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Modifications of the Oettli-Prager Theorem
with Application to the Eigenvalue Problem
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Dedicated to Prof. Dr. Jiirgen Herzberger on the occasion 0/ his 60th birthday.

1 Introduction

In this paper we consider the eigenpair set

Ep := { (x,).) I Ax = ).x, x i=0, A E [AL A with property P}, (1)

where [A] is a given real n x n interval matrix (cf. Alefeld and Herzberger (1983),
e.g., for interval analysis) and P is some fixed property such as symmetry,
Toeplitz form, etc.. Before we study this set in greater detail we mention other
ones which are related to it: When dealing with systems of linear equations

Ax - b- , A E Jl{.nxn, bE Jl{.n (2)

(Jl{.n Xn set of real n x n matrices, ßRn set of real vectors with n components) there
sometimes occurs the problem of varying the input data A, b within certain
tolerances and looking for the set S of the resulting solutions x*. Examples of
this problem are Wilkinson's backward analysis when solving linear systems on
a computer (Wilkinson 1963) and an input-output model in economics which
is regulated by (2) with input parameters A, band output x (Maier 1985). In
the first example one solves (2) on a computer (assuming A to be nonsingular).
Due to rounding errors one normally does not obtain the exact solution x* but
another vector x. One accepts x as a good approximation of the exact solution
x* if it can be interpreted as a solution of a nearby system Ax = b,where'nearby'
means lA-AI :Sß, Ib-bl :Sdwith given tolerances 0 :Sß E ßRnxn, 0 :S d E ßRn.

(Here and in the sequel, the absolute value I. land the inequality sign ':S' are
understood entrywise.) In other words, one considers x as a good approximation
for x* if and only if it belongs to the solution set

S := {x E ßRnlAx = b, A E ßRnxn, bE ßRn,IA - AI :Sß, Ib- bl:Sd} (3)

where A, ß, b, d are given. Instead of writing jA - AI :S 6A one often prefers
the shorter notation A E [A] where the bracketed letter denotes the real n x n
interval matrix

[A]:= [A - 6, A + 6] = [A,A]= ([a]ij)= ([~ij,aij]).



Similarly, Ib - bl ::s <5is replaced by b E [b] with the interval vector

[b] := [b - <5,b + <5] = [Q, b] = ([b]i) = ([Qi,bi]).

The second example - which we called input-output model - can be viewed

under two aspects: Firstly, one can vary directly the original input data A, b
within given tolerances ~, J and consider all solutions outgrowing from the
modified systems Ax =b with A E [A], b E [b].This means that we look again
for the solution set S in (3). Secondly, one can measure the output x = i; and
ask whether it can be expected to be generated by input data A, b 'nearby' A
and b. Again one is led to the problem 'i; ES?' this time having a sort of
inverse problem as in Wilkinson's backward analysis.

A description of S was given in the sixties by Oettli and Prager (1964) in the
form

x E S {:} Ib - Axl ::S ~ . lxi + <5 (4)

which is known in the literature as Oettli-Prager Theorem and which was re-
formulated since then several times (see Theorem 1 below).

The solution set S covers all matrices from [A]. Often the matrix A in (2)
exhibits some particular structure, which should be kept when considering the
perturbed systems Ax = b; cf. for instance Jansson (lg91a,b), Rump (1994) or
Alefeld and Mayer (1995). This leads to the modified solution set Sp with some
given property P for A, i.e.,

Sp := { x E ~n I Ax = b, A E [A], b E [b], A with property P } ~ S. (5)

We will present a way how to describe Sp by means of inequalities which involve
the bounds A, A, Q, b of the tolerance intervals. If there are no restrictions on

A E [A] it will turn out that these inequalities reduce to (4). This justifies the
title of our paper.

We now come back to the eigenvalue problem

Ax =AX, x cf:0, (6)

which we restriet to A being real. This restriction is not substantial but simplifies
matters. When perturbing A E rn;nxn such that A E [A] is allowed we are led
to the eigenpair set

E := { (x, A) E ~n+ll Ax = AX, x cf:0, A E [A]}. (7)

If we are interested in matrices A E [A] sharing some property P we end up

with the set Ep which we defined in (1) at thebeginning of this section. In
order to describe E and Ep, respectively, the Oettli-Prager Theorem and its
modifications will playa crucial role. As for Sand Sp the Fourier-Motzkin
elimination process of linear programming forms the basis. We will show that
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in eaeh orthant of JR.n+land JR.n,respectively, the boundary of the eigenpair set
E as weIl as the symmetrie solution set

Ssym := {x E JR.nI Ax = b, A = AT E [A], b E [b]} ~ S (8)

ean be deseribed by means of hyperplanes and quadrics. For the symmetrie
eigenpair set

Esym := { (x,.\) E JR.n+llAx = .\x, xi- 0, A = AT E [A]} (9)

one has to enlarge this variety of geometrie objeets by algebraic surfaees of
order 3. If P means A being skew-symmetric (A = -AT, i.e., aij = -aji)
or persymmetric (A symmetrie with respect to the counter-diagonal, i.e., aij =
an+l-j,n+l-d the boundaries ofthe eorresponding solution sets ean be described
by the same kind of objects. If one admits more general dependencies in the

entries such as A being a Toeplitz matrix (A has constant values along each of
its diagonals, i.e., aij = Cj-i with some constants CkJ k = -(n - 1),... , n - 1)
or a Hankel matrix (A has constant values along eaeh of its eounter-diagonals,
i.e., aij = Ci+j-2 with some constants Ck, k = 0, . . . , 2n - 2) details are more
complieated. In these eases - as for general linear dependencies - one can only
show that the boundary of Sp and EpJ respectivelYJ can be described by means

of algebraie equations whose order is unknown up to now (Alefeld et al. 1998).

We have arranged our paper as follows: In Section 2 we shortly describe the
Fourier-Motzkin elimination process, in Section 3 we consider the solution set
Sp and in Section 4 we study the eigenpair set Ep.

2 The Fourier-Motzkin Elimination Process

The Fourier-Motzkin elimination process eliminates parameters in inequalities.
We will shortly describe the principle by executing one step when deriving the
set of inequalities for Ssymn 01. Here, 01 denotes the closed first orthant of JR.nJ
i.e., 01 := {x E JR.nI x 2: o}. For x E 01 one starts with the trivial equivalences

x E Ssym g :JA = AT E [A], bE [b] : Ax = b

g :J aij E JR. (i J j = 1, . . . , n) :
n

~i :S L aij x j :S bi J Slij:S aij :S aij J aij = aji
j=1

g :JaijEJR. (i,j=lJ...,n):
n n

~1 - L aljXj :S a12X2 :S [)1 - L aljXj,
j=1 j=1
j~2 j~2

n n

b - L a2jXj :S a12Xl :S [)2 - L a2jXj,
j=2 j=2

Sl12 :S a12 = a2l :S a12J

inequalities without a12J a21.
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If Xl > 0, X2 > 0 this is equivalent to

3aijEIR (i,j=l,...,n):
n n

{h - LaljXj}/X2::; a12::; {bI - LaljXj}/X2,
j=l
j~2

j=l
j~2

n n

{Q2 - La2jXj}/Xl'::; a12::; {b2 - La2jXj}/Xl,
j=2 j=2

Q.12::; a12 = a2l ::; (112,

inequalities without an, a2l.

Here, the first three doubleinequalities hold if and only if the maximum of the
first three left-hand sides is less or equal than the minimum of the first three
right-hand sides. This, however, is true if and only if each of the three left-hand
sides is less or equal than each of the three right-hand sides which results in the
following equivalent inequalities:

3aij EJR. (i,j= 1,... ,n, (i,j) -I (1,2), (i,j) -I (2,1)):
n n n

{Ql - LaljXj}/X2 ::; {b2 - La2jXj}/Xl, {h - LaljXj}/X2::; (112,
j=l j=2 j=l
j~2 j~2

n n n

{h - La2jXj}/Xl ::; {bI - LaljXj}/X2,
j=2 j=l

j~2

{Q2 - La2jXj}/Xl ::; (112,
j=2

n n

Q.12 ::; {bI - L aljXj} / X2, Q.12 ::; {b2 - L a2jXj} / Xl,
j=l j =2
j~2

inequalities without a12, a2l

wh ich are equivalent to

3aij EJR. (i,j= 1,... ,n, (i,j) -I (1,2), (i,j) -I (2,1)) :
n n n

{h - L aljXj }Xl ::; {b2 - L a2jXj }X2' Ql - L aljXj ::; U12X2,
j=l j=2 ~=l
J~2 J~2

n n n

{Q2 - L a2jXj }X2 ::; {bI - L aljXj }Xl,
j=2 j=l

J~2

Q2 - L a2jXj ::; UnXl,
j=2

n n

Q.12x2::; bl- LaljXj, Q,12xl ::;b2 - La2jXj,
j=l j=2
J~2

inequalities without a 12, a21.

By inspecting the particular cases Xl = 0 and X2 = 0, respect.ively, one can see
that X E Ssym remains equivalent to this latter set of inequalities provided that

X is restricted to 01. We thus have described Ssym n 01 by a set of inequalities

which no longer contain b1, a12 and a21. This process of eliminating successively
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the parameters bi E [b]i, aij E [a]ij is the famous Fourier-Motzkin elimination
process as presented, e.g., by Schrijver (1986). It finally results in a set of
inequalities which contain the components of x at most quadratically, and only

the bounds of [b]i and [a]ij. It describes Ssym n01 completely and characterizes
halfspaces and sets whose boundaries are quadrics. Analogous statements ean

be made for the remaining orthants. We refer to Alefeld et al. (1999) for a more
general description of the elimination process.

3 The Solution Set Sp

We want to describe now - without proof - several features of the set Sp from

(5). We first list some equivalences of the Oettli-Prager Theorem whose proofs
can be found in the literat ure listed below.

Theorem 1 For areal n X n interval matrix [A] = [A - Ll,A + Ll] with 0 :S
Ll E JR.n xn and for areal interval vector [b] = [b - 6,b+ 6] with n components
and with 0 :S 6 E JR.nthe following properties are equivalent:

a) x E S;

b) [b]n [A]x #- 0;

c) 0 E [b]- [A]x;

d) Ib- Axl :S Ll . lxi + 6;

e) 3 D E JR.nxn : IDI :S I ;\ b- Ax =D (Ll!xl + 6);

(Beeck 1972)

(Beeck 1972)

(Oettli and Prager 1964)

(Rohn 1984)
n n

f) b. - "afx J' < 0 < bi - "a-:,x J
'

-~ L ,; ~J - - L ,; ~J '
j=l j=l

where aij, a1; are defined by [a]ij = {

i = 1,... ,ni

[a~,a~]
[aij' aij]

if xj 2: 0
if xj < 0 .

(Hartfiel 1980)

In b), c) real interval arithmetic has to be used as introduced, e.g., by Alefeld
and Herzberger (1983). It is the representation in f) which can be derived
directly by means of the Fourier-Motzkin elimination proeess. Therefore, in the

general case, i.e., if P means no restriction, the Hartfiel description of S fits into
our way of describing Sp. If P means 'A is symmetrie' the second and the last

three inequalities of the last equivalence in Section 2 indicate that those in f)
for S reappear in those for Ssym. This expresses the trivial property Ssym ~ S.

Part a) of the following theorem is a direct consequence of Theorem 1 f) while
part h) summarizes the remarks on Ssym in the Sections 1 and 2.

Theorem 2 Let [A] be areal n x n interval matrix and let [b] be areal interval
vector with n components.
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a) In eaeh orthant of}Rn the solution set S ean be represented as intersection
of finitely many halfspaees.

b) In eaeh orthant Oi of}Rn the symmetrie solution set Ssym ean be repre-
sented as the interseetion of the solution set Sn Oi and sets with quadries .
as boundaries.

Theorem 2 b) holds analogously for persymmetric matrices and skew-symme-
tric matrices, respectively. For details see Alefeld et al. (1997). It should be
noted that the inequalities for these solution sets remain fixed if the orthant is

fixed. For Hankel and Toeplitz matrices Alefeld et al. (1999) showed that the
inequalities may change within an orthant. Thus for Hankel matrices from

[A] =
(

[~]

[d]

[sJ [d]

)
[d] 0
00

([s], [d]given real intervals )

and for right-hand sides b from some given interval vector [b] the elimination
process reveals such a change in 01 depending on x E C n 01 and x E 01 \C,
respectively, where C denotes the cone X1X3 - X~ 2:: O. For details see again
Alefeld et al. (1999). It is an open question what is going on in the general case
of ToepIitz or Hankel matrices with perturbations. It is also unknown up to
now whether there is abound for the degree of the algebraic inequalities needed
to describe the solution set SToep and SHank, respectively.

The example

(

[1,2]
[A]= [-4, -2]

[-8, -4]

0

[1,2]
[-4, -2]

0

)
0 ,

[1, 2] [b]= U )
shows that SToep can be described by the inequalities

1
- < Xl < 4,2 - - 2xi :S X2 :S 4xi, 4 3 2 8 3

Xl :S X1X3 - X2:S Xl

which reveals that SToep ~ 01 with its boundary partly contained in the two
algebraic surfaces

2 4 3- 0X1X3 - X2 - Xl - , X1X3 - X~ - 8xy = O.

These surfaces are of order three which means, in particular, that Theorem 2
can no longer hold for SToep and SHank, respectively.

All particular solution sets Sp we considered up to now can be transformed into
systems of linear equations Ax = b with

p

-a.. o+ ~a.. kfk~J, 6 ~J,
k=l

P

bi,o + L bi,kfk
k=l

aij

i,j = 1,... ,n, (10)
bi
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where p E No, where fk varies in given intervals (f]k and where aij,k, bi,k are
appropriate coefficients. For the solution set of any linear system subject to

(10) it was shown by Alefeld et al. (1998) that it is semialgebraic, i.e., it is a
finite union of subsets each of which is defined by a finite system of polynomial

equations Pr(XI"" ,xn) = 0 and inequalities of the type Ps (Xl, ... ,Xn) > 0

and Pt (Xl, . . . , Xn) 2: 0 for some polynomials Pr, Ps, Pt.

4 The Eigenpair Set Ep

In order to describe Ep from (1) we first omit any restriction P, i.e., we consider
E from (7). Since Ax = AXis equivalent to (A - AI)X = 0 we can apply the
Oettli-Prager Theorem on the matrix A - AI (assuming that A is a fixed real
nu mb er far the moment) and on the right-hand side b = O. This was already
done by Deif (1991) ending up with

Theorem 3 Let [A] = [A- ~, A + Ll] be areal n x n interval matrix with
0 < Ll E jRnxn. Then

(x, A) E E <==> lAx- Axl :S ~ . lxi and x -:j::o.

In particular, the boundary of E consists of parts of hyperplanes and quadrics.
A shortened analogue of Theorem 1 reads

Theorem 4 For areal n x n interval matrix [A] = [A- ~, A +~] with 0 :S
~ E jRnxn and for xE jRn\{o}, A E jR the following properties are equivalent:

a) (x, A) E E;

b) [A]Xn{AX}-:j::0;

c) lAx - Axl :S ~ . lxi;
n n

d) 2:aijxj:S AXi:S 2:aijxj! i = 1,... ,n,
j=l j=l

+
{

[a:-. at:]
where aij and aij are defined by [aLj = [ f' ~]a~J' a~J

ifXj 2: 0

if Xj < 0 .

Here, d) can form the starting point for describing the eigenvalue set if the
entries of A E [A] are subject to dependencies. Thus the following analogue of
Theorem 2 can again be seen from the Fourier-Motzkin elimination process.

Theorem 5 Let [A] be areal n x n interval matrix.

a) In each orthant ofjRn+l the eigenpair set E can be represented as intersec-

t-ion of finitely many sets whose boundaries are hyperplanes or quadrics.
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b) In each orthant 0/ IR.n+l the symmetric eigenpair set Esym can be repre-
sented as intersection 0/ finitely many sets whose boundaries are described
by algebraic equations of order :S 3.

An analogous statement holds for skew-symmetric and persymmetrie matrices.
We will illustrate Theorem 5 by the following example:

Let [A] = ( [-:, 1] [-~' 1] ) . Then the eigen pair set E is completely de-
scribed by the inequalities

11- AI .lxll :S IX2L 11- AI.lx21 :S lXII (11)

Thus if A = 1 then any veetor (Xl, X2, 1f f- (0,0, 1f belongs to E, i.e., E
eontains the plain A = 1 punetured at (0,0, 1f. For A f- 1 we have Xl . X2 f- 0,
and (11) is equivalent to

1 -I :: 1:S A :S 1+ 1 :: 1 ' 1 -I :: 1:S A :S 1+ 1 :: 1 '

whence

1 - min { 1 :: 1 ' 1 :: I} :S A :S 1 + min { 1 :: I ' 1 :: I} .

The symmetrie eigenpair set Esym ~ E eonsists of the plane A = 1 punctured at
(Xl, X2, A)T = (0,0, 1f and ofthe vectors (Xl, X2, Af satisfying A f- 1, 0 :S A :S

2, lXII = IX21> O. In order to get an impression of the situation we visualize
the interseetion E n PI and Esym n PI in Fig. 1, where Pa denotes the plane
X2 = CY.We obtain

E n PI = {(Xl, 1, l)T I Xl E IR.}

U { (Xl, 1, Af 11- min{ 1:11'IXII}:s A:S 1 + min{1:11'lXII}, Xl E IR.\{O}}

and

EsymnPl={(XI,l,lfIXIEIR.}U
(

~

)
U

(
-~

)
.

[0,2] [0,2]

As one ean see at onee from (11) the maximal domain [0,2] for A is attained
for lXII = IX21 f- 0 and nowhere else. For CYf- 0 the intersections E n Pa and

Esym n Pa look similar as for CY= 1. For CY= 0 they reduee to

E n Po= Esymn Po = {(Xl, 0, 1f IXl E IR.\{O}}

i.e., to a punctured straight line.
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Fig. 1. El:= E n PI and Esym n PI (dashed) for the example.

There is no diffieulty to apply the ideas of Seetion 3 to the eigenvalue problem

if A E [A] is subject to more general dependeneies.
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