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Abstract. We consider the interval iteration [x]kH = [A][X]k+ [b]with
p(I[A]I) ::; 1 where I[A]I denotes the absolute value of the given interval
matrix [A]. If I[A]I is irreducible we derive a necessary and sufficient
criterion für the existence of the limit [x]*= [x]*([x]o)of each sequence
([xt) of interval iterates. In this way we generalize a well-known theorem
of O. Mayer [6] on the above-mentioned iteration, and we are able to
enclose solutions of certain singular systems (I - A)x = b with A E [A]
and degenerate interval vectors [b]==b. Moreover, we give a connection
between the convergence of ([X]k) and the convergence of the powers of
[A].

1 Introduction

Consider Poisson's equation

[Pu [Pu
ßS2 + ßt2 = - f(s, t) (1)

on the unit square Q = [0,1] x [0,1] with a continuous function f defined on Q. If
one looks for a solution u(s, t) of (1) subject to the periodic boundary conditions

u(O,t) = u(l, t), 0::; t ::; 1
u(s,O) = u(s, 1), 0 ~ s ~ 1 }

(2)

and if one discretizes (1) using an equidistant grid of mesh size h = ~, n E
N\{1,2}, a row-wise ordering and the well-known five point central difference
approximation one ends up with a system

Cx =b (3)

of linear equations in which C E JRn2xn2 is defined by

D -1 0... 0-1
-1 D -1 0... 0

0 -1 D -1 '.

4-1 0... 0-1
-1 4-1 0... 0

1
C=-

4 ,D=
0 -1 4 -1

0
0... 0-1 D-1

-1 0... 0-1 D

0
0... 0-1 4-1

-1 0... 0-1 4

R. Alt et al. (Eds.): Num. Software with Result Verification, LNCS 2991, pp. 191-197,2004.
<$Sprinoer-Verlag Berlin Heidelberg 2004



192 G. Alefeld and G. Mayer

D E }Rnxn, I = identity matrix. The components bi of b E }Rn2 are given by

h2
bi = - j(sz, tm),4

.
1 2

't= ,...,n,

with Sz = tz = lh, i = (m - 1) . n + I, I, m = 1,... , n. When discretizing one
assurnes a periodic eontinuation of u aeross the boundary of Q. The unknowns
Xi refer to the inner grid points and to the grid points of the right and upper
boundary of Q. It is known (cf. [2], p. 196 ff) that Cis a singular matrix of rank
n2 - 1. This follows from the fact that it is a singular irreducible M matrix with

property e (cf. [2], Definition 6.4.10, Theorem 6.4.16 and p. 201). Riehardson
splitting applied to C yields to the iterative process

(4)

where A = I - C. Since every diagonal element of C is 1 the iteration (4)
coincides here with the Jacobi method for (3). If n is odd the matrix A has the
spectral radius p(A) = 1, and all eigenvalues >.of A with 1>'1= 1 are one and
have only linear elementary divisors, i.e., the corresponding Jordan blocks are
1 x 1. Such matrices - together with those of spectral radius less than one - are
called semi-convergent ([2], p. 152). They represent just the matrices für which
the limit ACX>= limk-+cx>Ak exists.

We remark that the matrix A arising from the discretization of (1), (2) is
symmetrie. Therefore, all eigenvalues of A have only linear elementary divisors.
In addition, A is non-negative and irreducible. Hence the Theorem of Perron
and Frobenius guarantees that the eigenvalue >. = 1 is even algebraically simple
which is not required in the definition of semi-convergence and which is not
necessary for OUf subsequent considerations. Moreover, A is primitive if n is
odd, and eyclic of index 2 if n is even. This can be seen by inspecting the lengths
of the circuits in the directed graph associated with A ([2], § 2.2). Therefore, the
theory of Perron and Frobenius on non-negative irreducible matrices shows that
>. = 1 is the only eigenvalue of A with 1>'1= p(A) = 1 in the case of n being odd
while >. = -1 is another eigenvalue with this property in the case of even n.

In this short note we will eonsider the case where A is allowed to vary within

a given interval matrix [A] such that the absolute value I[A]Iof [A]is irreducible
and semi-convergent. We present - in a condensed form - resuIts on the corre-
sponding interval iteration

Xk+1 = Axk + b, k = 0,1,... ,

[X]k+l = [AJ[x]k + [b], k = 0,1,... (5)

generalizing in this way a well-known theorem of O. Mayer [6]; cf. also [1],
pp. 143 ff. By lack of space we must omit the very lengthy and by no means
straightforward proofs. They will be published elsewhere.

We finally remark that singular linear systems also OCCUfin other situations
- cf. [2], § 7.6, in this respect.
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2 Results

In order to recall some results for the iterative process (4) with (general) semi-
convergent matrices A we first define the Drazin inverse A D of an arbitrary

. .

(Jo 0 ) -1 D (
0 0

) -1

n x n matnx A = S 0 Jr S by A = S 0 (Jr)-l S . Here, J =

(Jo ?) is the Jordan canonical form of A with square blocks Jo, Jr, whose
0 Jr

diagonal blocks are just the singular Jordan blocks of J, and the non~singular
ones, respectively; cf. for instance [2], § 5.4.

The following theorem which is contained in Lemma 7.6.13 in [2] answers
completely the quest ion on the convergence of (4).

Theorem 1. Let (3) (with a matrix C not necessary equal to the one obtained by
discretizing (1) and (2)) be solvable. Then each sequence (xk) of iterates defined
by (4) is convergent if and only if A is semi-convergent. The limit is independent
of Xo if and only if p(A) < 1. In any case this limit x* is a solution of (3) and
a fixed point of (4). By means of Drazin inverses it can be expressed as

x* = (I - A)Db + {I - (I - A)(I - A)D}xO.

If p(A) < 1 then (I - A) -1 exists. Hence (3) is uniquely solvable and by virtue of
(I - A)-l = (I - A)D Theorem 1 reduces to abasie result of numerical analysis
in this case. Therefore, it is essentially the case p(A) = 1 which is of interest in
OUf paper.

For the interval iteration (5) we will replace the assumption of solvability in
Theorem 1 by the existence of a fixed point of (5). For interval matrices [A] with
p(I[AJI) < 1 the above-mentioned theorem of O. Mayer [6] guarantees that (5)
has a unique fixed point. If I[A]I is irreducible and satisfies p(1 [AJI) = 1 we could

prove in [5] an exhaustive result on the existence and the shape of such fixed
points. In order to formulate OUfmain result we need the following definition. .

Definition 1. ([3j, !4}) Let [A] be an n x n interval matrix. Let

[A]O = I, [A]k+1 = [A]k . [A], k = 0,1,... .

If [A]OO= limk-+oo [A]k exists then we call [A] semi-convergent.

Theorem 2. Let [A] be a non-degenerate n x n interval matrix with irreducible
absolute value I[A]I. Let the iteration (5) have a fixed point [z]* (which implies
[b] - b E JRn in the case p(I[AJI) = 1 according to Theorem 8 in [5}). Then the
following three statements are equivalent.

a) Each sequence ([x]k) of (5) is convergent.
b) The interval matrix [A] is semi-convergent.
c) The absolute value I[A]I is semi-convergent. Moreover, if p(I[AJI) = 1 and if

[A] contains only one matrix A with lAI = I[A]I then A =J -DI[A]ID for all
matrices D withIDI= I.
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In case of convergenceof (5) the limit [x]* = [x]*([x]O) of ([x]k) is a fixed point
of the iteration (5). It contains the set S([x]O) of all solutions of (3) which one
obtains as limits of sequences (xk) of iterates defined by (4) with xO E [x]O,i.e.,

S([x]O)= {x* I x* = (I - A)Db + {I - (I - A)(I - A)D}xO,

A E [A], xO E [x]O, bE [b]} ~ [x]*([x]O).

In case of convergence of (5) the limit [x]* of ([x]k) does not depend on the
starting vector [x]Oif and only if one of the following equivalent properties holds:

(i) p(I[A]I) < 1.
(ii) limk-+co I[A]lk = O.

(iii) limk-+co [A]k = O.

Note that the equivalence 'a) {:} c)' remains true even if [A] is degenerate (and

I[A]I is irreducible) while 'b) :::}c)' becomes false as the example

[A] - A = (2/3 2/3 )2/3 -2/3
(6)

shows. (Cf. [3], [4] for further details.) Since the statements b), c) do not depend
on [b]and since (5) has always the fixed point [z]* - 0 for [b]- 0 the existence
of [z]* does not need to be assumed in Theorem 2 for the equivalence of b) and
c). If I[A]I is reducible the equivalence of (ii) and (iii) becomes false as can be
seen, e.g., by the 2 x 2 block diagonal matrix [A] = diag([O,1/2], B) where B is
the matrix denoted by A in (6). We refer to [3] or [7] in this case.

We conclude our contribution with a numerical example which illustrates the

theory.

Example 1. Define the n x n interval matrix [D] by

[D] = [D][a}'[ß] =

[00] [ß] 0 ... 0 [ß]

[ß] [00] [ß] 0 ... 0

0 [ß] [00][ß] ". :
". 0

0 ... 0 [ß] [00] [ß]

[ß] 0 ... 0 [ß] [00]

and the n2 x n2 interval matrix [A] = [A,A] in block form by

[D] [,]1 0 ... 0 [,]1
hV [D][,]1 0 ... 0

0 hV [D][,]1 ".
[A]=

0
0 ... 0 [,]1 [D] [,JI

hV 0 ... 0 [,]1 [D]
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where [0:], [ß], [,] are intervals which are still to be chosen. By means of the
Kronecker product Q9the matrix [A] can be written as

[A] = I Q9[DJra]'[ßJ + [D]o,h] Q9I, I E JRnxn.

In this way it can easily be constructed in software packages like INTLAB [8]
whose version 4.1.1 we used for our interval computations. We choose [0:], [ß] i=
0, [,] i=0 such that I[0:]1+ 21[ß]1+ 21[,] I = 1 holds. Then I[A]I is irreducible and

2

p(I[AJI) = 1 is guaranteed. Moreover, [b] - b = (bi) E JRn is necessary for the
existence of a fixed point of (5) which is required as assumption in Theorem 2.

We first use n = 5, [0:] = 0, [ß] = [,] = 1/4. This leads to the particular
2 2

situation of Seetion 1 in which we showed that [A] - A = I[A]I E JRn Xn is
2

semi-convergent with p(I[A]I) = 1. If b = (I - A)z for some z = (Zi) E JRn then
Theorem 8 in [5] guarantees that (5) has the fixed points

[z]* = Z+ se + tl-I, l]e, (7)

where s, t are any real numbers with t 2: 0 and where e
(1, 1, . .. , 1)T E JRn2 is an eigenvector of A 2: 0 associated with the eigen-
value A = p(A) = 1. Therefore, by virtue of Theorem 2 a), c), extended by
the first remark following this theorem, the limits [x]* = [x]*([x]o) exist for
any starting vectors [x]o and are precisely the vectors [z]* in (7). We choose
bi = bn2+1-i = 0.5 for i E {I, 3, 4, 7}, b2 = bnLl = -2, bi = 0 otherwise. Then

Z = (1, -1, 1, 1,... ,1,1, -1, l)T E JRn2satisfies b = (I - A)z as required above.
We iterated according to (5) with different starting vectors [x]o. We stopped the
iteration either when the criterion

[i]k = [i]k-l (8)

was fulfilled for some k = ko or when k reached a given upper bound kmax, where
here and in the sequel the tilde denotes computed, i.e., rounded quantities. By

the outward rounding oft he machine interval arithmetic (cf., e.g., [1]) we always
have [x]k ~ [i]k = ([i]n, k = 0,1,... . Moreover, in the case (8) we can
guarantee [x]k ~ [i]ko, k = ko, ko + 1,... ,whence [x]* ~ [i]ko.

If (8) cannot be obtained, i.e., in the case where k reaches kmax one can

compute the midpoints mi = mid ([i]7rnax - Zi)' i = 1,... , n2, and the radii

Ti = rad ([i]7rnax - Zi)' i = 1,... ,n2. Here, we assurne that the computed

values mi,ri satisfy [i]7max - Zi ~ mi + Td-1, 1]. Define

S = (mrx mi + min mi) /2 E IR.
(9)

and

i = max (Ti + Is - mi I)E JR
~

(10)

using upward rounding in the latter case. According to (7) the vector

[zr = Z+ se + ir-I, I]e
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(not to be confused with [z]*in Theorem 2) is a fixed point of (5) provided that
[i]* is computed with exact arithmetic. By construction, [i]* contains [x]kmax.
From [x]kmax ~ [x]kmax ~ [i]*we get

[X]k ~ [i]*, k = kmax, kmax + 1, . .. , whence [x]* ~ [i]*.

This holds also if kmaxis replaced by ko in the case (8). In our tables we list [i]*
in both cases.

Table 1. Starting vector vs. enclosure [i]*= i + se + i[-I, l]e

Without further knowledge on a relation between [x]* and [x]o we cannot, of
course, assess the quality which the enclosure [X]koor [i]* of the true limit [x]*
has with respect to [x]*. For degenerate starting vectors [x]o- xo, however, the
radius of [x]ko, and [i]*, respectively, may indicate this quality. In theory this
radius is zero for such starting vectors, in practice it is not by virtue of rounding
errors during the iteration. Table 1 contains the parameters s, i from (9), (10)
for different starting vectors.

Table 2. Starting vector vs. eilclosure [i]* = i + se + i[-I, l]e

[x]O s t ko kmax

0 -0.84 1.021405182655144.10-14 192

e 0.16 + 10-14 3.996802888650564.10-14 - 200

[-l,l]e -0.84 + 2 . 10-14 1.00000000000006 - 200

[-2,1]e -1.34 + 10-14 1.50000000000006 172
n2

((-1)i[-1,2] )i=l
-0.86 + 10-14 1.50000000000006 - 200

[x]O s t ko kmax

0 0 1 814

e 0 1 796

[-1, l]e -0.42 - 10-14 1.42 + 10-14 796

[-2, l]e -0.92 - 2.10-14 1.92 + 2 . 10-14 796

( (-l)i[-I, 2] ) 1
-0.68 - 2 . 10-14 1.68 + 2 . 10-14 777
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We next choose n = 5, [a] = [0,1/4], [ß] = [0,1/8], b] = [1/8,1/4] and
b = (I - A)z with z as above. Then nearly all earlier remarks hold analogously,
and we obtain the results of Table 2. By virtue of Theorem 8 in [5] we get the

restriction t 2: I1: 1 + si = 1 + Isl for s, t from (7). A short glance at Table 2
reveals that this inequality also holds for our computed values S, t instead of s, t.
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