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Abstract. The paper establishes a computational encIosure of the solution of the linear complemen-
tarity problem (q, M), where M is assumed to be an H-matrix with a positive main diagonal. A dass
of problems with interval data, which can arise in approximating the solutions of free boundary
problems, is also treated successfully.

1. Introduction

Let M = (mij) E Rnxn and q = (qJ ERn. The linear complementarity problem,
denoted by (q,M), is to compute a vector x such that

x>O, Mx+q>O, (Mx+q)Tx=O, (1.1)

or to show that no such solution exists. In this paper we consider the problem (q, M),
where M is assumed to be an H-matrix with a positive main diagonal. Remember
that M is an H-matrix if there is a vector d = (di) with positive components di
such that

L Imijldj < Imiildi,
jrfi

Define the comparison matrix NI = (mij), where

i =1,2, ..., n. (1.2)

{

Im;; I

mij = -Imijl

if i =j,

if i I:j.

* The artide was completed during the second author's stay in the Institut für Angewandte
Mathematik, Universität Karlsruhe.
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Then we can altematively write the above condition (1.2) as

Md>O.

It is known that an H-matrix with a positive main diagonal is a P-matrix, which is
defined as a matrix with positive principal minors; and M is an H-matrix if and only
if M-I > O.One can find the aforementioned results in Plemmons [11]. From the
c1assicresult [12] we know (q, M) has a unique solution for any vector q if M is an
H-matrix with a positive main diagonal. .

There are various numerical methods for solving linear complementarity prob-
lems [5], [9], but very few enc10sure methods are studied. In [1], [3] the authors
developed the Moore test [8] and applied Miranda's theorem [7], respectively, to
the equation

min{x, Mx+q} =0, (1.3)

where minC.) is the componentwise minimum of two vectors. (1.3) is an equiv-
alent formulation of (1.1) given by Pang in [10]. The two papers both provide
sufficient conditions for insuring the existence of solutions of the linear comple-
mentarity problem in a given interval, but neither points out how to compute the
interval enc10singthe solutions. This paper establishes an enc10sureof the solution
of (q,M), for which the main computational cost is to solve a system of linear
equations. Furthermore, we extend the enc10suremethod to the problem with inter-
val data in the vector q , which can arise in approximatingthe solutionsof the
free boundary problems [13]. Recall some necessary notations. Denote the one-
dimensional real c10sed interval by [x] = [!, x], where :! < x are real numbers.
Denote the n-dimensional real c10sed interval by [x] = ([x])j, where each of its
components ([x])j is a one-dimensional real c10sedinterval. Also we can write an
n-dimensional interval as [x]= [!,x], where:!,x E Rn and:! < x holds component-
wise. We define the midpoint of an interval by m([x]) = (,!+ x) / 2 and the radius by
r([x]) =(x - :!) / 2. Refer to [2].

2. Existence Test

We begin with giving an existence test for the solution to the nonlinear comple-
mentarity problem NCP(f), i.e, the problem of finding a vector x such that

x>O- , f(x) > 0, XTf(x) =0,

where f : Rn -7 Rn is assumed to be continuously differentiable and has an interval
extension f'([x]) over [x]. Define

p(x) =max{O,x - Df(x)},

where D is a diagonal matrix with positive diagonal elements. We can call D a
positive diagonal matrix. It is known that x solves NCP(f) if and only if X is a
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fixed point of the mapping p(x), i.e., x =p(x), which ean also be written as the
equation

min{x, Df(x)} =0.

We ean see that Pang's formula (1.3) is a special ease of it.
Introduee an interval operator

max{O, [xH =[max{O,,!}, max{O,x}],

where [x]is an n-dimensional interval, and max{O,x} is earried out eomponentwise.
Notice that this interval operator is inc1usionmonotonie, i.e., the inc1usion[x] k [y]
implies max{O,[xH k max{O,[yH, and the faet that r(max{O, [xH) < r([x)).
The following is an interval test for the existenee of solutions to the nonlinear
eomplementarity problem NCP(f).

THEOREM 2.1. Let [x]be an n-dimensional interval, denote by f'([x)) an interval
extension off' over [x].lf

r(x, [x],D) := max{O,x - Df(x) + (I - Df'([x))) ([x] - x)} k [x], (2.1)

where x E [x] is fixed and D is a positive diagonal matrix, then there is a solution
x* to NCP(f) in r(x, [x],D). Moreover, if a solution x* ofNCP(f) is contained in
[x], then x* E r(x, [x],D).

Proof For any y E [x] we have

y - Df(y) EX - Df(x) + (I - Df'([x))) ([x] - x),

see [8], so

p(y) =max{O,y - Df(y)} E max{O, x - Df(x) + (I - Df'([x))) ([x] - x)},

i.e., r(x, [x],D) is an interval extension of the mapping pO over [x]. Thus the
eondition (2.1) implies that p(.) maps [x] into itself, from whieh, using the eontinuity
of p(.), it follows thatp(.) has a fixedpointx* E [x],wherex* is a solution toNCP(f).
For any solution x* ofNCP(f) in [x], we ean eonc1ude that

x* = p(x*) E max{O,x - Df(x) + (I - Df'([x))) ([x] - x)},

whieh indieates x* E r(x, [x],D). 0

COROLLARY 2.1. Let r(x, [x],D) be defined as in (2.1). Ifr(x, [x],D) n [x] =°,
then there is no solution to the problem NCP(f) in [x].

Theorem 2.1 indicates that if we ean findan interval [x]0, for whieh the eondition
(2.1) holds, then an inc1usionmonotonie sequenee {[x]k}of n-dimensional intervals
ean be eomputed, where

[X]k+1 =r(xk,[x]k,Dk) n [x]k, k=O,I,...,
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Xk E [X]k, Dk a positive diagonal matrix. Furthermore, we can guarantee that a

solution x* to NCP(f) is contained in each interval [x]k. A real approximation of x*
can also be automatically given by xk E [x]k with the componentwise error less than
I[x]k - [xk,xk]l. A commonchoice of xk is Xk =m([x]k).Thenthecomponentwise
error is less than or equal to the radius r([x]k).We apply the aboveresults to linear
complementarity problems.

COROLLARY 2.2. Let M E Rnxn, q E Rn, let [x] be an n-dimensional interval,
x E [x] be fixed and D a positive diagonal matrix. If

r(x, [x],D) := max{O, x -.D(Mx + q) + (/ - DM)([x] - x)} k [x], (2.2)

then there is a solution x* to the linear complementarity problem (q, M) in r(x, [x],D).
Moreover, if a solution x* of(q,M) is contained in [x],then x* E r(x, [x], D).

We give the following interval iterative algorithm for solving the linear com-
plementarity problem (q, M), where M =(mij) is an H-matrix with a positive main
diagonal.

ALGORITHM 2.1.LetD =diag(mlil ,m;l, ..., m~l), and [enclosure]be an interval
in which the unique solution x* of (q,M) is contained. Compute

{
[x]o := [enclosure],

[x]k+l := [x]k (I max{O,xk - D(Mxk + q) + (/ - DM)([x]k - xk)},

where xk = m([x]k).

Since the solutionx* of (q,M) is containedin [enclosure],AIgorithm2.1 will
compute a nested sequence {[x]k}. Furthermore, we can show that the sequence
converges to the point interval [x*,x*].

THEOREM 2.2. Let M be an H-matrix with a positive main diagonal. If the unique
solution x* of(q,M) is contained in [enclosure],thenAlgorithm 2.1 will compute a
nested sequence {[x]k}, which converges to [x*, x*].

Proof. From Corollary 2.2 we know that AIgorithm 2.1 will compute a nested
sequence {[x] k} such that x* E [x]k for k = 0, 1, Considering that

[x]k+l c max{O, xk - D(Mxk + q) + (/ - DM)([x]k - xk)},

we have

r([xt+l) < r( max{O,xk - D(Mxk + q) + (/ - DM)([x]k - xk)})

< r(xk - D(Mxk + q) + (I - DM)([x]k - xk))

= r((/ - DM)([x]k - xk)).

Since xk =m([x]k), we have

(/ - DM)([xt - xk) = (/ - DM) [-r([x]k), r([x]k)]

= [-(1 - DM)r([x]k), (l - DM)r([x]k)],
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where I - DM > O. Hence

r([x]k+l) < (I - DM)r([x]k).

Since M is an H-matrix, p(J - DM) < 1, see [11]. Consequently, r([x]k) ~ 0, and
the conclusion holds. 0

3. Enclosing Solution

We consider the problemof computingan [enclosure]needed in AIgorithm2.1
and in Theorem 2.2. Choose x = 0 in r(x, [x],D) of (2.2), D = diag(mjj I) and
[x] =[-d,d], where d > O.Then

(I - DM)[-d, d] =[-(J - DM)d, (J - DM)d],

and we can write (2.2) as

r(x, [x],D):= max{O,-Dq + [-(J - DM)d,(J - DM)d]} c [-d,d]. (3.1)

In order to find a vector d > 0 such that the inclusion (3.1) holds, we need the
following results.

THEOREM 3.1. Let a, b, CE Rn, a < band C> O.Then

max{O,[a,bH k [-c, c]

holds if and only if b < c.

Proof Consider the i-th component of the inclusion. If

max{O,[ai,bin k [-Ci, cd,

then

max{O, [ai, bin =max{O, bi} < Ci,

and so bi < max{O,bi} < Ci.Conversely,if bi < Ci,then max{O,bi} < Cisince
Ci> O.So max{O,[ai,biH k [-Ci,cd if and only if bi < Ci,and the conclusion
holds for the n-dimensional case. 0

COROLLARY 3.1. Let M E Rnxn have a positive main diagonal (not necessarily an
H-matrix), and let d > O.Then the inclusion (3.1) holds for (q, M) if and only if

Md+q > O.

Proof From Theorem 3.1 it follows that the inclusion (3.1) holds if and only if

-Dq + (J - DM)d < d,

which is equivalent to D(Md + q) > 0, and so the conclusion holds since Dis a
positive diagonal matrix. 0
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Assume that M is an H-matrix with a positive main diagonal. From Corollary 3.1,
it follows that the unique solution x* of (q, M) is contained in

max{O,-Dq + [-(/ - M)d, (/ - M)d]}

or equivalently

max{O, -Dq+ [-d +Du,d - Dun, (3.2)

where u = Md, d > 0 and Md + q > O.If u > 0 is given,then we can compute
d =M-I U > 0; otherwise, we cannot guarantee that Md =u has the nonnegative
solution. Hence, to get an enc1osure,we have to compute a vector d satisfying the
following system of linear inequalities

{

d > 0,
Md > 0,

Md+q > O.

(3.3)

We give the following algorithm to compute the enclosure of the solution of the
problem (q,M).

ALGORITHM 3.1. For the linear complementarity problem (q,M), where M is
assumed to be an H-matrix with a positive main diagonal, choose the positive
diagonal matrix D as D =diag(miil), choose u =(Ui), where

Ui ={ -:.
if qi > 0,

if qi < 0,

and compute the unique solution d of the system of linear equations Md =u. Then
the unique solution of (q, M) is contained in

[enc/osure]=max{O,- Dq + [-d + Du, d - Du]}. (3.4)

Let d satisfy (3.3) with Md = U. Then we can get an enclosure of the type
of (3.2)

max{O,-Dq+l-d +Du, d - Dun.

Let d and u be defined as in AIgorithm 3.1. Since u > 0 and u + q > 0, it is c1ear
that u > u. Because I - DM > 0, we have

d - Du= (/ - DM)d > (/ - DM)d =d - Du,

which indicates

max{O,-Dq+ [-d +Du,d - Dun ~ max{O,-Dq+ [-d+Du, d - Dun,

in other words, (3.4) is the sharpest enclosure of the type of (3.2) under the require-
ment of (3.3).
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4. Numerical Results

In this section we apply AIgorithm 3.1 for computing an enc10sureto several typical
test problems in the literature, and improve the enc10surevia AIgorithm 2.1 and the
iterative algorithm presented in Alefeld et al. [I]. We terminate the iteration when
the radius of the interval is not more than le-15 componentwise. The algorithms
are coded in MATLAB6.5. The numerical results inc1udethe enc10surescomputed
by AIgorithm 3.1, and we use the following abbreviations:

NUMI:

NUM2:

RADI:

RAD2:

FUNI:

FUN2:

the number of the iterations of AIgorithm 2.1;

the number of the iterations of the algorithm of [I];

IIr([x*](l)lloofor [x*](l)computed by the method of this paper;

IIr([x*](2»lIoofor [x*](2)computed by the method from [I];

11 min(x,Mx + q)lIoo,where x = m([x*](l);

11 min(x,Mx + q)lloo, where x = m([x*](2».

EXAMPLE 4.1 (Random test problems). We first apply AIgorithm 3.1 to two ran-
dom test problems studied in Alefeld et aL[I], which have the common matrix M
and different column vectors q, where M =(mI, m2, m3, m4),

(

1.388713122168711

)

- -4.699766249426920e-1
m) - 7.370559770214220e-2'

-4.1IOO9046103311Ie-1

(

-4.699766249426920e-1

)

1.453401598450949
m2 = 3.334909523505895e- 2 '

-5.175564143615730e-1

(

7.370559770214220e-2

)

- 3.334909523505895e-2
m3 - 6.604515405730874e-l'

-1.651 162344083680e -I

(

-4.11OO90461033111e-1

)

- -5.175564143615730e-1
m4 - -1.651162344083680e-l .

1.477373564900058

The matrix is diagonally dominant, and so it is an H-matrix. Furthermore, the
diagonal elements are positive. For the vectors

(

9.252128641303051

)

2.789538442487311
q = 9.950524251712144

- 3.325681126317601
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Table 1.

i [enclosure]

1

2

3
4

[0.00000000000000, 0.00000000000000]

[0.00000000000000, 0.00000000000000]

[0.00000000000000, 0.00000000000000]

[1.00479765662298, 3.49735563125256]

Table 2.

i [enclosure ]

1

2

3

4

[0.00000000000000, 1.26839053831666]

[0.00000000000000, 0.09849992333873]

[1.15283989683645, 3.53837185135689] .

[0.32032065803092, 3.53173054280243]

and

(

8.679035675427925e-1

)

2.692546385763099
q = -1.549159013124430

- 2.845459307376360

respectively, AIgorithm 3.1 gives the enclosures for the solutions to the corre-
sponding linear complementarity problems. The results are presented in Table 1
and Table 2, respectively.

In Table 3 a comparison of the new algorithm is performed with the algorithm
from [1].

For the second example, if we apply AIgorithm 2.1 two times, and start the
algorithm of [1] with the interval computed, then after one iteration, an enclosure
is computed with the radius less than 1e-15 componentwise.

EXAMPLE 4.2 (Murty [9]).

122...2
012...2

M=1001...2 q = (-1, -1, ..., -1/.
. .

000...1

Table 3.

Example NUMl NUM2 RADI RAD2 FUN 1 FUN2

1 1 1 0 0 0 0

2 21 14 4.440ge-16 4.8880e-17 0 4.8880e-17
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M is an H-matrix with positivediagonal elements. The exact solution ofthe problem
is x* = (0, ...,0, I)T. Applying AIgorithm 3.1, we can compute the enc10sure

[enclosure]=

[0,3n-l]
[0,3n-2]
[0,3n-2]

[0,3]
[1,1]

which is very wide if the dimension of M is large. We do the numerical tests for
n = 5,10,20,50,100, and the results show that it is needed just one iteration until
the stopping criteria is fulfilled via the algorithm from [1] and also if AIgorithm 2.1
is used.

EXAMPLE 4.3 (Journal hearing problem [4]). The following problem can arise in
discretizing the free boundary problem for an infinite journal bearing by a finite
difference method [6]: M =(mij) is a tridiagonal matrix, where

mij=

-h~ I'
1+2

h~ 1 + h~ l'
1-2 1+2

-h~ I'1--2
0,

if j =i + 1,

if j = i,

if j =i-I,

otherwise

and q =(qi), where

qi =8(hi+! - hi - Ü,2 2
i = 1, 2, ..., n.

In a common model for the infinitely long cylindrical hearing,

1 + € cos(1r(i - k)8)h. 1 =
1-2 J1i"

i = 1, 2, ..., n + 1,

8 = ~ l ' T = 2. Following Cryer [6], choose € = 0.8. For n = 10 and n = 100n+

AIgorithm3.1givesthe enc10surespresentedin Tables4 and 5.
For the case n = 100, the algorithm from [1] does not improve the enc1osure.

However,startingwith the intervalwhich the AIgorithm2.1has computed after 1000
iterations, the algorithm of [1] computes an enc10surewith RAD2 < 4.4490e-16
and FUN2 < 6.5161e-17 after just one iteration.
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Table 4. (n = 10)

[enclosure]

1
2
3
4
5
6
7
8
9

10

[0.OOOOOOOOOOOOOO,0.15860695902414]

[0.OOOOOOOOOOOOOO,0.36679074313145]

[0.OOOOOOOOOOOOOO,0.73042625644525]

[0.OOOOOOOOOOOOOO, 1.56250650372998]

[0.29659205265926, 3.08014830457683]

[0.OOOOOOOOOOOOOO, 0.OOOOOOOOOOOOOO]

[0.OOOOOOOOOOOOOO, 0.OOOOOOOOOOOOOO]

[0.OOOOOOOOOOOOOO, 0.OOOOOOOOOOOOOO]

[0.OOOOOOOOOOOOOO, 0.OOOOOOOOOOOOOO]

[0.OOOOOOOOOOOOO0, 0.00352664824520]

Tab1e 5. (n = 100)

[enclosure]

10
20
30
40
50
60
70
80
90

100

[0.OOOOOOOOOOOOOO,0.17608386065516]

[O.OOOOOOOÖOOOOOO,0.42170736330022]

[0.OOOOOOOOOOOOOO,0.90669935946865]

[0.0000OOOOOOOOOO,2.10359042750378]

[0.OOOOOOOOOOOOOO,2.08064053243049]

[0.OOOOOOOOOOOOOO,0.24370748854934]

[0.OOOOOOOOOOOOOO,0.03790090545453]

[0.0000OOOOOOOOOO,0.01201508633063]

[0.00000oo0000000, 0.004528518 I93 17]

[0.OOOOOOOOO00000,0.00038814001364]

EXAMPLE 4.4 (Problems with interval data [13]). In [13] Schäfer develops the
validation method of [1] to the linear complementarity problem (q,M), where

11 -- 0 . . . 02

M=

Tab1e 6.

n NUMl NUM2 RADI RAD2 FUNl FUN2

10 137 2 8.8818e- 16 0 1.2837e-16 6.2450e- 17
100 10836 - 9.9920e- 16 1.3833 0 5.5635e-4

1 1 1-- --
2 2

0 0
.' 1 1 1--

2 2

0 0
1

1... --
2
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and q is not known exactly, however is contained in

1

q E [q]=2

h2. [~, 1] . [F] + ~h3. [-D,D] - Yo

h2. [~, 1] . [F] + ~h3. [-D,D]

h2. [~, 1] . [F] + ~h3. [-D,D]

In [13] the details of computing [q]are explained. The problem arises in discretizing
a c1ass of free boundary problems by taking account of the discretization error. In
[12] an enc10sure of the solution is also given

[O,Yo]

[x] =
[O,Yo]

[O,Yo]

by some characterization of the free boundary problem, not via the validation
method. Here we consider a modification of AIgorithm 3.1 to the problem (q,M),
whereM is an H-matrixwith a positivemain diagonal,and q E [q]is unknown.
However, the involved vector [q] is given.

ALGORITHM 4.1. For the linear complementarity problem (q,M), where M is
assumed to be an H-matrix with a positive main diagonal and q E [q] is unknown,
choose the positive diagonal matrix D =diag(mijl), choose u =(Uj), where

Ui ={ ~lJ;
if c.L > 0,
otherwise.

Solve Md =U for d, and set

[enclosure] =max{O,-D[q] + [-d + Du, d - Du]}. (4.1)

It is c1earthat the vector u chosen in AIgorithm 4.1 satisfies u > 0 and u > -q
for any q E [q],so from CoroIlary 3.2 we know that the unique solution to (q,M) is
contained in the enc10sure (4.1) although q E [q] is unknown. We test AIgorithm 4.1
for Examples 5.1 and 5.2 in [13].

Extensive numerical results show that the first ~-th components of the enc10sure
(4.1) are a little widerthan [O,Yo],but the remaining components are all sharper than
[0,Yo],and the radius decreases rapidly along with the increase of the subscript. It
seems very hard to improve the enc10suresby the iteration presented in [13].

Our experience shows that the algorithm from [1] works weIl especiaIly for
an interval sufficiently sharp. The more large-scaled the problem is, the sharper
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Table 7. (n = 10)

i [enclosure]

1
2
3
4
5
6
7
8
9

10

[0.01783542862101, 0.17945394160203]

[0.OOOOOOOOOOOOOO,0.15971337039656]

[0.OOOOOOOOOOOOOO,0.14187794177556]

[0.OOOOOOOOOOOOOO,0.12404251315455]

[0.OOOOOOOOOOOOOO,0.10620708453354]

[0.OOOOOOOOOOOOOO,0.08837165591253]

[0.OOOOOOOOOOOOOO,0.07053622729153]

[0.OOOOOOOOOOOOOO,0.05270079867052]

[0.OOOOOOOOOOOOOO,0.03486537004951]

[0.OOOOOOOOOOOOOO,0.01702994142851]

Table 8. (n =300)

[enclosure]i

30

60

90

120

150

180

210

240

270

300

[0.OOOOOOOOOOOOOO,0.18005631584958]

[0.OOOOOOOOOOOOOO,0.16012366950035]

[0.OOOOOOOOOOOOOO,0.14019102315112]

[0.OOOOOOOOOOOOOO,0.12025837680189]

[0.OOOOOOOOOOOOOO,0.10032573045266]

[0.OOOOOOOOOOOOOO,0.08039308410343]

[0.OOOOOOOOOOOOOO,0.06046043775420]

[0.OOOOOOOOOOOOOO,0.04052779140496]

[0.OOOOOOOOOOOOOO,0.02059514505573]

[0.OOOOOOOOOOOOO0, 0.00066249870650]

the starting interval is required. In practical computation, we prefer to sharpen the
enclosure firstly via AIgorithm 2.1, and then accelerate the convergence by the
algorithm of [1].
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