{[2*—tv, ¥ +nwv], if k is odd,

with X = ¥ if k is even and x* = y* if k is odd. This results in
y J

hence ([x]¥) cannot be convergent contradicting the assumption. This proves (if).

-

Let (i) and (ii) hold and let ([x]%) be a sequence defined by (1.3). If p(|[A]]) < 1
then convergence follows from Theorem 3.4. Now let p(|[A]]) = 1. According to
Lemma 4.2(d) there is a subsequence ([x]%) converging to some limit [y] wi By
virtue of [x]5*! = [A][x]% + b the subsequence ([x]%*!) converges to some limit
[y]* ! which fulfills

b1*! = (A0 + 0. (4.9)

Moreover, each subsequence ([x]%*™) converges for fixed m € Ny to some limit

[y1*™. By Lemma 4.2a) we have
rad([y]*™) = lim rad([x]5*™) = av,
b1 j—oo , (4.10)
0 < a € R independent of m, (k).

From Lemma 4.2(c) we obtain

yom =3* +yD™y, |ID™| =1, 0< yeRindependent of m, (k). (4.11)
Combining (4.10) and (4.11) results in

y1*™ =3* + yD™v + av[—1, 1]. (4.12)
Choose A e [A] with |A| = |[A]]. Use (4.9) and (4.12) with m = 1 in order to get

Ay 0+ av[—1,11+b = Ay*0 + adv[—1,11 + b =AD]*O +b
c A0 +b =" =2+ yDWOy + av[—1,1].
(4.13)
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Since both sides of (4.13) have the same radius the inclusion can be replaced by
equality. This yields to

Ap)*0 = [AI1° (4.14)
and

Ay*O4+ b =% +yDWy. (4.15)
By virtue of

Ay +b =A%+ yADOy + b =3* + yADOy,

which is a consequence of (4.11), (3.4), and (3.5), the equality (4.15) leads to

yADOy = yDDy, (4.16)
Case 1: y = 0.
Here, Lemma 4.2(c) guarantees kiim %% = %* and together with Lemma 4.2(a)

we obtain J’Clim [x]* = 2* + av[—1, 1] = [x]*. Taking this limit in (1.3) reveals that

[x]* is a solution of (1.5).

Case 2: vy > 0.
From (4.16) we get

AD®y = pMy, (4.17)
Analogously to (4.16) we can prove

yAD" =Dy =y,
for arbitrary m € N. Thus we finally obtain

A"DOy = ptmy, (4.18)

Case 2.1: p(A) < 1.
Here, (4.18) implies the contradiction

0<v=|D"y|=|A"DOv| -0  for m — oo.

Therefore, Case 2.1 cannot occur for y > 0. Hence p(A) < 1 implies y = 0.

Case 2.2: p(A) = 1 and Mgym # (0, where Msym denotes the same set of column
indices as in Theorem 3.5.

Since Mgym # () there exist at least two different matrices A, A e [A] satisfying
|A| = |A| = |[A]]. According to Theorem 3.5 we have %7 = 0 for i € Mgy, and
Az* +b = Az* + b = z*, hence (4.17) can also be proved with A instead of A.
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Therefore, (A — A) D@y = DDy — DDy = 0. Let DO := diag(oy, ..., 6,), 0; = £1.
Choose A, A such that |A| = |A| = |[A]]| and

: aj, if gj=1 and [a]; symmetric,

“ = a if oy=—1 and [al; symmetic,

{g,-j, if ;=1 and [a]; symmetric,

%= a;j, if oj=—1 and [a]; symmetric.
Then
0, if [a]; not symmetric,
ajj — ajj = @j—ay), if ;=1 and [a]; symmetric,
—(a@; — g,j), if oj=—1 and [a]; symmetric.

Since A # A there is at least one symmetric entry [a];, jo # 0. This leads to the
contradiction

0= {(A - ADY}, > @, — g, s Vi = 2Big,joVio > 0.

Hence Case 2.2 cannot occur for y > 0.
Case 2.3: p(A) = 1 and Mgy = 0, i.e., A is the only matrix in [A] with |A] =
l[A]].

Lemma 5 in [6] and the assumption (ii) yield to A = D|[A]|D, D e R™", |D| =L
Without loss of generality we may assume

A =(Al}, (4.19)

otherwise consider (4.7). Since the matrix |[A]| is irreducible and semi-convergent
by assumption, A = 1 is its only eigenvalue satisfying || = p(|[A]]). According to
the Theorem of Perron and Frobenius A = 1 is a simple eigenvalue, hence |[A]] is
primitive and there is an integer p such that

A =@P)>o0. ' (4.20)

With DO = diag(o, ..., 6,) € R, DP = diag(7y, ..., 7,) € R™", |gj] = |5| = 1
we get from (4.18) withm =p

v=DPA DOy = (T,-O}dg,‘-p))v.

Together with (4.20) this implies 7;0; = 1 fori,j = 1, ...,n, whence D® = D@ = g1,
|o| = 1. Again from (4.18) we obtain D"y = ov, ie., D™ =6l,m=0,1, ..., and
from (4.12) the equation

DI*" =2 +oyv+av[—1,1] = y]* (4.21)

follows. This vector is a solution of (1.5), i.e., it satisfies [A][y]* + b = [y]* as can
be seen from the next to last equality in (4.13).
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It remains to show that the whole sequence ([x1%) converges to [y]*. To this end
we start with

g5 1) = q([AYX)S =" + b, [Ally]* + D)
< AN = %) < -+ - < A1) g, ).

Since |[A]| is semi-convergent according to (i), there is a matrix K > O with
I[A])l < K,1=0,1, ..., hence

(15 1) < Kg(x1%, y1*) 1=0,1,...

Choosing j sufficiently large makes the right-hand side arbitrarily small indepen-
dently of /. Hence

Jim g, 1) = 0.

The last assertion of Theorem 4.1 follows immediately from the inclusion 1sotonicity
of the interval arithmetic and from Theorem 3.3. O

Remark 4.1.

(a) The cases y = 0 and y > O yield to the cases in Theorem 3.5 in which
(3.4), (3.5) have exactly one solution (cf. Theorem 3.5(c) and (d)(i)), and
infinitely many ones (cf. Theorem 3.5(d)(iii)), respectively. The case mentioned
in Theorem 3.5(d)(if) is excluded by the condition (i1) in Theorem 4.1.

By virtue of the assumption (4.19) the equation (3.7) occurs only with D =/ in
the proof above. In order to recover this equation let s = oy in (4.21). See also
Theorem 4.2 in this respect.

(b) If |[A]| is not semi-convergent, then according to Theorem 4.1 not every
sequence of iterates can be convergent. Nevertheless (1.5) can have solutions.
This can be seen from Example 3.1(c) or from the iteration

L =AY, %=01,.... (4.22)

0 [0,1]
(0,11 0
index 2. The eigenvalues of |[A]| are therefore £1, hence this matrix is not semi-
convergent, but the system [x] = [A][x] has the solutions [x]* = se + re[—1, 1],
s e R, |s] <1t e R, as can be seen from Theorem 3.5. Starting (1.3) with
[x]° = [x]* yields trivially to convergent sequences.

with the matrix [A] = ( ) whose absolute value is cyclic of

THEOREM 4.2. Let the assumptions of Theorem 4.1 hold including (i) and (ii),
let p(J[A]]) = 1 and let ([x]*) be a sequence of (1.3) with limit [x]*. Choose
any Perron vectors v, w of |[A]| according to (2.1) and let [z]* be defined as in
Theorem 4.1. Denote by (2]}, = Z* + tminV[—1, 1] the solution of (1.5) with the
same midpoint as [z]* and with tyi, > 0 from (3.6) applied to 7 = Z*. Denote by
[Zlmax =27 + tmaxV[—=1, 1], tmax > 0, the smallest solution with midpoint Z* which
contains [x]o.
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(a) If [A] contains exactly one matrix A with |A| = |[A]| and if A = D|[A]|D for
some signature matrix D then [x]* can be represented as
[x]* =sDv+Z* +v[—1,1] (4.23)
with s = s(v, [x]°) € R, t = 1(s, v, [x]°) > 0, and we obtain [x]* C [2]5ax-
(b) If [A] does not fulfill the two additional assumptions of (a) then [x]* can be

represented as

[x]* = 2* +v[-1,1] (4.24)
with t = t(v, [x]®) > 0, and we obtain

Bl e B e ey (4.25)
In particular,

[x]* = [z whenever [x]° c [2]%,-

(c) We have |s| +t < tmax in case (a) and tyin <t < tmax in case (b).
(d) If
[Allx* =Alx*,  k=koko+1,... (4.26)

for some A e [A] with |A| = |[A)| and if rad([x]*) = ov+sk, sk e (span{w})L,
as in the proof of Lemma 4.2(a) then

F= o, k= kiokg# 1y (4.27)

In particular, [x]* = Z* + og,v[—1, 1] in case (b). (Note that Z* is the unique
solution of (3.4) and (3.5) in this case.)

Proof. (a)—(c) are immediate consequences of Lemma 4.1, Theorem 3.5, and
Theorem 4.1. In order to prove (d) use

v+ 551 = rad(*1) = rad([A][x]%) = rad(A[x]%)
= |Alrad([x]%) = gy + JAs* (4.28)

with s¥, s**! e (span{w})* and multiply (4.28) from the left by w’. This results in
Og+1 = o, k > ko, and (4.27) follows from ¢t = lim oy which is contained in the

k— oo

proof of Lemma 4.2(a) with « instead of the present ¢. O

Remark 4.2. The assumption (4.26) certainly holds if one replaces [x]* by the limit
[x]*. This follows from (4.14) with [y]*° = [x]*. By virtue of the continuity of the
interval arithmetic one can hope that (4.26) also holds if & is sufficiently large.

If [A][x]* = A[x]* holds for some k = ko this relation (4.26) does not nec-
essarily hold, however, for all k > ky. Therefore, (4.26) cannot be weakened in
this respect. This can be seen from the subsequent Example 4.1 starting with
[x]° = 0. Here, [A][x]° = 0 = A[x]°, but [A]lx]' #A[x]' = Ab € R? since
rad([A][x]") = rad([A]b) # 0.
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It is an open question, how the (unique) limit [x]* of the sequences ([x7%)
defined by (1.3) looks like if p(|[A]|) < 1. Some progress was made in [7] and [8]
for particular classes of matrices [A] but the general solution is still missing.

It is also open how s and 7 in (4.23), (4.24) must be chosen for arbitrarily given
[x1°.

The following example illustrates this problem.

EXAMPLE 4.1. Let

)

*

o

b | —

[A] =

b= 2| =

|

0=
VAN
2
[/
e
S8
Il

i

A

2| -
(D | e

Then A := A_,,2 is the only matrix in [A] with |A| = |[A]]. Since p(|[A]]) = p(JA]) =
l,pd)=171 V2 <1, every solution of (1.5) has the representation (4.24). With the
notation of Theorem 4.2 we have

e va(§)eeon (1), i ()

By virtue of

2 1 2
—1 _ B
(I - Ad) -—1#2a(1 1),

AN
R

I
=

b | =

and

21420) _ o 4

= -2+
1 -2a 1 —2a B

the solution set S in (3.3) reads

s<finors] ~Szaso)={(F)ss(2) =<

hence its interval hull [JS, ie., its smallest enclosure by an interval vector, is
given by

- () (1) - (43 et

The subset property was already predicted by Theorem 3.5(¢). From (4.25) we see
that in our example each limit of (1.3) overestimates S at least as much as [z] ;-
For (1.3) we chose different starting vectors [x]° and computed several iterates

using Rump’s MATLAB toolbox INTLAB (see the INTLAB home page

http://www.ti3.tu-harburg.de/ " rump/intlab/index.html
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Table 1. Starting vector vs. computed “limit.”

starting vector ([x]O)T tin (4.24) computed “limit” ([f]"")T ko
([-2,2],10,4]) 2 = tmin ([-2,2],[0,4]) 1
(6,6) 2.6407 ([—2.6407,2.6407],[—0.6407,4.6407]) 111
([4,6],[4,6]) 2.7501 ([—2.7501,2.7501],[—0.7501,4.7501}) 110
([4,61,16,8]) 3.0626 ([—3.0626, 3.0626], [—1.0626,5.0626]) 111
([—6,6],[—6,6]) 6.0001 ([—6.0001, 6.0001],[—4.0001, 8.0001]) 106
([—6,6],[—4,8]) 6 ([-6,6],[-4.8]) 1

or [13]) with the multiplication mode “SharpI[VMult”. Actually we used MATLAB
Version 6.5 and INTLAB Version 4.1.2. We stopped the iteration (1.3) whenever
the criterion

7 = 3!

was fulfilled for some k = kg, where here and in the sequel the tilde denotes
computed, i.e., rounded quantities. Since by the outward rounding of the machine
interval arithmetic (cf., e.g., [1]) we have [x]* c [#]%, k=0, 1, ..., we get

1% c (7%, k=koko+1,...,
whence
[x]* c [7]". (4.29)

Without further knowledge on a relation between [x]* and [x]° we cannot, of
course, assess the quality of the approximation [¥]% with respect to the true limit
[x]*. Assuming that [#]% differs from [x]* only slightly—say at most one unit
in the last place (here 0.0001) printed out for an interval bound—our numerical
experiments in Table 1 can provide a starting point for further research on the
dependency of ¢ in (4.24) on [x]°.

The first line below the header of Table 1 shows [x]° = [z]rin Which must be
contained in every limit [x]*. In the next line we start with the degenerate interval
vector (6,6)7, which is contained in the starting vectors of all subsequent lines.
The smallest solution [z]*.. of (1.5) enclosing (6,6)7 is given by the starting
vector of the last line with ¢ = fmax = 6. Starting with [x]® = (6,6)7 yields to
[%]° = ([—3.0000, 2.2813], [-0.8750, 4.4063))T with g([x]%, [X]®) < 10~*. ILe., [%]®
coincides with the exact iterate

73 7 14171\7
6 T
= |[=3, =, |z == = ([-3,2.28125],[-0.875, 4.40625
[x] (l 32] [ g 32D (I L1 D
within rounding when rounding as described above. Since 0 e [x]z6 we obtain
[Al[x]® = A[x]® and by virtue of [2]%:, < [x]° one gets [2]%:, < [x]¥ and O € [x]éc

fork = 6,7, ... Therefore, [A][x]* = A[x]%, k = 6,7, ..., and Theorem 4.2 guarantees



186 GOTZ ALEFELD AND GUNTER MAYER

Table 2. Starting vector vs. computed “limit.”

starting vector ((x]))"  sin(4.23) 1in(4.23) computed “limit” 5 ko

([—=2,21,10,4]) ] 2 (10,41,[-2,2)) 2
(6,6) 35 25 ([2,71,10,5)) 61
([4.6],[4,6)) 35 25 (12,71,10,5)) 60
([4,6],16,8)) 4 3 ([2,8],10,6]) 60
([-6,6],[—6,6]) 0 6 {=571.1=1,3D 2
([—6,6},[—4.8]) ! 6 ([—4.8],[—6,6]) 2

[]* = 2" +aev[—1, 1] with [x]® = X0 +(agv+s®)[—1, 1], 0 € 2.6407+[~1,0]- 104
s =0 e (span{w})* = (span{(0.5,0.5)" ). .

While Example 4.1 deals with an interval matrix for which Theorem 3.4 does
not apply and for which [C] = I — [A] is regular our next Example 4.2 is based

on an interval matrix [A] for which [C] = — [A] is singular whence Theorem 3.4
does not apply either.

EXAMPLE 4.2. Let

2| —
T ol
o,
t | —
)

[A] =

=
i~
|
b= 2| —
Q
o
[
R
A
B9 | ==
b
Il
R
|
R e

b | = T
Td | —
| —

Then A = A2 is the only matrix in [A] with |A| = |[A]|. Moreover, A = |[A]|, hence
every solution of (1.5) has the representation (4.23), i.e.,

X" =sv+ 2" +v[—1,1], seR, 120,

where 3* satisfies 2* = Az* + b and where v is any Perron vector of |[A]|. Hence

#=(a) =()

are possible choices, and

(1) () (v

with appropriate s € R, t+ > 0. The matrix [C] = / — [A] contains the singular

matrix C = whose columns are multiples of b. With the same starting

2
vectors [x]° as in Table 1 and the same stopping criterion as in Example 4.1 we got

the results in Table 2.

—_ N -
12| —

P —
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In order to illustrate (4.4) we first remark that the Drazin inverse (I — AP
coincides with the inverse (I — A)~! whenever this latter inverse exists—see (2.4).
Iterating by

= Ak + b, k=0,1,...,

thus yields to the unique limit

x* = (I—-Ay) b=

2 1 2a 1 2
- =50 1) (1) =) -

forany o [0, %) It is a particularity of our example that this limit does not depend

on a. By virtue of the Theorems 3.4 and 4.1 it must be contained in the interval
limit [x]* = [x]*([x]°) of (1.3) for every starting vector [x]°.

1
Ifcx—zthen
B 00Y .
_5(01)5

: B 11 . L] =l
w1thS—(_1l),S —2(1 I).Hence

(I—AI;Z)D:S(ég)S_"—"I—Aug and

N = R
e
Q
P S
l
N

Ag=Ajs=A=

R 1|
W N |

| (4.31)
(I —A1,2)Pb = (_1 ) =b.
By virtue of Theorem 3.3 and (3.2) -the iteration
X = Ay b, k=0,1,.., (4.32)

is convergent to

00 = ([ —A)Pb+{I — (I — AT —A2)P}0 = b+ Ay ox°

=i

as can be seen, e.g., from (4.31) and A%Q = Ay ,2. From x*(x%) e [x]*([x]°) for any
x0 e [x]° we get

D1* = b+A; 20 < x1*(1x%).

%0

= b=
S S
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Denote by ] ([y]*, x™) the interval hull of the two operands, 1.e., the smallest interval
vector which contains [y]* and the limit x* = (2,0)” from (4.30). It is obvious
that this interval hull is a subset of [x]* = [x]*([x]°). An easy calculation shows
that [J([y]*, x*) coincides with the computed “limit” [£]% in all cases of Table 2.
Therefore, by virtue of (4.29), we have

]* = (&% =0(y1*, x*)

in Table 2. In particular, this table reports the correct limits [x]*.

Note that [y]™* is a solution of [x] = Ay,2[x] + b and hence a limit of (4.32). This
follows from A ,26 = 0 and fromAl,,g(Al,g[x]O) = A,zu[x]0 which holds since A; ;2
is degenerate and non-negative. But [y]* is generally not a solution of (1.5) with
[A], b as given in the present example.

The final part of this section is devoted to some connection between the The-
orems 3.6 and 4.1 for which the conditions (/) and (if) coincide. We show how
the convergence of ([A]¥) in Theorem 3.6 can be derived from Theorem 4.1 if the
remaining assumptions of Theorem 3.6 hold. To this end we first remark that these
assumptions for [A] hold if and only if they hold for [A]”. Since [A]* = (*([A]"))T
and ¥[A] = (([A]7)%)7 it can be seen at once that

[A]% = lim [A]F exists if and only if <[A] := lim *[A] exists.  (4.33)

k— oo

Trivially,
(A1 = (2(A1))" and =[A] = (A1) (4.34)

hold. Denote by [a]’ the /-th column of [A] and let [x]*([a]’) be the limit of the
iteration

x1° = [a]
K = [AIRDE, k=01, ... (4.35)

which exists according to Theorem 4.1. (Note that [z]* = 0 is a solution of [x] =
[A][x].) Then [x]¥ = (**'[A])y, i=1,...,n, hence

Jim (A1 = ([7(al), ... 1" ([a]") (4.36)

exists and (4.33) proves the corresponding part of Theorem 3.6.

Remark4.3. Let the assumptions of Theorem 3.6 hold, in particular, letrad([A]) # O.

(a) If p(|[A]]) < 1 then <°[A] = [A]* = O. This follows directly from (4.34), (4.36)
since Theorem 3.4 yields to [x]*([a]’) = 0.

(b) If p(|[A]]) = 1 then <[A] # O, [A]> # O. With v,w as in (2.1) this can
be seen from rad(*[A]) > [[A]|*~'rad([A]) which becomes rad(°[A]) >
vwTrad([A]) # O if k tends to infinity.
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(c) Let p(|[A]]) = 1, let My as in Theorem 3.5 and choose A e [A] such that
|A| = |[A]]. The representation (4.36) shows that the columns of *°[A] are limits
of (4.35). Therefore, they are solutions of [x] = [A][x]. Taking into account
[z]* = 0 and combining the cases in Theorem 4.2 we get

K*(al) = siDv+1v[—1,1], s,y eR, [D| =1, (4.37)

t; > 0 sufficiently large, bounded from below by rm,n = Imin.; in (3.6) with
% = 5;Dv. The case t; = 0 is possible.

If Msym # 0 or if Mgym = 0 and p(A) < 1 then according to Theorem 3.5 the
midpoint of a solution of [x] = [A][x] is unique. Therefore it coincides with
z¥ = 0 of [z]* =0. Hence s =0 1n 4.37) forl = 1, ...;n, and ©A = 0, ie.,
*°[A] = —(*°[A]). This proves parts of the Corollaries 3-5 in [6].

If Msym = 0 and A = D|[A]|D, |D| = I then the first summand in (4.37) cannot
be skipped, D = D, and (3.6) reads

I 2 Imin,!

rad([aly)
|

If s; # O for some / then (4.37) implies °[A] # — (°°[A]), and fyn,; > O follows

from the assumption rad([A]) # O and Mgy, = ) which guarantee the existence
of at least one non-symmetric, non-degenerate entry of [A].

If s, = O for all / then (4.37) yields to @[A] = vtT[—1,1] = — (*[A]) with
0 < = (t;) € R”. Without loss of generality we may assume A = |[A]|. From
A7 = |[A]]*>® = wwT e *°[A] we get w < 1. From [A] < [—6, 1]|[A]| for some
6 € (0, 1) we obtain *[A] c [—6, 1]|[A]|> = [0, 1]vwT, whence —6w < —t.
This results in the contradiction w < t < 8w < w and shows that this case
cannot occur.

= max {0, -5, 51| 1 <0,j < m, @ #0, rad([aly)) # 0}.

Thus we have proved the subsequent theorem whose first part can already be
found as Theorem 4 in [6] for [A]*°.

THEOREM 4.3. Let |[A]| be irreducible and semi-convergent with p(|[A]]) = 1,
and let rad([A]) # O. Then <[A] # — (*°[A]) and [A]™ # — [A]®, respectively, if
and only if the following two conditions are fulfilled:

(i) [A] contains exactly one matrix A with |A| = |[A]].

(ii) The matrix A in (i) has the representation A = D|[A]|D, where D is some
signature matrix.

In this case °[A] = DvsT +vtT[—1,1] and [A]™ = swTD+iwT[—1, 1], respectively,

where v is any fixed right Perron vector, w is any fixed left Perron vector and

5,1,5,f € R" are appropriate vectors with t,f > 0. Otherwise *[A] = vtT[—1,1]
and [A]* = iwT[—1, 1], respectively.
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Final remark. In the present paper we have considered the convergence of the
interval iteration [x]**! = [A][x]¥ + [b), k = 0, 1, ... We have completely discussed
the case where |[A]] is irreducible with p(|[A]]) = 1. For reducible matrices |[A]|
with p(|[A]]) = 1 things are more complicated. This case is studied in H.—R. Arndt’s
thesis which will be published separately. For p(|[A]|) < 1 convergence can be
guaranteed by O. Mayer’s result [10] mentioned in Section 1. For p(|[A]]) > 1
Case 1 in the proof of Theorem 4.1 shows that there are starting vectors [x]° for
which the sequence ([x]¥) is divergent.
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