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Summary. This paper proposes a validation method for solutions of nonlin-
ear complementarity problems. The validation procedure performs a com-
putational test. If the result of the test is positive, then it is guaranteed that
a given multi-dimensional interval either includes a solution or excludes all
solutions of the nonlinear complementarity problem.

Mathematics Subject Classification (1991): 65K 10

1 Introduction

Let f : R" — R™ be a continuous function. The nonlinear complementarity
problem (NCP) consists in finding a vector z € R™ such that

>0, f(z)>0, z'f(z)=0.

The NCP models many important problems in engineering and economy.
Moreover, the NCP is a fundamental problem for optimization theory, since
the first order necessary condition for optimality can be formulated as an
NCP. Although there are some general results about the existence of solu-
tions for some classes of NCPs, it is rather difficult to verify that a particular
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NCP has a solution. It is even more difficult to verify that an NCP has a so-
lution in a particular region. A comparison of some codes for solving NCPs
developed prior to 1995 is given in [7]. Since then new efficient methods for
solving NCPs have been developed based either on interior point methods
[5,6,25,30,31], or Newton-like methods applied to (non-smooth) reformu-
lations of NCPs [9, 15,24]. Under certain conditions, for example if the NCP
is monotone and satisfies a scaled Lipschitz condition [25,31] then for any
strictly feasible starting point the interior point method will produce a se-
quence that converges to a solution of the problem. However, in practice it is
extremely difficult to find a strictly feasible point. Typically, a primal-dual
interior point method uses a positive starting vector (z° > 0, s° > 0) with
a residual 7% = s% — f(2°) and stops when a point (z, s) is obtained such
that

(1.1) >0, 8>0, |s— f(z)] <e, z¥s <¥¢,

for a given € > 0. Even if ¢ is very small this does not guarantee that the
NCP has a solution. In case the NCP has a solution it is very difficult to
obtain reliable bounds on the distance between a solution of the NCP and a
point satisfying (1.1).

In [2, 10] the special case of the so-called linear complementarity prob-
lem (LCP) was considered. In this case the mapping f has the special form
f(z) = Mz + qwhere M € R"*™ and q € R™ are given. The general case
of a nonaffine f is much more difficult to handle than the linear case.

The present paper describes a computational test that guarantees that a
given multi-dimensional interval contains a solution of the NCP. Our test
also applies for algorithms which have stopping criteria different from (1.1).
The idea is to choose a relatively small multidimensional interval around a
point (z, s) (presumably an approximate solution of the problem) and to test
computationally if a certain inclusion holds. Ifthe result of the test is positive,
then the given interval is guaranteed to contain a solution of the NCP. It is
notable that the involved function f is not necessarily differentiable for the
validation. In Sect. 2, we describe a slope for the numerical validation of
the solution of an NCP. In Sect. 3 we give an interval arithmetic evaluation
of the slope. In Sect. 4 we propose an algorithm for testing the existence
of solutions, and report numerical results to illustrate the robustness of the
new method. In what follows we denote an interval by [z] = {z € R",z <
x < Z}. The nonnegative orthant of R is denoted by R

2 The slope of a NCP

Itiswell known and easy to verify that the NCP is equivalent to the following
system of nonlinear equations
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2.1 F(z) := min(f(z),z) =0,

where the “min” operator denotes the componentwise minimum of two
vectors. For the case f is differentiable, the function F' is not necessarily
differentiable at « if f(z) = «. F is differentiable on an interval [z] if
f(z) > z forall z € [z] or f(z) < z for all z € [z]. Many existing
algorithms for validation of solutions of a system F'(z) = O of nonlinear
equations assume that the involved function is continuously differentiable.
Such algorithms are based on the mean value theorem for differentiable
functions and an interval extension of the derivative. For instance, if F is
differentiable on [], then

2.2) F(z) — F(y) € F'([z])(z — y), forallz,y € [z],

where F'([z]) is an interval evaluation of the Fréchet derivative. The
Krawczyk operator is defined by

K(z, A, [¢]) = 2 — A" F(2) + (I — A~ F'([a]))([z] - @),

where A is an n X n nonsingular matrix. If [z] is a multi-dimensional interval
such that K (z, A, [z]) C [z] then it is guaranteed that there is an z* € [z]
such that F'(z*) = 0. For details see [2]. Since the function F' defined in
(2.1) is in general nondifferentiable, the above validation algorithm does
not apply to our problem. Recently, some methods have been proposed for
general nondifferentiable equations [8,27]. In this paper we give a sharp
and computable interval operator for the special nondifferentiable system
(2.1). Using this interval operator, we can numerically verify the existence
of solutions of the NCP . The first step is to define a slope for F', which is a
mapping 6 F : [z] x [z] = R™ ™ such that for a fixed z € [x]

(2.3) F(z) — F(y) = 6F(z,y)(z —y), forall y€ [z].

We assume that f has a slope 6 f : [z] x [x] = R™*™ such that for a fixed
T € [z] '

2.4) f(z) = f(y) = 6f(z,y)(z —y), forall y € [z].

Let us use the following notations
S ={z € [a]| fiz) > 2}

S; = {z € [7] | fi(z) < z:}
S = {z € [a] | filz) = z:}
N ={1,2,...,n}

For a vector € [z] and an ¢ € N, z is in one of the three sets. Hence for

any two vectors ¢,y € [z] and an ¢ € N we define §F;(x, y) as shown in
Table 1.
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Lemma 2.1 Let the ith row of §F(x,y) be defined by Table 1. Then for
every two vectors x,y € [z],

F(z) — F(y) = 0F(z,y)(z — y).
Proof. Let: € N be fixed. Since d f; is a slope of f;, we have
fi(z) = fily) = 0 fi(z,y)(z — y).
Ifz e SHuSandy € St USY, then
Fi(z)-Fi(y)=zi—yi =€ (z—y).
Ifre S andye SQUS; ,ory € S; andz € S?, then
Fi(z) - Fi(y) = fi(z) — fi(y) = 0fi(z, y)(z — ).
Ifz € S andy € St then
(8fi(z,y) — ") (z —y) = fi(z) -z + 3 — fily) <O
and
Fi(z) — Fi(y) = fi(z) — v
= fi(z) —zi+ el (x—y)
_ (i@ —z)0filmy) —ef)a—y) 1,
Ghwy) - NE-y) oY

- fi(z) — i TR o S,
- <(f(:c)—f(y)—:c+y)z-(‘5f‘( y) e+ )

X{z—19)
= (Bi(0fi(z,y) — ) +&f ) (z — ).

Finally, if z € S;" andy € S; then
(6fi(z,y) ~e")(z —y) = filz) —zi + 3 — fi(y) > 0

and

Fi(z) — Fi(y) = =i — fi(y)

=4 — fily) +ef (z - y)

_ i — fi(y) (O fi(z,y) — el )(z —y)

(0fi(z,y) —ef)(z —v)
vi — fi(y) Ty , T

(T T e OAas) —) )
X(z —y)
= (ai(8fi(z,y) —e]) + &) (z — ).

+ef (z—y)




Numerical validation of solutions of complementarity problems 5

Lemma 2.2 The numbers «; and 3; defined in Table 1 satisfy the following
relations
a; € (0,1) and g; €(0,1).

Proof. Notice that o; is used when z € S;" and y; € S; . Then from
vi — fi(y) > 0 and fi(z) — z; > 0, we have

yi — fi(y)
(yi — fi(y)) + (fi(z) — =)

Since J; is used when z € S;” and y; € S;", we have f;(z) — z; < 0 and
y; — fi(y) < 0, so that

€ (0,1).

G; =

B fil®) —z;
A =) - .

We now discuss the nonsingularity of §F'(z,y). The nonsingularity of
dF(z,y) depends on the properties of § f(z,y). An n X n matrix A is
called a Py matrix if all principal minors of A are nonnegative. A matrix A
is called a P matrix if all its principal minors are positive [13]. Using some
results from Gabriel and Moré [15] we obtain the following proposition.

Bi

Proposition 2.1 1. If§f(x,y) is a P matrix, then  F (x, y) is nonsingular.
2. If§f(z,y) is a Py matrix and S;* contains z or y for every i € N, then
0F (z,vy) is nonsingular.

Proof. 1. By Lemma 2.1 and Lemma 2.2, § F'(z, y) can be written as

where D =diag(d;) is a diagonal matrix with 0 < d; < 1. Hence by
Theorem 4.4 in [15],  F(z, y) is nonsingular.
2. If Sj contains z or y for every ¢ € N, then

5F(:r:,y) = I+D((5f($,y) e I):

where D =diag(d;) is a diagonal matrix with 0 < d; < 1. Hence by
Theorem 4.3 in [15], 0 F(z, y) is nonsingular. O

Table 1. Slope of the function F'

0F;(z,y) y
SF S, S
st er ai(6fi(z,y) —ef) + e el
T S:_ ﬁi(éfi(may) =T e;_I‘) -+ e;T 6fi(xay) 5fi(.1?, y)
7 er 0fi(z,y) e;
s (y — F(¥)): g (f(z) —=z)i

(fl@) - fy)—z+y)’ " (fl@)—z+y—Fy):
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If f is an affine function, say f(z) = Az + ¢, then A = §f(z,y). If A
is a Py matrix and we choose x € Sf , then according to Proposition 2.1
dF'(x,y) is nonsingular for all y € R™.

Definition 2.1 4 mapping f from an interval [z] in R" into R" is said to
be

1. a Py function on [x] if for all z,y € ] with x #+ v, there is an index i
such that
zi #yi and (fi(z) — fi(y)) (@i —vi) 2 0;

2. a P function on [x] if for all x,y € [x] with = # vy, there is an index i
such that

zi #yi and (fi(z) — fi(y))(zi —vi) > 0;
3. a uniform P function on [x] if for some v > 0

Ii.rg(ff(ﬂ:) — fi) (@i —yi) 2 vllz -yl forallz,y € [x];

4. a monotone function on [z| if for all z,y € [z],

(f(z) — f@) (z—y) >0

5. a strictly monotone function on [z] if for all z,y € [z],

(f(@) = @) (= ~y) >0

6. a strongly monotone function if for some v > 0
(f(@) = f@) (z—y) 2z -yl forallz,y € [z].

It is easy to verify that every monotone function is a Py function, every
strictly monotone function is a P function, and every strongly monotone
function is a uniform P function. For a Fréchet differentiable function f,
the following results are known [16,23]:

1. If f'(z) is a P matrix for all z € [z], then f is a P function on [z];

2. If f is a uniform P function on [z], then f’(z) is a P matrix for all
x € [z];

3. fisa Py function on [z] if and only if f’(z) is a Py matrix forall z € [z].

For a semismooth locally Lipschitzian function f, Song, Gowda and Ravin-
dran [29] showed that f is a P function on [z] if and only if the Bouligand
subdifferential Op f () consists of Py matrices at all z € [z]. Notice that the
mean value theorem does not hold for 0 f. Moreover, for a P, function, the
Clarke generalized Jacobian 0f(z) = co Op f(z) may consists of a matrix
which is not P,. Hence we consider that f is a monotone function in the
following theorem.
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Theorem 2.1 Suppose that f is a locally Lipschitzian function. Then there
isadf(z,y) €Ecodf(z7y).

1. If f is a strongly monotone function, then for any § f (x,y) €co0f(Ty),
0F (z,y) is nonsingular.

2. If f is a monotone function and S;r contains x or y for every i € N,
then for any d f (z,y) €codf(Ty), dF(x,y) is nonsingular.

Here co0 f (Ty) denotes the convex hull of all points Z € OF (u) foru € Ty,
and Ty denotes the line segment between x and y.

Proof. According to Proposition 2.6.5 in [11], there is a matrix § f(z,y) €
co0 f(Zy) such that

f(z) = fly) = 6f(z,y)(z — ).

1) Since f is a locally Lipschitzian function, f is differentiable almost every
where. Moreover at a point z € [z] where f is differentiable, f/(z) is a
strongly monotone matrix. By definition, the Clarke generalized Jacobian
at y 1s defined by

of(y) = co{klim f"(zk) : 2% — y, f is differentiable at 2*}.
— 00

Since f'(z*) is a strongly monotone matrix, the limit lim__,,, f'(2*) is a
strongly monotone matrix. Moreover, the convex combination of strongly
monotone matrices is still a strongly monotone matrix. A strongly monotone
matrix is a P matrix, so that by using Proposition 2.1, we deduce that
0F(x,y) is nonsingular. The proof for Part 2 is similar. O

3 Interval evaluation

We assume that f has an interval arithmetic evaluation of the slope § f (z, [z])
for fixed z € [z] and all y € [z], i.e., 0 f(z, [z]) is an n x n-matrix with
interval entries such that 0 f (z,y) € d f(z, [z]), forall y € [z]. For different
aspects relating to the notion of an arithmetic evaluation of a slope of a
nonlinear map see [19]. To define an interval arithmetic evaluation for § F,
we consider the following nonlinear programming problems

min y; — fi(y)
(3.1 st. y € [z]

and

max y; — fi(y)
(3.2) st. y € [z].
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Let 4! and 42 be solutions of the nonlinear programming problems (3.1)
and (3.2), respectively (see Remark 3.1). For a fixed z € [z], let

(yi’2 — f(yi’z))i

L ; s aniaible FOAENT
%= @ sty — [ @ ety =S #0
and
B = i) sl if (F(&) — o+ ¥ — F(g"))s 2 0.

- (f@) —z+yt = f)

Then we can define the following interval arithmetic evaluation:
Fi(z, [])

e Y2 e §HusY

éfi(z, [:I:]), 'yi’l = S?,_ U Szo
[0,0:](0fi(x, [z]) —ef) +ef, ze€SFusSl y»?es
[8i, 1) (0 fi(z, [x]) — e?) + eéT, T € .S'i_,yi’l € S;‘.

Theorem 3.1 For a fixed x € [x], we have
F(z) — F(y) € 6F(z, [z])(z —y), forall ye€[z].
Proof. 1) First we suppose y2 € S;" U SY. Then for all y € [z],
vi — fily) < v’ - fily™?) <.
Thatis,y € S;f U S? forall y € [z]. In particular z € S;" U S?. Hence
Fi(z) = Fi(y) = & — yi = &; (¢ — y) = F;(z, [2])(z — ).
2) Now we suppose y"! € S;” U S?. Then for all y € [z],
vi — fily) > o' = fily™) > 0.
Itfollowsthaty € S; US? forally € [z]. Inparticularwe have z € S, USY.
Hence
Fi(z) - Fi(y) = fi(z) - fi(y)

= éfi(z,y)(z —y)

€ 6fi(z, [z])(z — y)

= 0F(z, [z])(z — y).
3) Finally we suppose that y2 € S; andz € S;" US?. Lety € [z]. If
y € S;t U S, then

Fi(z) - Fi(y) = €; (z — y)
iy ;
€ ([0, 4]0 fi(z, [z]) — &) + €5 )(z —y)
= 0Fi(z, [z])(z — ),



Numerical validation of solutions of complementarity problems 9

where we use the fact that 0 < o; < 1. If y € S;, then by Lemma 2.1, we
have

Fi(z)-Fi(y)= ( vi — fi(y)

(f(2) = Fly) —z+y)

Since y"? is an optimal solution of (3.2), we have

(e — s T) G

yi — fi(y) % — () .
V< T@- Fig) =wikg)i = (0E) D —mtg®, — S

Therefore,
Fi(z)-F;(y) € ([0, ci](6i(, [z])—e] )+e] ) (z—y) = 6Fi(z, [z]) (z—v).

4) Thecase z € S, , yil € ;" can be treated in a similar fashion.

2

Remark 3.1 In general it is a non-trivial problem to find solutions yb! and
y2 of (3.1) and (3.2), respectively. However, in some practical important
examples y»! and y"? can easily be found. See Example 1 of this paper, e.g.

Furthermore the following interval arithmetic evaluation can be considered
as a simple but overestimated interval arithmetic evaluation:

G(z,[z]) = [0,1](0f (z, []) = ) + 1.
Following the discussion above, we can show that
OF (z,[2]) € G(z, [a])
and i
F(z) — F(y) € G(z,[z])(z —y) forall z,y € [z].

Proposition 3.1 1. If 6 f(z, [z]) consists of P matrices at all y € [z], then
every element in G(z, [z]) is nonsingular.
2. If 6 f(z, [z]) consists of Py matrices at all y € [z] and x € S;' for all
1 € N, then every element in 6 F (z, [z]) is nonsingular.

Proof. The proof for the part 1 is similar to the proof of part 1 of Proposition
2.1. For part 2, by Theorem 4.3 in [15], we only need to show ¢ f;(z, [z]) is
not in § F;(z, [z]) for every i € N. Since z € S;" and

y' - fiy"!) < 2 — fi(z) <0,

we have y»! € S;. Hence

and
SFy(z, [z]) # [8:, 1](8fi(z, [2]) — €] ) + e .
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This implies that
§F(, [z]) = [0, s)(6 fi(z, [2]) — eF) + e,

where «; 1s a number between 0 and 1. Now we show that a; # 1. If
yh2 € S U SY, then o; = 0; If y2 € S;7, then from z € S;', we have

filz) —z; >0
and 5
1, i.2
y;,” — fi(y>?)
0 <= T —— = 1,
Y (f@) - fy?) -z +yh2)
The proof is complete. ' O

4 Algorithm and numerical tests

Based on the results in [3, 8], we propose the following validation method.

Algorithm 1 Letr > Obea given tolerance and let z > 0 be an approximate
solution of the system (2.1). Calculate

4.1 [z] =z + r[—e,¢€]
where e = [1,..., 1]T and choose a nonsingular matrix A. Compute

42) L(z, 4 [z]) =2 — A7'F(z) + (I - A7'6F (g, []))([z] — z).

- If
4.3) L(z, A, [z]) C [z],
then there is a solution z* € [z] of (2.1).

- If
4.4) L(z, A, [z]) Niiz] =0,

then the interval [z] contains no solution of (2.1).

The algorithm is tested using the following two examples.

Example. Consider the following equilibrium problem for an unknown func-
tion u(y, 2)[20]:

(4.5) {3 - [[)":’ + Au - ¢(u) — q(y, 2)]+, g: 2 E g{; (0,1) x (0,1)

where ¢ is a monotone function and q is a given function.
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Applying the centered five point difference approximationto (4.5), we obtain
a system of nonlinear equations

(4.6) z=(2—Mz—g(z)—0c)

which is equivalent to

F(z) = z —max(0,z — Mz — g(z) — ¢) = min(z, Mz + g(z) +c) = 0.

In particular, for ¢(u) = e*, we have

H —-I
1 | -IH .
M: ﬁ . . = Rnxn’
g iy s
—IH
4 -1
s | LB € RY"XVn
] |
-14
and
g(z) = (€™1,e%2,...,e*)T.
Let
f(z)=Mz+g(z)+c
Then

f'(z) = M + diag(e®).

Define h(z) = z— f(z). Thenitiseasytoseethatforz € R and1 <i<n

it holds 5h A
i D -
3:33"_ . h? e 0’

Oh; 1, ., . Oh; Y
9z € {O,ﬁ},z # 7; hence oz; > 0,i# 5.
From this it follows that we can define the global optimal solutions of (3.1)
and (3.2) as follows:

il )T ifi=4
Y5 = z. otherwise ’
=3
and
2 _ gjlfzzj. .
/) T; otherwise

We have chosen
z* = (0,1,0,1,...,1)T
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Table 2. Numerical results for Example 1, z* € [z]

o n=9 n=2 n=36 n=64 n=100
o7s T 1072 107 100° 107 107
. r 10~ 16 10—16 10~ 16 10~ 16 10~ 16
o0s T 1070 107 107 107 1070
£ £ 10-—{5 10—16 10—16 10—15 10—16
ops T 1072 107 1072 107* 1077
= _t 10—15 10—16 10—16 10—13 10—16
g F 167 10 10~* 16+ i-*
r 10—16 10~ 16 10—16 10—16 10~ 16
025 T 1072 107 1072 107° 1077
] r 10—15 10— 16 10— 16 10— 16 10— 16
o5 T 1072 1072 102 102 1074
’ r 107 107 107 107 1071
075 T 10°% 107 1073 0 = 10
- E 10— 16 10—-14 10—16 10—15 10—16

and
N (Mz*); + gi(z*) ifz; >0
= (Mzx*); + gi(z*) — &; otherwise ’
where &; is a random nonnegative number. Obviously, z* is a solution of
(4.6). Moreover, F'is not differentiable at «* if there is an i such that §; = 0.
]

Example 2 (U. Schdfer, Karlsruhe) Let
f(z) = Mz + q + s(),

where
12 2 <+ 2
01 2 «.- 2
M=]001
Py nad
00--- 01
and s(z) =diag(s;(z;)) with s;(z;) = (z; +1)3 —4,i=1,..,n;
q is chosen such that z* = (2%, 23,...,2;)T with
«_ J0 ifimod7 =0
* ]| i otherwise

is an exact solution of (2.1).
In our numerical experiment, we choose

_Ji—(Mz* + s(2*)); ifimod7 =0
= —(Mz* + s(z*)); otherwise.
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Table 3. Numerical results for Example 2, z* € [z]

a n=5 n=10 n=20 n=50 n=100
o075 T 1072 107?107 107°  107°
: r 100 107 107 1072 1072
o0s T 07 107?107 107 1077
‘ r 100" 107 100¥® 107¥ 10712
ops T 107 107?107 1077 1077
: B BT gt . gt gpele. i
o T wE  1g? 1072 1073 1072
¥ 29 300% agr'™ gt e
ozs T 0% 1072 1072 1073 1072
: ¥ Ad0F® 37 der 4% R
05 T e 1672 1072 1072 102
T oor 107" 107" 107 107® 0 107"
F 100! 107! 102 102 1072
R g Jplde qoee 3 1R

Of course, there are also other choices possible for g;. Note that M is a
P matrix and s'(z) =diag(3(z; + 1)?). Hence it is easy to see that f is a
uniform P function for any choice of q. It is known that an NCP with a
uniform P function always has a solution which is unique in R". O

Let 2* be an exact solution. We choose as an approximation
=1z —rae,

where @ € (—1,1) and r > 0.
As a test interval for Algorithm 1 we try

[z] = z + [-7,7]e,

wheree = (1,...,1)T. This choice of [z] guarantees that foralla € (—1,1)
and r > 0 the inclusion
z* € [z]

holds. Varying « and r shows how sensitive our algorithm is with respect
to these parameters. If |a| > 1 then [z] does not contain z* for any r > 0.
For |a| > 1 we keep ar (and therefore the center z of the test interval [z])
constant. Therefore by enlarging || we have to diminish the half width r of
the components of the diameter of [z]. Table 2 (for Example 1) and Table 3
(for Example 2) contain the numerical results for the case that z* € [z] (that
is for @ € (—1,1)). 7 denotes the largest 7 < 10! for which the validation
(4.3) was performed successfully.

r denotes the smallest 7 > 10716 for which the validation (4.3) was
performed successfully. In our numerical experiments we have tested the
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Table 4. Numerical results for Example 1, ar = 5

T n=9 n=25 n=36 n=64 n=100

0.5 y y y y .
1 y y y y y
1.5 y n n n n
2.0 n n n n n

Table 5. Numerical results for Example 2, ar = 5

T n=5 n=10 n=20 n=50 n=100
1 y y y y y
2 y y y y y
3 ¥ y y y y
3.5 y y y y y
3.6 n y y y y
3.7 n y y y y
3.8 n y y y y
3.9 n n y y y
4 n n y y y
4.7 n n n n y
4.8 n n n n n
4.9 n n n n n

algorithm starting with 7 = 7 and decreasing the radius r successively by
multiplying it with 10~! until we reached r.

Table 4 (for Example 1) and Table 5 (for Example 2) contain the numer-
ical results for the case that * ¢ [z] (that is for || > 1). In these tables “y”
means that the test (4.4) was successful, “n”” means that it was not successful.
We choose ar = 5 and obtain the results in Table 4 and Table 5.

The above numerical results as well as other numerical experiments show
that our validation algorithm is robust and can be used to prove numerically
that a certain multidimensional interval centered at an approximate solution
contains an exact solution of the NCP.

Acknowledgement. We are grateful to U. Schifer for performing the numerical tests for
Example 2. Furthermore a series of valuable comments by an to us anonymous referee
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