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Abstract

In this paper we introduee the total step method, the single step method and the symmetrie single step
method for linear eomplementarity problems with interval data. They are applied to an interval matrix
[A] and an interval veetor [b]. If all A E [A] are H-matrices with positive diagonal elements, these
methods are all eonvergent to the same interval veetor [x*].This interval vector indudes the solution x
of the linear complementarity problem defined by any fixed A E [A]and any fixed b E [b].If all A E [A]
are M-matrices, then we will show, that [x*]is optimal in a precisely defined sense. We also consider
modifications of those methods, whieh under eertain assumptions on the starting vector deliver nested
sequences converging to [x*].We dose our paper with some examples which illustrate our theoretical
results.

AMS Subject Classifications: 90C33, 65G30.

Keywords: Linear complementarity problem, total step method, single step method, symmetrie single
step method, interval computation.

1. Introduction

Let A be areal n x n matrix and b an n-dimensional vector. Then the linear

complementarity problem, denoted by LCP, is defined as follows: Determine a
real vector x such that

b + Ax 2: 0, x 2: 0, (b+Ax)TX=O, (1)

or conclude that there is no such x. The inequalities appearing in (1) are under-
stood componentwise.

The article [9]gives an extensive documentation of applications of complementarity
problems in engineering and equilibrium modeling. Additional applications one can
find in [5], [6]and [13], respectively.

It is well-known and easy to see that (1) is equivalent to solving the non-smooth
nonlinear system

*Dedicated to u. Kulisch on the occasion of bis 70th birthday.
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min{x, b + Ax} = 0, (2)

where the minimum is taken componentwise. This equivalence has been used in [1]
to verify the existence of a solution of (2) and of (1), respectively, if a somehow
computed approximate solution is available.

In [17] the case was considered in which the input data A and b are not precisely
known, but can only be enc10sed elementwise in intervals. An important appli-
cation of this problem is the discretization of a free boundary problem without
neglecting the discretization error. For details, see [17].

The present paper is organized as follows. After introducing the notation and
some preliminaries in Section 2, we consider several different iteration methods,
which allow to enc10se the solution set

L:([A],[b]):={x: min{x,b+Ax} = o,A E [A],b E [b]} (3)

of real vectors by an interval vector: The total step method (T), the single step
method (8), which is a special case ofthe successive overrelaxation method (80R),
and the symmetrie single step method (88). We show that under equal assump-
tions (T), (8) and (88), respectively, are convergent to the same interval vector
enc10sing the solution set L:([A],[b])defined in (3). For (80R) this is generally not
the case. This method is convergent to a limit depending on the relaxation
parameter (J)used in this method.

With respect to inc1usion the limit of (T) ((8) and (88)) is in general not the
smallest interval vector enc10sing L:([A],[b]). However, under additional
assumptions on [A] we can show that this limit is optimal. This is proved in
Theorem 3.2.

After having proved these results in Section 3, we consider modifications of (T), (8)
and (88) which are based on the fact that if for any of these methods one is starting
with an interval vector containing the limit, then all iterates contain the limit.
Therefore, the enc10sure of the li~it might be improved by forming intersections
after each iteration step. We prove that the corresponding modifications are con-
vergent to the same limit as the unmodified methods. Furthermore we show that the
modified symmetric single step method is in a precisely defined sense optimal.

We c10se this paper with some numerical examples illustrating the theoretical
results.

In passing we note that for non-interval data generalizations of the total step
method etc. have already been applied to the problem (1). See [4], [6] and [7], for
example.

2. Preliminariesand notation

This section contains a summary of well-known or easy to prove properties and
results which are used subsequently.
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2.1. Interval arithmetic

By R, RIJ,RIJXIJ,IR, IRIJ,IRIJXIJ,we denote the set of real numbers, the set of real
vectors with n components, the set of real n x n matrices, the set of intervals, the
set of interval vectors with n components and the set of n x n interval matrices,
respectively. An interval always means areal compact interval. Interval vectors
and interval matrices are vectors and matrices, respectively, with interval entries.
We write intervals in brackets with the exception of degenerate intervals (so-called
point intervals) which we identify with the element being contained. Similarly we
proceed with interval vectors and matrices. We denote by I the identity, by 0 the
zero matrix and by 0 the zero vector. We use the notation [a] = [Q,a] for [a]E IR.
Analogously we write [x]= [~,x]= ([xd)= ([~i,xd)E IRIJ and [A] = [4,A] = ([aij])

= ([Qij'au]) E IRIJXIJ.For [a],[b]E IR we define

. the diameter d([a]) := a - Q,

. the absolute value l[a]1 := max{IQI, lai},

. the distance q([a],[b]):= max{IQ- QI,la - bl}.

For interval vectors and interval matrices, these quantities are defined element-
wise. For example, if [a]= ([ad), then d([a]) = (d([ai])) E RIJ.We equip RIJ and
also RIJXIJwith the elementwise defined relations :S, <, >,;:::. If [a]E IR, we define

([a)) := min{lal : a E [a]}=
{

min{IQI,lai} if O~ [aL
}0 else. (4)

If for two interval vectors [x],[y] E IRIJ we have [xd n [Yd=J0, i = 1,2, . . . ,n, then
[x]n [y] = ([Xdn [Yd), otherwise [x]n [y] = 0. In addition, for [x],[y] E IRIJ we de-
fine [x] ~ [y]iff [Xi]~ [Yi],i = 1,..., n.

Furthermore, we repeat some relations concerning the distance:

q([x], [z]) :Sq([x], [y]) + q([y], [z]),

q([x] + [z],[y]+ [zl) = q([x], [y]),

q( [A] . [x], [A] . [y]) :SI[A]I . q( [x], [y]),

q([x] + [y], [u] + [z]) :Sq([x], [u]) + q([y], [z]),

(5)

(6)

(7)

(8)

if [u],[x],[y], [z] E IRIJ and [A] E IRIJXIJ.The so-called Minty map of a E R was
defined in [10] as

a+ := max{O,a}.

This definition is generalized as follows.

Definition 2.1. a) Let [a]E IR. Then

max{O, [a]} := [max{O,Q},max{O,a}].
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b) Let [a] = ([ai]) E IRn. Then

max{0, [an := (max{O, [ai]})'

Lemma 2.1. Let [a],[b]E m satisfying [a]~ [b]. Then

a) max{O, [a]} ~ max{O, [b]}.

b) d(max{O, [a]}) ::;d([a]).

Lemma 2.2. Let [a],[b]E IR. Then

q(max{O, [a]},max{O, [b]}) ::;q([a], [b]).

Proof In [10],Lemma 2 it was shown that the Minty map is Lipschitz continuous
with Lipschitz constant equal to one: For x,y E R we have

Imax{O,x}- max{O,y}1 ::; Ix - yl.

Therefore q( max {O,[a]},max {O,[b]}) = max {Imax {O,Q} - max{O,Q}I,Imax {O,a}-
max{O,b}l} ::; q([a], [b]). 0

2.2. M- and H-matrices

Let znxn denote the set of real matrices with nonpositive off-diagonal entries:
A = (aij) E znxn {::}aij::; ° if i i= j.

Definition 2.2. A E znxn is an M-matrix if A-1 exists satisfying A-1 ~ o.

The diagonal elements of an M-matrix A = (aij) are necessarily positive: aii > 0,
i = 1,... ,n.

Theorem 2.1 Let A E znxn. Then the following two statements are equivalent:

a) A-1 exists and A-1 ~ O.

b) There exists a vector u > 0 such that Au > o.

For the proof we refer to [8]. A useful corollary is the following one.

Corollary 2.1. Let A ::; B E znxn. If A is an M-matrix, then B is an M-matrix, too.

The proof can be easily performed by using part b) of Theorem 2.1.

Definition 2.3. For A = (aij) E Rnxn

(A) = (cij) E Rnxn by setting

we define the comparison matrix
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{
-lai)1

Ci):= laul
il i i- j,
il i = j.

1f (A) is an M-matrix, then A is called an H-matrix.

Note that the diagonal elements of an H-matrix are different from zero. However,
they can be positive or negative. It is obvious that every M-matrix is an H-matrix,
but not vice versa.

Definition 2.4. An interval matrix [A] E IRnxn is called

a) regular, if all A E [A] are nonsingular;

b) an M-matrix, if all A E [A] are M-matrices;

c) an H-matrix, if all A E [A] are H-matrices.

Interval M- and H-matrices have been introduced in [2] and [14], respectively.

Definition 2.5. For [A]= ([au]) E IRnxn we define the comparison matrix ([A]) =
(cU) E Rnxn using (4) by setting

{
-I[adl

Ci):= ([ai)])
il i i- j,
il i = j.

Using the comparison matrix and Corollary 2.1 we get the following lemma.

Lemma 2.3. Let [A] E IRnxn.

a) 1f 4 is an M-matrix and ifA E znxn, then [A] is an M-matrix.

b) 1f ([A]) is an M-matrix, then [A]is an H-matrix.

2.3. Regular splittings

Definition 2.6. Let A,B, CE Rnxn. Then A = B - C is a regular splitting 01 A if
C ~ 0 and B is nonsingular with B-1 ~ o.

Theorem 2.2. Assume that A E Rnxn is nonsingular, that A-1 ~ 0 and that
A = B - C is a regular splitting 01 A. Then p(B-1C) < 1, where p(.) denotes the
spectral radius 01a matrix.

Regular splittings were introduced in [18], where one can also find the proof of
Theorem 2.2.
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3. Iterative methods for the enclosure of the solution set I:((A],[b])

In this section we assurne that the reader is fami1iar with the concept of P con-
tractions for proving the convergence of a fixed point iteration to a unique fixed
point for an arbitrary starting interval vector. For the details we refer to Chapter
11 in [2], especially to Theorem 11.4, Theorem 11.5 and Corollary 11.6.

3.1. The total step method (T)

Theorem 3.1. Let [b]E IRn and [A] E IRnxn. Assume that [A] is an H-matrix sat-
isfying Qii > 0, i = 1,. . . ,n. We define the interval matrices

(

L 0

)

[ald

[DrI:= o' . . L '
rann]

0 [al2]

IR]:~ -I [al'] 0
land

rain]

[an-ln]

[ann-d 0

the function

f(x;D-I ,R,b) := max{o,D-I(Rx - b)}, X E Rn

for arbitrary but fixed D-I E [DrI, R E [R], b E [b]and its interval extension

f([x]; [DrI, [R],[b]) := max{ 0, [DrI ([R][x]- [b])}, [X] E IRn.

(Since [DrI, [R],[b]are fixed, we simply write J([x]) instead of f([x]; [DrI, [R],[b])
in the following).

Then the following ho/ds:

a) The iteration (total step method)

{
[xO]E iRn,

(T) [.0+1]:= f([.0]),
~O 2': 0 arbitrary,

k = 0, 1,2, . . . ,

converges to a unique interval vector [x*]satisfying [x*]= f([x*]).

b) L([A], [b]) ~ [x*].

Proof a) Let [x], [y] E IRn. Then we have by Lemma 2.2

q(f([x]),f([y])) ::s q([DrI([R][x]- [b]), [DrI([R][y] - [b])).

Using I[DrI I = ([D])-1 we get

q(J([x]),J([y])) ::S ([D]) -11 [R]Iq([x], [y]).
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Define B := ([D]), C:= I[R]I and i := B - C. Obviously B-I ? 0 and C? O.
Since A= ([A]) and since [A] is an H-matrix, it follows i-I? o. According to
Theorem 2.2 (applied to A) we can conc1udethat p(B-I C) < I. Hence,f is a P
contraction with P = B-I C and assertion a) follows by Theorem 11.4 in [2].

Note that we have in the proof of a) not yet used!ki > 0, i = 1,... ,n. Further-
more we do not use !o ? o. However, if!o L 0 then!I ? o.

b) Let xE L([A], [b]). Then there is an A = (aij) E [A] and a b E [b] satisfying (2).
We define

D:=

(
all.. 0

)
,

0 ann

0

R := - I aZI

anI

Then we have

0 = min{x,b +Ax} = min{x,D(D-Ib +x - D-IRx)}.

Since aü ? !ki > 0, i = 1, . . . ,n, this equation is equivalent to

0 = min{x,D-Ib +x - D-IRx} = min{x,x +D-I(b - Rx)}

and to

0 = x + min{o,D-I(b - Rx)} = X - max{o,D-I(Rx - b)},

which leads to

X = max{o,D-I(Rx - b)} = f(x;D-I ,R, b).

Using Corollary 11.6 in [2], we get xE [x*]. 0

Remark 3.1.a) As was already mentioned above the assumption Qii > 0,
i = 1, ,n was not used in the proof ofpart a) in the preceding theorem. In fact,
without this assumption the total stepmethod (T) can beconvergent to a fixed point
[x*], although the set (3) is empty. Consider, for example, the case [A] = -1 and
[b] = -e, where all components of e areequal to one. The corresponding LCP hasno
solution. On the other hand even for arbitrary [x°] we obtain the fixed point o.

b) Consider the special case that [A] = A E Rnxn, that A is an H-matrix with
aü > 0, i = 1,..., n and that [b] = bE Rn. Then, as a special case ofTheorem 3.1,
it follows that the LCP defined by A and b has a unique solution x. This fact is
well-known and was proved in [6] (Theorem 3.3.15) by different means. See also
Lemma 3.5 in [4].

al2
... aln

0

an-In
.. . ann-I 0
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c) Let [x*] = ([x;)) E IRn be the limit of the total step method (T) from the pre-
ceding theorem. Then, in general, there is an interval vector [x] = ([xd) E IRn with
the property that it also holds :E([A],[b]) ~ [x] and furthermore [Xi]~ [x7J,

i = 1,. . . ,n, where at least for one istriet inc1usionholds. In this sense [x*] is not
an optimal enc10sure of :E([A],[b]) in this case.

Example 3.1. Let

[A] = ( [4,5] [1,2])[-1,0] [2,3] , [b]= ([-2,-1] )[-1,1] .

It is easy to verify that [A]is an H-matrix and that the unique fixed point of the
total step method (T) applied to [A]and [b]is

* ([O,!])[x] = [0,i] .

However, we will show that for any t E [O,!]

(Xl(t) ) (
t

)x(t) = X2(t) := i tt :E([A],[b)).

Let b E [b]and A E [A].Then for the seeond eomponent of b + A .x(t) we have

3

b2 + (A .x(t))2 2 -1- t+2'

Sinee X2(t) = i > 0, by complementarity -1 - t + ~ = 0 has to hold, and therefore
t = !- However, for t = ! we havexl (t) > 0 and

3
bl + (A .x(t))l 2 -2 + 2 + 4 > 0,

whieh eontradiets the eomplementarity.

Under additional assumptions on the matrix [A] we now show that the ease
described in part c) of Remark 3.1and illustrated in the precedingexampleeannot
oeeur.

Theorem 3.2. Let [A]E IRnxn be an M-matrix and [b]E IRn. Let u E Rn be the
unique solution of the LCP defined by band A and let correspondingly v E Rn be the
unique solution of the LCP defined by Qand 4. Then it holds:

a) inf(:E([A], [b])) = u and sup(:E([A],[b))) = v.

b) [x*] = [u,v]for the fixed point [x*] of (T).
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Proof Note that by part b) of Remark 3.1 the LCPs under consideration have
unique solutions U 2: 0 and v 2: 0, respectively.

a) Let A = (aij) E [A],b = (bi) E [b]and let x 2: 0 be the unique solution of the
!-CP ßefined by A and b. Setting SS:= {i : Ui= O} we define A = (äij) and
b = (bi) by

{

aij if i ~ 8',

äij := ~ ~f ~ E ~ and ~ # ~,
ajj If l E .::s andJ - l,

bi :=
{

bi ~f i ~ 8',
0 If i E 8',

i,j = I,... ,n. For example, let n = 5 and 8' = {2,4} then

We will show

- - --
b + Au = 0 :::; b + Ax. (9)

Ca se I: If i E SS,then

(b +AU)i = 0:::; aiixi = (b + AX)i.

Ca se 2: If i ~ 8', then

n n n

bi + 2:aijUj = 0:::;bi + 2:aijXj :::;bi + 2:aijXj.
j=l j=l j=l

Because of A :::; A E znxn we can conclude according to Corollary 2.1 that A is an
M-matrix. Hence, it follows from (9) that U :::;x.

Setting ~ := {i : Xi = O}we define A= (aij) and b = (bi) by

{

Qij if i ~ ~,

aij := 0 ~f ~E ~ and~ # ~,
a.. If l E ~ and } = l-11 ,

b~. .-

{
l1 if i d ~

I .- 'F- ,
0 if i E ~ ,

i,j= I,...,n. We will show

b + A"x :::;0 :::; b + Av. (10)

an al2 al3 a14 alS bl
0 an 0 0 0 0

A = I a31 a32 a33 a34 a3S , b= b3
0 0 0 a44 0 0

aSI aS2 aS3 aS4 aSS bs
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Case 1: If i E 3i, then

(b +Ax)j = 0:; QjjVi= (b + AV)i'

Case 2: If i ~ 3i, then

n n n

Q; + L Q;jXj:; bj + L ajjxj = 0 :; Q; + L QijVj.
j=l j=l j=l

Because of 4. :; A E znxn we can again conclude according to Corollary 2.1 that A
is an M-matrix. Hence, it follows from (10) that x :; v.

b) Let [Drl, [R]andf([x]) be defined as in Theorem 3.1. Since [A]is an M-matrix
we have R 2:: 0 and

I --
f([u, v]) = max{o, [Dr [Ru - b,Rv - Q]} =: [c,d].

For fixed i E {I, . . . ,n} we have to consider three cases and we will show that in
every case [Ui,vd = [Ci,dj] holds. Note in the following that
[rij,rij]= [rU] = -[aij] = [-aij, -Q;j] if i i= j.

Case 1: (Rv- Q)j:; O.

Then Ci= di = 0 and we have to show Vi= O.Assume that Vi> O.Then by the
complementarity one would have Q;+ (4.V)i= O. But this is not true, since
(Rv - Q)i:; 0 is equivalent to

n

Qi + L Q;jVj 2:: 0,
j=lj#i

and if Vj > 0 one has

n n

b. + ~ a"v J" > b. + ~ a"v J" > O.= L -IJ = L =1) -
j= I j= 1,ji'i

Case 2: (Ru - b)j > O.

Then we have to show that Uj= Ci and Vi = di where

C. = ~ (Ru - b) " and d. = ~ (Rv- b)..
I - - I I - I

ajj Q;i

Assume that Ui = O.Then by the complementarity one would have bi + (Au)i 2:: O.
However, since (Ru - b)i > 0 is equivalent to

n

bi + L aijUj < 0
j= I,ji'i
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one has

n n

bi + LaijUj = bi+ L aijuj< 0
j=l j=IJ=/ci

n

if Ui = O. Ther~fore, ui > 0 and bi + E aijuj = O.Hence, Ui = Ci. Since 0 < Ui :SVi,
~ j=l

we have "ß + L.. tJ:.ijVj= O. Hence, Vi = di.
j=l

Case 3: (Eu - b)i :S0 and (Rv - f2l> O.

Then one can show as in Case 1 that Ci= 0 = Ui and

1 -
di = - (Rv -"ß) = Via..-ll

as in Case 2. D

3.2. Successive overrelaxation (SOR)

We now consider a method for enclosing L([A], [bDwhich can be considered as a
generalization of the well-known (SOR) method. For Q)= 1 this method spe-
cializes to an iterative method which may be considered as a generalization of the
Gauss-Seidel- or single step method (8).

Theorem 3.3. Let [b]E IRn and [A] E IRnxn. Assume that [A] is an H-matrix sat-
isfying tJ:.ii> 0, i = 1, . . . , n. We define

I
~ 0

0

[ann-l] 0

and [R] := [L] + [U].

0
[an-ln]

0

Let [x*]be the uniquefixed point of the equation

[x] = max{o, [Drl([R][x]- [bD}

(see Theorem 3.1). Then the following holds:

0

[L] := -' [a2l]
0

I

[aln]

rand

[Dr I :=
I

0 I

rann]

0 rad

[U]:= - ,.
0
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a) For

2 =: Wo
0< W < 1 + p(([D]) II[R]I)

the iteration

{

[x°] E IRn,,!o ~ 0 arbitrary,

(SOR) [x"+I]:= max{ 0, (1 - m ) [x"] + m[Dr1 ([U][x"] + [L][x"+I]- [b])},

k - 0, 1,2,. . . ,

converges to a unique interval vector [x]satisfying

[x] = max{o, (1 - m)[x] + m[Dr1([U][x] + [L][X]- [b])}.

b) L([A], [b])~ [x].

c) [x] = [x*] if 0 < m :S 1.

d) [x] ;2 [x*]if 1 < m < mo.

Proof a) For fixed D E [D], L E [L], U E [U], bE [b]we define the function

f(x;D-l ,L, U,b) := max{o, (1 - m)x + mD-l(Ux + Lx - b)},x ERn,

its interval extension

f([x]) := max{o, (1 - m)[x] + m[Dr1([U][x] + [L][x]- [b])}, [x] E IRn

and the function

g([x],fy]) := max{o, (1 - m)fy] + m[Dr1([U]fy] + (L][x]- [b])},

[x], [y] E IRn. Obviously

g([x], [x]) = f([x])

holds. Using Lemma 2.2 and I[Dr11= ([D])-1, we can conclude that

q(g([x], [z]),g(fy], [z])) :S Jq([x], fy])

where J = m([D])-II[L]1 and

q(g([z], [x]), g([z], [y])) :SGq([x], [y])

with G = 11 - mll + m([D])-II[U]I. We show that
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p(J) < 1 and p((1 -J)-IG) < 1

hold. Then using Theorem 11.5 in [2] we can conc1ude assertion a).

To verify p(J) < 1, we set B := 1.([D]), C := I[L]I and i := B - C. Since i E znxnw -
is a triangular matrix with positive diagonal entries, A is an M-matrix. Using
Theorem 2.2 we get p(J) < 1. Setting Hw := (I - J) -1 G we have

Hw= (I - W([D])-II[L]I) -1 (11 - wll + w([D])-II[UJI).

Using Lemma 2 in [12] with B:= ([D])-II[R]1and Lw := Hw it holds p(Hw) < 1.

b) Let x E L([A], [bJ).Then there are D E [D],L E [L], U E [U] and b E [b] satis-
fying

0 = min{x,b + (D - L - U)x}

= min{x,b + (w-lD - L - U + (1 - w-l)D)x}

= min{x,W-lDwD-1(w-l Dx + b - Lx - Ux+ (1- w-l )Dx)}.

Because of f!:.ü> 0, i = 1, . . . , n, this is equivalent to

0 = min {x, x + wD-1 (b - Lx - Ux + (1 - w -1 )Dx) }.

This equation can be rewritten as

0 = x + min {0, wD-1 (b - Lx - Ux + (1 - w -1 )Dx) }

=x-max{o,wD-l(Lx+ Ux-b- (l-w-l)Dx)},

which leads to

x = max{o, (1 - w)x + wD-I (Ux + Lx - b)} = f(x;D-l ,L, U,b).

Using Corollary 11.6 in [2] we get x E [x].

c) We have

[x*] = max{o, [Dr1([R][x*J- [bJ)}

= max{0, [Dr1 ([L][x*]+ [U][x*]- [bJ)}.

Let i E {I, . . . ,n}. Then we use the following notation

[cd := -
[ 1..] ( - t [au] [xj] - [bi]

)
.

al! . I .
=/=

.
J= ,J I

(11 )
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Case 1: Suppose [x;J= 0 then CiS; 0 and we can conclude that

[x7]= 0 = max{O, (1 - m)[x7] + m[cd}.

Case 2: Suppose !; = 0 and x;> O. Then S S; 0 and Ci> O. Since 0 < m S; 1 we
have the following equa1ities

max{O, (1 - m)[cd+ m[ci]} = [O,Ci]

= max{O,(1 - w) max{O, [Ci]}+ W[Ci]}

and

[x7] = max{O, [cd} = max{O,(1 - m)[ci] + m[cd}
= max{O, (1 - m) max{O,[cd} + m[cd}

= max{O,(1 - m)[x7] + m[ci]}.

Case 3: Suppose!; > O.Then it is S > 0 and it ho1ds

max{O, (1 - m)[cd + m[ci]} = max{O, (1 - w) max{O, [cd}+ m[cd}.

Then [x;J= max{O,(1 - m)[x;J + m[ci]} follows as in Case 2. Due to the unique-
ness proved in a) we have [x*]= [x].

d) We start (SOR) with [i°] := [x*]and show that

[x*] ~ [xk], k = 0, 1,2, . . . .

Then using a) we can conclude that (x*]~ [x] = 1im[.xk].
k->oo

Let i E {1,..., n} and suppose that for some k ~ 0

(x*] ~ [xk] and

(xj] ~ (iJ+l] for j= 1,...,i-1.

We will use the notation (11) and

1

(

i-I n

)
[di] := -

[ --] - I)aij](xj+l] - L [aij](iJ]- (bd .all . I . .
+1J= J=l

Ca se 1: Suppose [x;J= O.Then 0 = (x;J = max{O, [Ci]}implies

0 = max{O,(1 - m) .0+ W(Ci]}

E max{O, (1 - m)[x7] + m[di]} = [x7+I].
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Case 2: Suppose ~7 = ° and x7 > 0. Since CO> 1 we have

[x;] = max{O, [Ci]} ~ max{O,W[Ci]}= max{O,(1 - w) . [x;J+ W[Ci]}

~ max{O,(1 - w) . [~] + w[di]}= [~+l].

Case 3: Suppose ~7 > O;-Then it is S > ° and it holds

[Ci] = max{O, [cd}.

Hence, since W > 1 we ger.

[x;J = max{O, [cd} ~ max{O, (1 - w)[cd + W[Ci]}

= max{O,(1 - w)[x;J + CO[Ci]} ~ [~+1]. 0

The special case w = 1 of the (SOR) method is usually called Gauss-Seidel- or
single step method (S). The preceding theorem shows that for all ° < w :s; 1 the
(SOR) method and the single step method have the same limit, whereas for w > 1
the limit of the (SOR) method is with respect to inclusion in general bigger.
Subsequently we only consider the case w = 1.

3.3. The symmetrie single step method (SS)

Theorem 3.4. Let [b]E IRn and let [A]E IRnxn be an H-matrix. We define [L],[U],
[Dr1 and [R]as in Theorem 3.3. Then, the sequenee {[uk]}:O ealeulated aeeording
to the iteration method (symmetrie single step method)

{

[uk+1]:= max{ 0, [Dr1 ([U][uk] + [L][uk+!]- [b])},

(SS) [uk+l]:=max{ 0, [Drl ([U][uk+l]+ [L][uk+1]- [b])},
k-O,I,2,...,

eonverges Jor all interval veetors [uO]E IRn to [x*], where [x*] is the unique fixed
point oJ the equation

[x] = max{ 0, [Drl ([R][x] - [b])}.

Proof From [R][x*]= [U][x*]+ [L][x*]it follows as in the proof of Theorem 3.3
that q([uk+l],[x*]):s;Pq([uk],[x*]),where P :=

(1 - ([D]) -11 [U]I) -1 ([D]) -11[L]1(1 - ([D]) -11[L]I) -1 ([D])-II[U] I

is the symmetrie Gauss-Seidel iteration matrix of the M-matrix ([A]) which is
known to satisfy p(P) < 1 ([3]). Since

q([Uk+l], [x*]) :s; Pk+lq([u°], [x*]) ,

it follows that lim [uk]= [x*].k->oo
0
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4. Modifications of (T), (8) and (88)

In this section we consider modifications of the preceding iterative methods
which are based on the fact that if for any of these methods one is starting with
an interval vector containing the limit, then all iterates contain the limit.
Therefore the enclosure of the limit might be improved by forming intersections
after each iteration step.

4.1. (T), (S) and (SS) with interseetion

Theorem 4.1. Let [b]E IRn and let [A]E IRnxn be an H-matrix with Qii> 0,
i = 1,... ,n. We dejine [L], [U], [Dr1 and [R]as in Theorem 3.3. Furthermore, let
[x*]be the (due to Theorem 3.1) unique jixed point oJ

J([x]) = max{ 0, [Dr1([R][x]- [b])}.

We assume that we have an interval vector [start) E IRn satisJying [x*] ~ [start].
We eonsider the iteration methods:

a) Total step method with interseetion.

{
[tO]:= [start]

(11) [1+1]:=[I] nmax{o,[Dr1([R][I] - [b])}.

ß) Single step method with interseetion.

(SI)

[SO] := [start]
Jor i = 1 to n do
[s}+I]:=

[s}]nmax
{

o,[;,;]
(

- ~[aij][sJ+1]- .t [aij][sJ]- [bi]) }
.

J=I J=z+1

y) Symmetrie single step method with interseetion.

[ZO]:= [start]

Jor i = 1 to n do
k-H

[Zi 2]:=

{ (
i-I k-H n

) }
[zf]n max 0, [a~;]- l:[aij][Zj 2]- l: [aij][zJ]- [bi]

(SSI) < j=1 j=i+l
Jor i = n downto 1 do

[zf+l] := [z:+!]n

{ (
i-I k+1 n

) }max 0, I;';] - ~[aij][Zj 2]- .2;: [aij][zJ+l] - [bi] .
J=1 J=z+1
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Then it holds:

a) [I] ~ [Je]~ [.I], k=O,1,2,....

b) lim [I] = lim [sk]= lim [.I] = [x*].
k-'>oo k-,>oo k-'>oo

c) If [A] = A E Rnxn and [b] = b E Rn, then (TI), (SI) and (SSI) are convergent to
the unique solution of the LCP defined by A and b.

Proof a) The proof is by induction. We have

[tO]= [sO]= [zO]= [start].

First, we show [1+1]~ [Je+l] assuming [I] ~ [Je].It is

[s\+I] = max{ 0, [a:d (- t[alj][s7J - [bd) } n [s\1

s:; max{ 0, [a:d (- t[aljM] - [bd) } n [t{] = [t{+l].

Since [s1+1]~ [s1]~ [1] we have

[~+l] = max{0,[a:,]( -[a,,]Wl] - ~[a2j][s7!- [b2!)} n [~]

s:; max{ 0, [a~] ( -[a,,][t{]- ~[a2J[~! - [b2])} n [1,]

= [~+1].

Continuing in this manner we can show [if+ 1] ~ [sf+1]for i = 1,. . . ,n.

Finally, we verify [.1+1]~ [Je+1] a~suming [.I] ~ [sk]. It is easy to see that
[.I+!] ~ [Je+l]since both interval vectors are defined in the same way. Then using
[a]n [b] ~ [b] we get

[~+1] ~ [~+!] ~ [/+1].

b) With [tO]~ [x*] and assuming [I] ~ [x*] we have

[1+1] = f([I]) n [I] ~ f([x*]) n [x*] = [x*].

Hence, [g] := lim [I] :2 [x*]. It isk-'>00

[g] = f([g]) n [g]~ f([g]).
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Now, we consider (T) with [xO]= [g]. Assuming [x"] 2 [g] we have

[Je+I] = f([Je]) 2 f([g]) 2 [g].

Then we get via Theorem 3.1

[x*] = Iim[Je] 2 [g].k-+oo

Using Theorem 3.3 and Theorem 3.4 one can show

lim [i] = [x*]= lim [Je]k-+oo k-+oo

in the same manner.

c) Starting (T) with [xO]= 0 we have d([x"]) = 0 for all k. Since lim [x"] = [x*] we
have d([x*])= o. So, [x*]= x*, a point vector, which by ThJor~m 3.1 is the
solution of the LCP defined by A and b. By part b) of the present theorem we
know that (Tl), (SI) and (SSI) all converge to x*. 0

Remark 4.1. a) Implementing (SI) we can propose the columnwise procedure
given in [15]. This is especially advantageous if one uses Pascal-XSC ([11]), since
this language supports the multiplication of a column vector of an interval matrix
by an interval.

b) Using the idea described in [2], p. 168, it is easy to see that (SSI) can be
performed with essentially the same amount of work as (SI). An exception is the
first step. Furthermore the division by [aii]has to be performed twice in every step.
This could be avoided by computing once and for all the intervals [aij]/[aii],i =I-j.
However, proceeding in this manner would increase the limit [x*]in the set the-
oretic sense. This is, of course, undesirable.

c) Statement a) ofthe preceding theorem shows that (SSI) is the method of choice.

4.2. How to get an interval vector [start]?

We assume that [b]E IRn and that [A]E IRnxn is an H-matrix with !Jii> 0,
i = 1,. . . ,n. Let [Drl, [R]and [x*]defined as in Theorem 3.1. Then we consider
(T) with an arbitrary [x°],~o 2: o. We have seen in the proof of Theorem 3.1 that

p(P) < 1, where P:= ([D])-II[R]I.

With

q([xn+l], [xn]) = q(f([xm]),f([xn-I]))

:::; p. q([xn], [xm-I]) :::; ... :::; pm. q([xl], [xO])
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we get for I > k:

q([xl], [Je])~ q([xl], [xl-I]) + ... + q([Je+I],[Je])

~ pI-I. q([xl], [xO])+ . .. + pe . q([xl], [xO])

= pk . (1+ p +... + pl-k-l) .q([xl], [xO])

~ pi<. (tpj) .q([xl], !x'])

= pe . (1- p)-l .q([xl], [xO]).

Since lim [xl] = [x*], it holds that (set k := 1)
1--->00

q([x*], [xl]) ~ p. (I - p)-l .q([xl], [xO])=: v,

which is equivalent to

I'!* - ,!l! ~ v, 1

_* -1 \<x -x - v

and which implies

,!l - v ~ ,!*, x* ~ xl + v.

Hence, we get [x*] ~ [,!l - v,xl + v] =: [start].

5. Examples

We have implemented (11), (S1) and (SS1)as in Theorem 4.1 using PASCAL-XSC
([11]), where we have also taken into account the statements a) and b) ofRemark
4.1. The iteration (11) is stopped as soon as there is an iteration step k with
[1+1] = [I].The stopping criteria for (S1) and (SS1) are analogous.

In the sequel we present some examples where the interval matrices [A] are
H-matrices satisfying {1i > 0, i = I,. . . ,n.

Example 5.1. Let

[A] = ( [r'1]1 [- ~,- ~]),
[-4'-10] 1 ([-3, -I] )[b] = [1,2] .

The shape OfL([A], [b])has already been discussed in [16]and is depicted in Fig. 1.
Note that the line from (1,0) to (4,0) belongs to L([A], [b]). For (11) we get

[ I.OOOOOOOOOOOOOOOE+ 000, 4.40000000000000 I E + 001]

[ O.OOOOOOOOOOOOOOOE+ 000, 1.00000000000000 I E + 00 I ]
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Z2

10

11 4 20 44 Zl

Fig. 1. The shape of L([A],[b])

after 100 iteration steps. For (S1) and (SS1) we get the same result after 51
iteration steps. According to Theorem 3.2 this interval vector is the smallest
interval vector enclosing L([A],[b)),since [A]is even an M-matrix. Using the (SOR)
method with (0 = 1.0001 we get

[9.956987396218869E - 001, 4.401260378113437E + 001]

[ O.OOOOOOOOOOOOOOOE+ 000, 1.000415126037813E + 001]

after 52 iteration steps which corresponds to part d) of Theorem 3.3. Using the
(SOR) method with (0 = 0.95 we get

[9.999999999999998E - 001, 4.400000000000003E + 001]

[ O.OOOOOOOOOOOOOOOE+ 000, 1.000000000000001 E + 001]

after 58 iteration steps.

Example 5.2. Let

2 -1 0 0 0 2
-1 2 -1 0 0 -3

[A]= I 0 -1 [4,9] -1 0 , [b] = [-1,1]
0 0 -1 3 1 [2,4]
0 0 0 -1 1 0
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We get the indusion

[ O.OOOOOOOOOOOOOOOE+ 000, O.OOOOOOOOOOOOOOOE+ 000]

[ 1.529411764705882E+ 000, 1.857142857142858E+ 000]

[5.882352941176469E - 002, 7.142857142857144E- 001]

[ O.OOOOOOOOOOOOOOOE+ 000, O.OOOOOOOOOOOOOOOE+ 000]

[ O.OOOOOOOOOOOOOOOE+ 000, O.OOOOOOOOOOOOOOOE+ 000]

of :L([A],[b]) after 40 steps using (TI), after 21 steps using (S1) and after 20 steps
using (8S1), respectively. Note that [A]is not an M-matrix due to the (4,5)-entry of
the matrix.

Example 5.3. Let

(

[7,8] [2,3] [0,I] [-1,2]

) (

[0, I]

)
- -2 [5,6] [-1,0] [-1,2] - [-1,0]

[A]- [-4,-3] [-1,1] [6,6.5] [0.5,0.8] , [b]- 0 .
[-2,2] [-2,1] [0,0.5] 5 [1,2]

We get the indusion

[ O.OOOOOOOOOOOOOOOE+ 000, O.OOOOOOOOOOOOOOOE+ 000]

[O.OOOOOOOOOOOOOOOE+000, 2.068965517241380E- 001]

[ O.OOOOOOOOOOOOOOOE+ 000, 3.448275862068967E- 002]

[ O.OOOOOOOOOOOOOOOE+ 000, O.OOOOOOOOOOOOOOOE+ 000]

of :L([A],[b])after 27 steps using (TI), after 14 steps using (S1) and after 14 steps
using (SS1), respectively.

Considering a point problem

(

7.5 2.1 0.7 -0.3

) (

0.2

)
A = -2 5.7 0 1.8 b = -0.6

-3.3 I 6.2 0.7' 0'
I -I 0.25 5 1.3

we get the indusion

[ O.OOOOOOOOOOOOOOOE+000, O.OOOOOOOOOOOOOOOE+ 000]

[ 1.052631578947368E - 001, 1.052631578947369E - 001]

[ O.OOOOOOOOOOOOOOOE+ 000, O.OOOOOOOOOOOOOOOE + 000]

[ O.OOOOOOOOOOOOOOOE+ 000, O.OOOOOOOOOOOOOOOE+ 000]
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of the unique solution of the LCP defined by A and b after 3 steps using (11), after
3 steps using (S1) and after 2 steps using (SS1), respectively.

Example 5.4. Let

[A] =

[20,21]

[-0.3, -0.2]

[0,0.1]
[-0.3, -0.2]

[-1,-0.5]

[0.2,0.4]
[-1, -0.8]

[-0.2,0.2] ..

[0.2,0.4]

[-1, -0.8]

[b] =

We get the indusion

[-1, -0.5]

[20,21]

[0.1,0.2]

[0,0.1]

[0,0.1]

[-2, -1]

[-0.2,0]

[-2, -1] I'

[-0.2,0]

[30,31]

[0,0.1]

[0.8,1]

[20,21]
[0.8,1]

[0.1,0.2]

[0.1,0.2]

[0.2,0.4]
[0.1,0.2]

[30,31]

[-2,-1]

[ O.OOOOOOOOOOOOOOOE+ 000, O.OOOOOOOOOOOOOOOE + 000]

[ 3.746923870762879E - 002, 5.033333333333335E - 002]

[ O.OOOOOOOOOOOOOOOE+ 000, 1.314598713979520E - 002]

[O.OOOOOOOOOOOOOOOE + 000, O.OOOOOOOOOOOOOOOE + 000]

[ 2.555927320124862E- 002, 3.333333333333334E - 002]

of L([A], [b])after 11 steps using (11), after 7 steps using (S1) and after 6 steps
using (SS1), respectively.

Example 5.5. Let

[1,1.5] -0.5 ...

0

[A] =

0

and

-0.5

0

-0.5 -0.5

[1, 1.5] -0.5
0 [1,1.,5J

E IRlOxlO

. -

{
[0.2,0.3J ~fi.=2k+ I,

}
i= 1,..,10.

[bz]- [-1, -0.9] If 1= 2k,
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We get the inclusion

[ 3.081847279378140E+ 000, 1.951054687500001E+ 001]

[ 2.911385459533605E+ 000, 1.380703125000001E+ 001]

[ 1.583539094650204E+ 000, 8.404687500000004E+ 000]

[ 1.787654320987653E + 000, 6.403125000000002E + 000]

[ 7.407407407407402E - 001, 3.468750000000001E+ 000]
[ 1.155555555555555E+ 000, 3.112500000000001E+ 000]

[ 2.666666666666664E - 001, 1.275000000000001E+ 000]

[ 7.999999999999998E - 001, 1.650000000000001E+ 000]

[ O.OOOOOOOOOOOOOOOE+ 000, 3.000000000000001E - 001]

[ 5.999999999999998E - 001, 1.000000000000000E+ 000]

of L([A], [b])after 10 steps using (TI), after 10 steps using (SI) and after 2 steps
using (SSI), respectively.

Example 5.6. We consider Example 5.1 in [17]. There, a free boundary problem
was discretized taking into account the discretization error. This leads to an LCP
with the matrix

and an interval vector [b]. Since A is an M-matrix, (TI), (SI) and (SSI), respec-
tively, will converge to a limit which is the smallest interval vector containing
L(A, [b]). For n = 10 we get the inclusion

[8.210179430213943E - 002, 8.276674431625078E - 002]

[6.605772783177625E - 002, 6.717240846882514E - 002]

[5.182710250343162E - 002, 5.321876250425957E - 002]

[3.937435778530811E - 002, 4.090743764525911E - 002]

[2.866892713400047E - 002, 3.023994094279071E - 002]

[1.968505647879717E- 002, 2.121766916763587E- 002]

[1.240158636605719E - 002, 1.384192182526096E - 002]

[6.801700849114046E - 003, 8.113913186310685E - 003]

[2.872647508163023E - 003, 4.034783240482190E - 003]

[6.054339940538283E - 004, 1.605607503113720E - 003]

1 I 0 ... 0-2

I 1 I
-2 -2

A=I
0 0 I E Rnxn

I 1 I
-2 -2

0 ... 0 I 1-2
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of L(A, [b]) after 884 steps using (TI), after 443 steps using (SI) and after 242 steps
using (SSI), respectively.

Final remark. For LCPs with interval data it is not yet precisely understood how
the speed of convergence of the methods considered in this paper is dependent on
the given data. However, this understanding is aprerequisite for the construction
of methods which are faster convergent. This will be part of research done in the
future.
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