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Abstract

We eharaeterize the s?lution set S of real linear systems Ax = b by a set of inequalities if blies between
some given bounds Q, band if the n x n eoeffieient matrix A varies similarly between two bounds d and

Ä. In addition, we restriet A to a partieular dass of matriees, for instanee the dass of the symmetrie, the
skew-symmetrie, the persymmetrie, the Toeplitz, and the Hankel matriees, respeetively. In this way, we gen-
eralize the famous Oettli-Prager eriterion (Numer. Math. 6 (1964) 405), results by Hartfiel (Numer. Math. 35
(1980) 355) and the eontents of the papers (in: R.B. Kearfott, V. Kreinovieh (Eds.), App1ieations of Interval
Computations, Kluwer, Boston, MA, 1996, pp. 61-79) and (SIAM 1. Matrix Anal. Appl. 18 (1997) 693).
@ 2002 Elsevier Seienee B.V. All rights reserved.
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1. Introduction

When solving n x n linear systems Ax = b on a computer, the coefficientsof the matrix A and
the right-hand side b are not always representableby machine numbers. Therefore, one often solves
linear systemsAx = b with input data A, b which differ slightly from the original ones, i.e., with A
and b from some interval quantities [A] and [b], respectively, which also contain A, b. Sometimes
one is also interested in the solutionsof linear systems in which, in advance, the input data A and b
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are containing uncertainties in the coefficients. In this case, they nonnally are also limited to some
n x n interval matrix [A] and to some interval vector [b] with n components. Therefore, it is an
interesting question to discuss how the set

S := {x E !RnlAx = b, A E [A], bE [b]} (1)

looks like provided that [A] does not contain a singular matrix. This question was answered in [5,8],
e.g., where it was shown that the intersection of S with any orthant 0 of !Rncan be described by a
set of linear inequalities which characterize a compact, convex polyhedron in O. The union of the
corresponding polyhedrons of all orthants fonns the set S which needs no longer to be convex but
which remains a compact polyhedron and is therefore a connected set. This result was generalized
in [2,3], where only linear systems with symmetrie matrices A E [A] were considered. It was shown
that in eaeh orthant 0 the eorresponding set

Ssym:= {x E !RnlAx = b, A = AT E [A], bE [b]} ~ S (2)

is the interseetion of S with eompaet sets whose boundaries are quadries, i.e., Ssymn 0 is deseribed
by a set of linear and quadratie inequalities. A similar result holds for the skew-symmetric matriees
from [A] and for the persymmetrie ones, respeetively, as was proved in [3].

A. Neumaier already drew attention to Ssymin a letter to Rohn on 23rd Deeember, 1985 [9].
Bounds for Ssymean be obtained by methods in [1,6]; see also [10], where linear dependeneies of
the entries in A, bare allowed.

In [4] it was shown, that eaeh projection of the solution set of linear systems Ax = b with A E [A],
bE [b], on any coordinate subspace of !Rnean be deseribed by means of a1gebraic inequalities if the
coefficients of A and b depend linearly on at most finitely many additional parameters, i.e.,

m

aij = aij,O + L aij,jlujl

jl=I

and

m

bi = bi,o + L bi,jlujl'

jl=1

(3)

where aij,jl' bi,jl' It = 0, . . . ,m, are real eonstants and where ujlE!R, ft = 1,. . .m, are real parameters
whieh vary in given eompaet intervals [u]jl= llijl,Üjl]. It was shown that even the eonverse holds,
i.e., that every finite union of subsets each of whieh is deseribed by algebraie inequalities ean be
represented as a projeetion of the solution set of linear equations Ax = b of the above-mentioned
fonn. This result was proved without presenting the eonstruetive proeess explieitly whieh leads to
the inequalities.

In the present paper, we will fill this gap. To this end we derive a eentral theorem in Seetion
3.1 whieh is basie for all the subsequent eonsiderations and whieh resemb1es the Fourier-Motzkin
elimination (see [11], e.g.). It shows how parameters in a set of inequalities ean be removed sue-
eessively. This result can be applied to general matriees, to symmetrie matriees, skew-symmetrie
matrices, persymmetrie matriees, Hankel and Toeplitz matriees eontained in a given interval matrix
[A] in order to eharacterize the corresponding solution set by a set of inequalities. For the symmetrie,
persymmetrie, and skew-symmetric matriees the starting point differs now from that in [2,1]; this
time, it is more elementary. We also will outline the partieularities whieh oeeur, when describing
these solution sets. Thus, it is interesting to see that for partieular solution sets the degree of the
polynomials in the algebraie inequalities ean be greater than two and that these inequalities seem to
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change in a fixed orthant 0 in contrast to the case S n 0 and Ssymn O. We will address to these
problems in Seetion 3.

2. Notations

By /Rn, /Rnxn, I/R, I/Rn, I/R11x11we denote the set of real vectors with n eomponents, the set
of real n x n matriees, the set of intervals, the set of interval vectors with n eomponents and the
set of n x n interval matrices, respeetively. By interval we always mean areal eompaet interval.
Interval vectors and interval matriees are vectors and matriees, respectively, with interval entries.
As usual, we denote the lower and upper bound of an interval [a] by f!.and a, respectively. Simi-

lady, we write [A]= [4,Ä] = ([al) = ([Qij,aij]) E I/Rnx11,[b]=([b]i)=([Qi,bi]EI/R11, A=(aij)E/Rnx11
and b = (bi) E /Rn without further reference. We call [A]E I/R11x11regular if it eontains no singular
matrix A E /R11X11.

We denote any orthant of /R11by 0 and the first orthant by 01. As usual, we call A E /Rnxn
persymmetrie if aij = akl for k = n+ I - j, 1=n+ 1- i, i.e., if it is symmetriewith respect to the
northeast-southwest diagonal, we eall it a Hankel matrix if aij = akl for i + j = k + I, i.e., if its
entries are eonstant along eaeh northeast-southwest diagonal, and a Toeplitz matrix if aij = akl for

i - j = k - I, i.e., if its entries are constant along each northwest-southeastdiagonal for all indices
i,j, k,I E {I, . .. ,n}. A nonsingular matrix A E /R11Xn is termed an M matrix if aij ~ 0 for all i =I j
and if all the entries of the inverse A -I are nonnegative. We finally define the interval hull of a
non-empty set M ~ /Rn as the smallest interval vector which contains M.

3. Results

3.1. A central theorem

Westart this section with a theorem, whieh forms the basis for our subsequent considerations.
It eontains the eonstructive process which, for fixed x, is just the Fourier-Motzkin elimination
(cf. [11]) and which leads to the inequalities mentioned in Seetion 1. In order to motivate the theo-
rem we start by an example whieh shows how to deseribe S from (I) in a fixed orthant by means
of inequalities as was done by Hartfiel in [5]. Für simplicity we restrict ourselves to SI := sn D
where D := 01. Trivially, SI is charaeterized by

SI = {x ED I 3 aij, bi E IR : (4)-(6) hold},

where
n n

z= aijXj ~ bi ~ z= aijxj,
j=1 j=1

i = 1,.. .,n, (4)

f!.ij ~ aij ~ aij, i,j = l,...,n, (5)

Qi ~ bi ~ bi, i = 1,...,n. (6)
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Those inequalities in (4}-( 5) which contain an can be rewrirten as
n

b1 - L aIjXj :::::;anXI,
j=2

(7)

ffIl :::::;an, (8)

11

aI lXI:::::;bI - L aIjXj,

j=2

(9)

an :::::;än. (10)

Multiply (8) and (10) by XI and combine each left-hand side of (7), (8) with each right-hand side
of (9), (10) and drop the two trivial inequalities. Then this action results in the two nontrivial
inequalities

n

bI - L aljXj :::::;älIXj,

j=2

(11)

n

ff] lXI :::::;bI - L aljXj,

j=2

(12)

which are supplemented by

the original a II-free inequalities. (13)

Hence

SI ~S2:= {xEDl3aij (i-!= 1 if i=j),biEIR:(1I)-(13) hold}.

Since the converse 52 ~ SI is also true (see the proof of the subsequent theorem) one ends up with
SI = 52, where in 52 the entry an is replaced by the bounds ffn, än of the given interval [a]n' It
is obvious that this process can be repeated for the remaining entries ai} and bi. One finally gets the
inequalities in [5] which were derived there in a different manner.

We will generalize this elimination procedure in the subsequent theorem. There we do no longer
distinguish between aij and bi but introduce parameters u/l' p= I,..., m, instead. Moreover, we replace
the constants 1 in front of bj and aij in (5) and (6) (which we did not write down, of course) and

the linear expressions Xj ~ehind aij in (4) by more general expressions h/l(x), X E D ~ IRn, and
the constants f!ij, äij, 0, bi by expressions gj,(x) which are independent on the parameters Uw For
simplicity we also cancel the inequalities of the form (13) since they remain unchanged in SI as
well as in 52.

Theorem 1. Let h/l' gi., 2:-I,...,k (~ 2), p= I,..., m, be real-valued Junctions oJ x= (XI,... ,Xn)T
on some subset D ~ IRn.Assume that there is a positive integer k1 < k such that

!i.l(X):t 0 Jor all AE {I,...,k}, (14)



G. Alefeld et al. / Journal of Computational and Applied Mathematics 152 (2003) 1-15 5

f;.I(x) ~ 0 for all xED and all AE{I,...,k}, (15)

for each xE D there is an index ß* = ß*(x) E {I,.. ., kd with h* I(x) > 0

and an index y* = y*(x) E {kl + I,...,k} with fy* I(X) > O. (16)

For m parameters UI,..., Umvarying in !R1and for x varying in D define the sets SI, S2 by

SI:= {XEDI:3uIlE!R1, f1= I,...,m : (17), (18) hold},

S2:= {XEDI:3uIlE!R1, f1=2,...,m: (19) holds},

where Inequalities (17), (18) and (19), respectively, are given by
m

gß(x) + ~fßix)ull :( fßI(X)UI'
11=2

ß= I,...,kl, (17)

m

fyl(X)UI :( gy(x) + ~fYIl(x)ull'
11=2

y=kl + I,...,k (18)

and
m m

gß(x)fyl(x) + ~fßIl(X)fYI(X)UIl :( gy(x)fßI(x) + ~fYIl(X)fßI(x)UJl'
11=2 11=2

ß = 1,..., k1, y = k I + 1,..., k.

(Trivial inequalities such as 0 :( 0 can be omitted. )
Then

(19)

SI =S2.

Before proving Theorem 1 we remark that the parameter UI which occurs in the definition of SI
is no longer needed in order to describe S2. Therefore, we call the transition from inequalities (17),
(18) to inequalities in (19) the elimination of UI.

It is obvious that the assertion of Theorem 1 remains true if the inequalities in (17), (18) and
the inequalities in (19) are supplemented by inequalities which do not contain the parameter UI, as
long as these inequalities are the same in both cases.

Proof of Theorem 1. SI ~ S2:
W.l.o.g. let SI =I0, fix x E SI and let UI,... UmE !R1be such that inequalities (17), (18) hold for x.

Multiply (17) by fyl(X) and (18) by fßI(x), This implies
m

gß(X)fyl (x) + ~ fßJl(x )/,'1 (x )UIl
11=2

m

:( fßI (X )fyl (X)UI :( g.y{x )fßI (X) + ~ fYIl(x )fßI (X )UIl
Jl=2

for ß = 1,..., kl and y = kl + 1,..., k. Dropping the middle term results in (19) whence SI ~ S2.
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SI ;2 S2:
W.l.o.g. let S2 i= 0, fix xE S2 and let U2,... UmE IRbe such that inequalities (19) hold for x. Divide

(19) by fßI(x) if fßI(x) > 0, and by f/I(x) if fYI(X) > O. Unless fßI(x) = 0 and fYI(X) = 0 (in this
case (19) reads 0 ~ 0 and can be omitted) one gets equivalently

m

gß(x)+ L fß/1(x)u/1 ~ 0 if fßI(x) = 0 and fyl(X) > 0,
/1=2

(20)

m

0 ~ gy(x) + L fY/1U/1,

/1=2

if fßI(x»O and f,I(X) =0, (21)

(gp(X) + ~ fPP(X)UP) / /P1(X)'; (gy(X) + ~ f7P(X)UP) l71(X),

if fßI(x)f/l(x) > O. (22)

Due to (16) there exists at least one pair (ß*, 1'*)E {I,..., kJ} x {kl + I,...,k} such that h* I(x )f,* I(x)
> O. Let MI be the maximum of the left-hand sides of all inequalities (22) and let M2 be the
minimum of the right-hand sides of all inequalities (22). Then MI, M2 are attained for some indices
ß = ßo and I' = 1'0, respectively. Since ß and I' vary independently there is an inequality (22) with
ß = ßo and I' = 1'0simultaneously. This proves MI ~ M2. Choose UIE [MI,M2] and apply (20) and
(22), respectively, with 1'=1'0 (which implies frol(x) > 0) and ß= I,...,kl. If hl(x)=O then (20)
yields to the corresponding inequality in (17). If hl (x) > 0 then

(gp(X) + ~fPP(X)UP )/fP,(X)'; MI .; UI

implies the corresponding inequality in (17). By applying (21) and (22), respectively, with ß = ßo
inequalities (18) can be seen analogouslywhence S2~ SI. 0

The inequalities in (19) arise by multiplying the corresponding inequalities (17) and (18) by
frl (x) and fßI (x), respectively. Sometimes it is more convenient to write fßI (x) and f/I (x) in the
form

fßI (x) = hßy(x )frJl(x), fyl (x) = hßy(x)],1 (x)

with nonnegative functions JßI' f,1' hßy defined on D. Then the elimination procedure gives some

hope that it suffices to multiply (17) and (18) only by ],1(x) and lßI (x), respectively, in order to
end up with the modification

m m

gß(x)J,I(x) + Lfß/1(x)],I(x)U/1 ~ gy(x)lßI(x) + LfY/1(x)lßI(X)U/1
/1=2 /1=2

ß = 1,... ,kI, I'= kI + I,..., k, (23)
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of the corresponding inequality in (19). This multiplication process shows, in particular, that the
inclusion

SI ~ S3 := {XED 13uJlE~, f1= 2,.. ., m : (23) holds}

is true. In order to prove S3 ~ SI fix xE S3 and choose U2,..., UmE ~ such that (23) holds
for x. Multiplying the corresponding inequality (23) by hßix) yields to (19), hence xE S2, and
Theorem 1 implies x E SI. Thus we have proved the following corollary.

Corollary 1. With the notation and the assumptions 01 Theorem 1 let

Ißl (x) = hßy(x )j{n (x), /;1 (x) = hßy(x )1;1(X)

with nonnegative Iunctions fßl' ],1' hßy defined on D. Then the assertion 01 Theorem 1 remazns

true if Ißl(X), 1,I(X) are replaced in (19) by fßl(X) and ],I(X), respectively.

Corollary 1 is particularl~ use~l if IßI = Iyl ~ 0 where I ~ 0 means I(x) ~ 0 for all xE D.
Then hßy := Ißl = Iyl ~ 0, Jßl = 1;1 := 1 > 0 and the corresponding inequality in (19) reads

m m

gß(X) + LIßJl(x)uJl ~ gy(x) + LlrJl(x)uw
Jl=2 Jl=2

Another typical application of Corollary 1 occurs if the functions li_Jl' gi. all are polynomials and if
Ißl and Iyl have a nonconstant polynomial as a common factor. We will meet these situations in
our subsequent examples.

We remark that no topological assumption such as continuity of li.Jl' gi. or connectivity of D
is required in Theorem 1. Assumption (14) prevents hl from being completely omitted in (17),
(18) and (19). If 1i.J(x) ~ 0 on D one can simply fulfill (15) by multiplying the corresponding
inequality by -1. If neither f)J (x) ~ 0 nor li.l (x) ~ 0 holds uniformlyon D on can split D in
several appropriate subdomains Di with Ui Di . D for each of whi6h the assumptions of
Theorem 1 hold. The restriction (16) cannot be dropped. This can be seen from the example

1 +XIU2 ~ X2Ul, XIUl ~ 1 +X2U2, D = 01 := {(Xl,X2) lXI ~ 0, X2 ~ O}, (24)

where 111(x) = h2(X) := X2, 112(x) = 121(x) := XI, gl(X)=g2(X) := 1 and where k=m=n=2, kl = 1.
Assumption (16) is not fulfilled for x = (0,0) since /;.1(0,0) = 0 for AE {I, 2}. Inequality (19) reads

2 2
Xl +XIUZ ~ X2 +X2UZ,

which is true for XI = X2= 0 while (24) apparently does not hold for Xl = Xz = 0 and any choice of
ul E~.

Note that in our example the functions /;.Jlare continuous. Therefore, the equivalence in Theorem 1
apparently cannot be forced by requiring continuity of /;'/1' gi, at the expense of dropping (16). We
will illustrate a possible reason in our example. To this end we choose D := 01 \ {(O,O)} for the
moment. Then (16) holds and Theorem 1 can be applied. Choose Xl =X2 = e > O. By (24) we get
1+W2 =Wl whence Ul=l/e+uz. Let e tend to +0 which means that (Xl,X2) approaches the origin
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in 01 along the line Xl = X2. In order to fulfill (24) the two parameters UI, U2 must necessarily
be chosen in such a way that the absolute value of at least one of them tends to infinity. This
situation does, however, not occur in our subsequent considerations since our parameters UIlwill be
the matrix entries aij and the components bi of the right-hand side b of a linear system Ax =b. They
will be restricted to compact intervals by A E [A] and bE [b]. This generates inequalities of the form
f!:.~ UIl ~ ii with a correspondingfunction f)'/1= 1. Since such an inequalitydepends on a single UIl'
it is only used when this parameter is eliminated. Therefore, in the sequel assumption (16) will be
fulfilled for any domain D.

Under appropriate assumptions on the number of the given inequalities and on the signs of the
functions fio/1Theorem 1 and Corollary 1 can be applied successively in order to eliminate some
or all expressions in which the parameters UIloccur linearly. However, the number of inequalities
might then increase drastically as already simple examples show.

We shortly surnmarize the steps to be executed when eliminating the parameters in the inequalities
describing some set SI ~ D:

3.1.1. Elimination process
Given a domain D ~ !Rnand a set of finitely many inequalities in X E D with parameters U1,. . . Um

which occur linearly. Denote D together with this set of inequalities as arecord and store it on a
stack named Stack 1.

Step 1: Fetch the first record (i.e., the domain and the corresponding set of inequalities) from
Stack 1, fix a parameter, say UI, bring those inequalities into the form (17), (18) which contain U1.
(Renumber and rename eventually, in order to have a domain named D, a parameter named UI, and
subsequent inequalities according to (17), (18).)

Step 2: Check the assumptions of Theorem 1 for the inequalities which contain UI. If (15) is not
satisfied then multiply the corresponding inequality by -1. If this does not help split D into finitely
many appropriate subdomains Di and replace the record with D by corresponding ones with Di. If
(16) is not fulfilled for each Di then stop. Otherwise put the records to a stack named Stack 2.

Step 3: As long as Stack 2 is not empty fetch from it the last record and eliminate UI according
to Theorem 1 or Corollary 1. If the new record does no longer contain any parameter u/1then store
it into a file. Otherwise put it to Stack 1 as last element. If Stack 1 is not empty go to Step 1.

Now we want to apply Theorem 1 and, whenever possible, Corollary 1 in order to characterize
particular subsets of S as announced in Section 1.

3.2. Symmetrie linear systems

In order to characterize Ssymin (2) we first remark that Ssymapparently is empty if [A]E I!Rnxn
does not contain a symmetrie matrix as an element. If A =f.AT or A =f.AT we could replace [A] by
the largest matrix [B] ~ [A] with [B] = [Bf since [A]\[B] does not contain a symmetrie matrix as

an element and therefore does not infiuence Ssym.This is the reason why we will assurne [A] = [A]T,
without loss of generality, from the beginning.

Let 0 be a fixed orthant. Westart with D = 0 and (4)-(6), this time reducing the amount of free

parameters nearly to one half by using aij = aji. The elimination process for the bi and the diagonal
entries aij is the same as for Sand is left to the reader. The elimination of the off-diagonal entries
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ajj, i < j, i,j = 1,..., n differs due to the dependency aij = ajj. For instance, when handling a12 first,
one gets the (nontrivial) new inequalities

n

b ~+ ~ ~+
_1 - allxl - ~aljXj ~ a12x2,

j=3

(25)

n

a12X2 ~ bl - aliXl - L aljXj,

j=3

(26)

n

b ~+ ~ ~+
!:!2 - a22X2 - ~ a2jXj ~ a12Xl,

j=3

(27)

n

a12Xl~ b2 - a;X2 - L a2jXj,
j=3

n n

b- + 2 ~ ~ b+ - 2 ~
1Xl - allxl - ~ aljXlXj '" 2X2 - a22x2 - ~ a2jX2Xj,

j=3 j=3

(28)

(29)

n n

b- + 2 ~ . ~ b+ - 2 ~
2 X2 - a22x2 - ~ a2jX2Xj '" 1 Xl - allxl - ~ aljXlXj,

j=3 j=3

(30)

- '-

{

"0 if Xi ;? 0, + '-

{

bj if Xi ;? 0,
bj.- - . bj .- .'

~ ~~<~ "0 ~~<Q

Inequalities (25)-(28) coincide with those for S. Inequalities (29), (30) are new. They contain
quadratic polynomials. When eliminating alj for j = 3,...,n according to Corollary 1, the ith in-
equality in (4) has to be multiplied by Xj for i = 3,.. .,n. Afterwards,no additionalmultiplicationis
needed in inequalities which have a form analogous to (29), (30). This is true because the function
f;.Jl in front of aij reads f;.Jl(x) = XjXj in these inequalities, and in the remaining (nonquadratic)
inequalities they are given by /;..Jl(x)= Xi, f;.Jl(X) = Xj and f;.ix) = 1, respectively.Note that the
sign of the function XiXj remains constant over a fixed orthant O. This is the reason, why no split-
ting is needed for D = 0 during the elimination process. Pursuing this process shows that the final
inequalities for Ssym n 0 consist of the inequalities which characterize S, and quadratic inequalities.
We thus get the following theorem (see also [2,3]).

Theorem 2. Let [A]=[A]T EI~nxn (not neeessarily regular) and let [b]EI~n. Then in eaeh orthant
the symmetrie solution set Ssymean be represented as the interseetion of the solution set Sand
sets with quadries as boundaries.

where

{aH

if Xj < 0,

{a
if Xj < 0,A- I} A+.- }

aij :=
if Xj ;? 0,

aij'- -
if Xj ;? 0,a.. ajj}

{aH

if XjXj ;? 0,

{a
if XjXj ;? 0,

a-::'= } a-}. '= I}I} . -
if XjXj < 0,

I} .
if XiXj < 0,a.. a..I} }
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Skew-symmetric linear systems and persymmetrie linear systems can be handled analogously and
yield to a result similar to Theorem 2. For details see [3].

3.3. Hankel and Toeplitz systems

Analogously to Section 3.2 we restriet 4, Ä to be Hankel matrices in order to give some remarks
on the solution set

SHank:= {x E [RnlAx = b, A E [A] Hankel matrix, bE [b]} ~ Ssym ~ S.

Again we do not require that [A] is regular. This time not only the way but also the results are
new and differ essentially from the previous ones. The reason consists in a possible increase of the
polynomial degree of li.jl during the elimination process. In addition, these polynomials have no
longer constant sign in a fixed orthant. This can be seen by the following example of abidiagonal
Hankel interval matrix.

Example 1.

[A] :=

(
[~]

[d]

[s]

[d]

0

[d]

)
0 E I[R3x3, [b] E I[R3.

Westart with

QI :( SX2 + dX3 :( bl, ~ :( SXI + dX2 :( b2, Q3 :( dXI :( b3,

d. :( d :( d, ~:(S:(S

and, for simplicity, we restriet ourselves to the first orthant 01, i.e., we apply Corollary 1 with
D = 01. After having eliminated the s-terms we obtain

QI - dX3 :( SX2, ~X2 :( bl - dX3,

~ - dX2 :( SXI, ~XI :( b2 - dX2,

- 2
QIXI - dXIX3':( b2x2 - dX2'

2 -
~X2 - dX2 :( blxl - dXIX3,

fu :( dXI :( b3, d. :( d :( d,

whence

I

QI - SX2 :( dX3 :( bl - ~X2, ~ - SXI :( dX2 :( b2 - ~xJ,

)

- 2-
QIXI - b2X2 :( d(XIX3 - X2) :( blxl - ~X2,

- -
fu :( dXI :( b3, d.:( d :( d.

In order to eliminate the d-terms one has to take into account the signs of the expression XIX3- xi.
The inequality

(31)

XIX3- xi ~ 0, (32)
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deseribes a eireular eone C whieh is independent of the eoeffieients of [A] and [b].1 Its boundary
XIX3-X~=0 ean be rewritten as X~+V2-u2=0 where Xl=U+V andx3=u-V. The axis of Cis given
by (t, 0, tl, t E ~; in partieular, C lies symmetrie with respeet to the Xlx3-plane. It eontains the Xl-
and the x3-axis on its surfaee and divides 01 into two parts D1 := 01 n C and D2 := (01 \DI). On
D1 inequality (32) holds while on D2 the inequality sign reverses in (32). From (31) we obtain as
deseription of SHankn 01:

121 - SX2 ::s; dX3, fu - SXI ::s; dX2, !23 ::s; dXI,

12IXl - SX2Xl ::s;b3x3,
- 2 -

fuXl - sXI ::s; b3x2,
2 -

12IX2- sX2 ::s;b2x3 - ~XIX3,

- - 2
12IXI - b2x2 ::s;d(XIX3 - X2)'

- 2
12IXl - b2x2 ::s;dJXIX3 - X2)'

if x E DI,

if X ED2,

2 - - 2
12IXI - b2xIX2 ::s; b3(XIX3 - X2)'

2 - 2
QIXl - b2xIX2 ::s; !23(XIX3 - X2)'

if X EDI,

if X ED2,

- 2 - 2
12IXIX2- b2x2, ::s;(b2 - §'XI)(XIX3 - X2)' if X ED1,

12IXIX2- b2xi ::s;(fu - SXd(XIX3 - xi), if xE D2,

- - 2
12IXIX3 - b2x2X3 ::s;(bi - ~X2)(XIX3 - x2)' if x ED1,

12IXIX3 - b2x2X3::S; (121-SX2)(XIX3 -xi), if xED2.

Wehave omitted here the dual inequalities, whieh are obtained by reversing the inequality signs
and by replaeing the lower bars by upper ones and viee versa. These inequalities reeommend, in
partieular, that SHankn 01 should be better replaeed by the two subsets SHankn D1 and SHankn D2 for
eaeh of whieh the set of inequalities remains fixed. Note that for a eomplete eharaeterization one
has to add the inequalities

XIX3-xi ~ 0, (deseribes C)

Xi ~O for i = 1,2,3 (deseribes 01)

in the ease of D1 and

XIX3 - xi ::s;0, (deseribes ~3 \ C)

Xi ~O for i = 1,2,3 (deseribes 01)

in the ease of D2.

We eonsider now Toeplitz matriees. As ean be seen from the definition in Seetion 2 a Toeplitz
matrix A beeomes a Hanke! matrix if it is multiplied from the left by the permutation matrix E,
whieh has ones in the northeast-southwest diagonal and zeros otherwise. Therefore, the solution set

SToep:= {x E ~n 'Ax = b, A E [A] Toeplitz matrix, bE [b]} ~ S

I Presently we do not know whether this independency always occurs when computing SHankfor more general situations.
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is identical with SHankfonned for EA and Eb. This means that for Toeplitz matrices and for Hankel
matrices the same phenomena occur in view of the solution set.

Now we address to the question how complicated the resulting shape of SToepcan be.
When we have a linear interval system with independent coefficients and with a regular interval

system matrix, then, due to the Oettli-Prager theorem [8], the solution set is a compact, convex
polyhedron in a fixed orthant 0 (to be more precise, a union of finitely many compact, convex
polyhedrons that correspond to different orthants).

In many applications, we are interested only in some of the variables Xl,... ,xn. In this case, in
mathematical tenns, we are interested in the projection of the solution set on a subspace fonned
by the desired variables. For interval systems with independent coefficients, this projection is a
projection of a polyhedron and thus, also a polyhedron.

In [4], we showed that for arbitrary interval linear systems with dependent coefficients, we can
get projections that are described by algebraic dependencies of arbitrarily high degree (we even
showed that an arbitrary algebraic set can be thus represented).

A natural question is: if we restriet ourselves to Toeplitz matrices only, how complicated this
projection can be? The following simple example shows that for Toeplitz interval matrices we can
have, as two-dimensional projections, curves of degree n at least. To this end let us consider the
Toeplitz system Ax = b consisting of the following equations:

-Xl -X2 - ... -Xn-l + a .Xn 1,

where a E [1,2]. Therefore, a vector (Xl,,,. ,Xn)T belongs to the solution set if and only if there
exists an a for which a .Xl = 1, -Xl + a . X2 = 1, -Xl - X2+ a . X3= 1, etc. From these equations,
we can explicitly express Xj, i > 1, in tenns of Xl:

From the first equation, we get Xl = l/a; hence, a = I/Xl.
From the second equation, we get X2=(1 +xd/a=(1 +XdXI =xI +xi; this expression is quadratic

mXI.

Similarly, ITomthe third equation, we get X3=(1 +XI +x2)/a=(1 +XI +XI +Xi)XI =(1 +XI?XI =
Xl + 2xi + xf; this expression is cubic in Xl.

Finally, for Xn, we get an expression of nth degree in tenns of Xl:
Xn =XI(1 +Xdn-l =XI + (n - l)xi +... +X7.
Thus, when we are only interested in the values of Xl and Xnowe get a curve of nth degree.
A similar remark holds for Hankel systems.
It is worth noting that if we apply Theorem 1 to the interval system above, we get inequalities

of degrees less than n. There is no contradiction here, because a set of lower degree can have
higher-degree projections: e.g., for a curve described by two second-order equations X2= xi and
X3= xi, its projection on (Xl,X3) has the fonn X3= xi and is, therefore, of fourth order.

a .XI - 1,

-Xl + a . X2 - 1,

-Xl - X2 + a . X3 - 1,
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In our next example we show that even the unprojected solution set SToepneeds algebraic equations
whose order exceeds two.

Example 2. Let

(

[d] 0 0

)
[A] := [s] [d] 0 ,

[l] [s] [d]

with [d] = [1,2], [s]= [ - 4, -2] and [I] = [ - 8, -4]. Then each solution of a system Ax = b with
a Toeplitz matrix

[b]= G)

A= (:

0

(j

n E~]

and

b= (~)(J

is given by

1

Xl = b > 0, (33)

(J z
Xz = -b"XI = -(JxI > 0,

(34)

(J A x~ Z

X3 = -b"xz - bXI = Xl - Axl> 0,

with (jE [d], (JE [s] and A E [I]. The corresponding set of inequalities reads

(35)

1

2: ::s;Xl ::s;1,
2xi ::s;Xz ::s;4xi,

z z
Xz z . Xz Z
- + 4xI ::s;X3 :::;- + 8XI
Xl Xl

or, equivalently,

1
- ::s;Xl ::s;1,
2 2xi ::s;Xz :::;4xi, 4 3 Z 8 3

Xl ::s;XIX3 - Xz::S; Xl. (36)

Thus SToep lies completely in 01; its boundary is part of the two planes Xl =~, Xl = 1, part of
the two parabolic cylinders Xz= 2xi, Xz= 4xi and part of the two algebraic surfaces XIX3- x~ -

4xf = 0, XIX3 - x~ - 8xf = 0 which are of order three. Note that (36) was derived by decoupling the
parameters in equalities (33 )-(35). Since the last inequality of (36) is the only one which contains
X3 the degree in (36) cannot be reduced. This shows that in the general case the boundary for the
solution set of Toeplitz matrices (and therefore also for Hankel matrices) cannot be characterized

by means of hyperplanes and quadries. -
Note that the interval huH of Sand SToep,respectively, coincide in this example since A, Aare

Toeplitz matrices and each matrix A E [A] is an M matrix. Hence (Ä-Ib)i :::;(A-Ib)i ::s;(A-Ib)i for
i= 1,2,3, AE[A] and b=(1,O,O?
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If [A] is a lower triangular n x n interval matrix and if [b] is adegenerate interval vector, i.e.,
[b]= [b,b], then the ideas of Example 2 can be generalized. Using an inductive argument shows that
the boundary of the corresponding solution set SToepis composed by parts of algebraic surfaces which
have order n at most, with two of exact order n. A similar remark holds if [A] is an upper triangular
matrix, and for SHankprovided that [A] is a triangular matrix with respect to the counterdiagonaL
At the moment we do not know how this degree behaves for SToepand SHanbrespectively, when
[b] is non-degenerate or when [A] is not triangular. Neither can we answer a question of one of the
referees conceming a comparison between the interval huH of the solution set Sand that of SToepor
SHank:As we saw the interval hulls in Example 2 coincide while in [7, Example 3.4.2, pp. 93-95],
the interval huH of Ssym= SHankdiffers from that of S.

3.4. Linear systems with more general dependencies

The elimination process of Section 3.1 can even be applied to systems of linear equations with
dependencies according to (3). Such a system (which may be singular) reads

m

gJX) + L iitix )uJL= 0,
JL=1

i= l,...,n, (37)

where
n

gi(X) := -bi,o + L aij,OXj,
j=l

n

iiJL(x) := -bi,JL + L aij,JLXj,

j=l

UJLE [u]JL= [gJL'uJL]' i = 1,... ,n; J1= 1,..., rn.

Replace (37) by the equivalent system of inequalities

(38)

m m

gi(X) + L iiJL(x )uJL ~ 0,
JL=1

gi(X) + L iiJL(x )uJL~ 0,
JL=1

i= 1,...,n (39)

and (38) by

gJL ~ uJL ::s; UJL' J1= 1,. . . , rn. (40)

Then apply the elimination procedure from Section 3.1 to (39), (40) with D = IRn.In this case D
is expected to be split into finitely many subdomains Di in Step 2. Such subdomains certainly exist
due to the particular shape of iiw (In fact, iiJL(x)~ 0 detennines here a half space in IRn.)

We emphasize that there is an ambiguity in the order of eliminating the parameters Ul,..., Um
since we are free to pennute the indices. In this respect it is clear by the equivalence of Theorem 1
that for any order and in each stage the inequalities describe the same set, namely the corresponding
solution set. But we are not sure whether the inequalities at the end coincide (up to their order of
appearance and after having deleted superfluous ones).
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