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Abstract. By means of interval arithmetic tools we present new algorithms for verifying and

encIosing generalized singular values and corresponding vectors for a matrix pair (A, B) E 1R.pxn x
JRqxn. To this end, we state and prove a fundamental theorem in interval analysis which shows a way
how enclosures can be constructed if approximations are known. Furthermore, we perform a careful

comparison of the new method with those introduced in [11].

1. Introduction

We first address the main purpose of our paper. It consists in constructing tight
intervals which contain the components c, s of a generalized singular value and the
components of a column of U, V and X, respectively. This means, in particular, that
we provide a method which verifies a generalized singular value and the corresponding
column vectors of U, V, X. Gathering these quantities into a vector z* we will inter-
prete z* as a fixed point of some nmction t. We will expand t into a Taylor series at an
approximation Z of z*. The interval arithmetic evaluation of the resulting expression
yields an interval function [g]([z],z) which forms the base of our verification alge-
rithm. We will apply a general result from interval analysis (Theorem 3.1) in order to
construct an interval vector [z] such that [g]([z],z) ~ [z] holds. This subset property
guarantees that the last two components of [z]enclose exactly one generalized singular
value (c*, s*). We will also improve the bounds for z* iteratively by constructing a
sequence [z]k which starts with [z]O:= [z] and which converges to z*.
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fu [11] two different methods for verifying generalized singular values have already
been introdueed. Their convergence analysis has been performed independently of
each other. We show how these methods are related to the new one. We are even able

to unify the convergence analysis of the methods of [11] and that of the method of
the present paper by using the same fundamental theorem mentioned already. Note
that this theorem also yields the results of [IJ - [4]and [6]when applied appropriately;
cf. [15] for details. We also recall that simple singular values of the singular vallle
decomposition (1.2) have first been verified and enclosed in [2]; see also [14].

Finally, we mention already at this point that the number of unknowns (and equa-
tions) of the new method is smaller by one and n + 1, respectively, compared with the
two methods from [11]. Of course, with respect to the size this is a minor improvement,
at least in the first case.

We have arranged our paper as folIows: To have a clear basis we continue this intro-
duction by repeating the definition of a singular value and that of a generalized singular
value, respectively. After that the basic facts about these concepts are repeated. In
Section 2 we list the notation which we use throughout the paper. In Seetion 3 we
reeall a general result from interval analysis whieh is eentral for the theoretical results
of Section 4. These results are illustrated by a numerical example in Seetion 5.

As is well-known (cf. [10] for example), the singular values (Ti of a reet angular
matrix A E JRPxn are defined as the nonnegative square roots of the eigenvalues Ai of
the n x n matrix AT A. Therefore, they are solutions of the equation

(1.1) det (AT A - AI) = O.

Singular values give insight in the structure of a matrix; the following theorem holds,
for example.

Theorem 1.1. ([10, p. 16].) 11A E JRPxn then there exist orthogonal matrices
U E JRPxp, V E JRnxn such that

(1.2) UTAV = ~

where ~ := diag ((Tl,... , (Tmin{p,n})E JRPxn with (Tl ~ (T2 ~ ... ~ (Tr > (Tr+l = ... =
(Tmin{p,n}= 0, r := rank (A).

The representation (1.2) is called the singular value deeomposition of A. It is used,
e. g., for solving the least squares problem

(1.3) IIAx - blb ---7 min, b E JRP, x E JRn ,

such that IIxlb -+ min. (As usual, 11.112denotes the Euelidean norm.)
fu order to consider the least squares problem (1.3) subjeet to the quadratie inequal-

ity constraint

(1.4)

with B E JRqxn,
[10, p. 404 ff.].)
results in

(1.5)

IIBx - dll2 :s; a

d E JRq, one generalizes the concept of singular values. (Cf.
One might start with the generalized eigenvalue problem which

det (ATA - ABTB) = 0

~ --~-~~ - ~~ ~ ~~-- -~~ ~ --- u_-
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and one could define generalized singular values aB the positive square roots of the
positiveeigenvaluesof (1.5). This was done in [20].In order to eliminate the preference
of A against B PAlGE and SAUNDERSdefined in [18Jthe generalized singular values of
the matrix pair (A, B) aB those pairs (c, s) of real numbers which form the solutions
of the equation

(1.6) det(s2ATA-c2BTB) = O.

Since with (c, s) each pair (TC,TS), (TC,-TS) with T E IR solves (1.6), one requires

(1.7) c 2: 0, S 2: 0, C2 + S2 = 1

which reduces the number of solutions draBtically. In particular, (0,0) is not a gen-
eralized singular value. In our paper we will use (1.6), (1.7) aB the definition of a
generalized singular value.

H rank (~) < n then there is a vector x E JRn\{O} with Ax = 0 and Bx = 0

simultaneously. Hence (S2AT A - C2BT B) x =0 and det (s2AT A - C2BT B) =0 for all
pairs (c, s) E JR2. Due to this fact we will assume

(1.8)
rank (~) = n

from now on.

We want to show how the solutions of (1.5) are related to the solutions of (1.6),
(1.7). Assurne first that ,A* is a solution of (1.5), i.e., there is a vector x* =1=0
such that (AT A - ,A*BT B)x* = 0 holds. This implies IIAx*lI~= ,A*IIBx*II~, whence
Bx* =1=0 by (1.8). Thus we get ,A*2: O. Therefore, each solution ,A*of (1.5) induces

the generalized singular value (c*,s*) = (v'~'" v'l~>''') with s* =1=0 and, conversely,

each solution (c*,s*) of (1.6), (1.7) with s* =1=0 induces the eigenvalue ,A*= ~~:~: of
the generalized eigenvalue problem (1.5). But note that the set

(1.9)
j.L(A,B) := {(c,s) E JR21 det (s2AT A - eBTB) = 0,

c 2:0, s 2:0, e + S2 = I}

of generalized singular values may also contain the element (1,0) which is not related
to a solution of (1.5) and which implies rank (B) < n by (1.6), or, equivalently,Bx = 0
for some vector x =1=O.

An example, for which this is not the CaBeis given by choosing p = q = n and B
nonsingular. Then the condition (1.8) is fulfilled and det (BT B) -# 0 whence, by (1.6),
(1,0) is not a generalized singular value. From

det(s2ATA-C2BTB) = (detB)2det(s2(Aß-l)T(AB-l) -c2I) = 0

one sees at once that the generalized singular values (c, s) of A, B correspond here
directly to the singular values of AB-1 via ..;x = ;.

Another example which illustrates the connection between singular values and gen-
eralized singular values is given by A E ]Rpxn, B := diag (1,...,1) E ]Rqxn with q 2: n.
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Then BTB = I E JRnxn, hence det (BTB) f:. 0 and, again, (c,s) = (1,0) is not a gen-
eralized singular value of (A, B). Therefore, the quotients ; with (c, s) E J.L(A, B) are
precisely the singular values of A. This justifies the name generalized singular values.

Definition 1.2. A generalized singular value (c, s) is called simple, if

i) in the case cs i=0,

ii) in the case (c, s) = (0,1),

2

A* = ~2is a simple zero of det (AT A - ABT B) ,

A* = 0 is a simple zero of det( AT A - AI) and of

det (AAT - AI) ,

A* = 0 is a simple zero of det (BT B - AI) and of

det (BBT - AI).

iü) in the case (c,s) = (1,0),

Since the multiplicity of the eigenvalue A* = 0 of AT A might be different from that
of AAT, the simplicity of A* = 0 for both AT A and AAT is required in ii). The same
remark applies to the definition of the simplicity of the pair (1,0) in üi).

In all cases where min {p, q} < n but p + q ~ n (the latter inequality is necessary for
(1.8)), one can add n - p rows zT = 0 to A and n - q rows zT = 0 to B, respectively,
in order to fulfill p, q 2: n. This modification does neither change the generalized
singular values of (A, B) nor does it change the rank in (1.8). Therefore, without
loss of generality, we assume p, q 2: n for all our subsequent considerations. Then,
analogously to (1.2), the matrices A, B can also be decomposed by means of orthogonal
matrices. The following theorem is contained as a particular case in Theorem 2 of [21].

Theorem 1.3. Let A E IRPxn, B E IRqxn with p, q ~ n. If (1.8) holds then there
exist orthogonal matrices U E IRPxp, V E JRqxq and a nonsingular matrix X E JRnxn
such that

(1.10) UTAX = :EA - (g) E IRPxn ,

(~)E IRqxn ,
(1.11) VT BX- :EB =

where C = diag(cl,...,en) E JRnxn, S = diag(sl,...,sn) E JRnxn are diagonal
matrices satisfying

(1.12) c. > 0~ - , Si ~ 0 and c; +s; = 1, i = 1,..., n .

For the set JL(A,B) from (1.9) one obtains

(1.13) JL(A,B) = {(Ci,Si)I i=l,...,n}.

Multiple occurence of the pairs (Ci,Si) is allowed. The representation (1.10), (1.11)
is called a generalized singular value decomposition of (A, B). It is certainly not
unique since U,V, X can always be replaced by -U, -V and -X without changing
the right- hand side of (1.10) and (1.11).

We remark that in the more general formulation of Theorem 1.3 in [21] the restrie-
tions (1.8) and q ~ n are not required. Hp< n or q < n the right - hand sides of

n___-
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(1.10), (1.11) read (C 0) and (S 0), respectively. In this case a representation

analogously to (1.10), (1.11) may, however, not exist even if (1.8) holds. Tbis can be
seen from the simple counterexample A = (1 0), B = (0 1) from [20] which requires

X to be singular. Extending A and B to A = (~ ~), B = (~ ~) yieldsto (1.10),
.

(
0 1

)(1.11) with U =X = I and V = 1 0 ,for example.

A more general definition of a generalized singular value decomposition can be found
in [7], p. 22, e. g. It takes into account the cases p < n and q < n in full generality
and is equivalent to ours in the case p, q 2: n; cf. [7, p. 205].

We finally mention two simple corollaries which can be deduced from Theorem 1.3.

CoroIlary 1.4. With the notation and with the assumptions of Theorem 1.3 we get

rank (A) = rank (~A) = rank (C), rank(B) = rank(~B) = rank(S).

CoroIlary 1.5. With the notation and with the assumptions of Theorem 1.3 we get

(1.14) (S;AT A - c;BTB)Xi = 0

for any column xi of X. In parlicular, if Si # 0 then Xi is an eigenvector of the
generalizedeigenvalueproblem (ATA - ABTB)x = O. The corresponding eigenvalue
. c~
zs ,.\= -::t.

Si

Proof. From (1.10), (1.11)weget AX = U~A, UTA = ~AX-1, BX = V~B, VT B =
EBX-1. This implies

AT AX = ATU~A = {X-l)T E~~A = {X_1)T C2,

BTBX = BTV~B = {X-l)T ~~~B = {X-l)T S2,

and therefore

AT AXS2 - BTBXC2 = 0,

which proves (1.14). The remaining properties are trivial consequencesof (1.14). 0

2. Notations

In this section we list the notations which we will use throughout the paper.
By ]Rn, ]Rmxn, IR, IRn, IRmxn we denote the set of real vectors with n compo-

nents, the set of real m x n matrices, the set of intervals, the set of interval vectors
with n components and the set of m x n interval matrices, respectively. By "interval"
we always mean areal compact interval. Interval vectors and interval matrices are
vectors and matrices, respectively, with interval entries. We write intervals in brackets
with the exception of degenerate intervals (so-called point intervals) which we identify
with the element being contained, and we proceed similarly with interval vectors and
interval matrices. Examples are the null matrix 0, the identity matrix I, the i - th
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column e(i) of I and the vector e := (1,1,..., I)T. In order to indicate I E JRnxn and
e E ]Rn, respectively, we sometimes write In instead of I and en instead of e. Although
en will also denote the n -th component of e it will always be clear !'rom the context
which meaning is valid. As usual, we identify ]Rnxl and IRnxl with ]Rn and IRn,
respectively. We equip JRn and ]Rmxn, respectively, with the natural semi-ordering
":S" which is defined to hold entrywise. We use the notation [A] = ([a]ij) E IRmxn
simultaneously without further reference, and we assume the same for the elements

of ]Rn, JRmxn and IRn. For [a]= [g,a] E IR we define the absolute value Ha]I by
HaJl := max{lgl, lai} and the diameter d([a]) by d([a]) := a - g, and we denote the
convex hull of [a], [b]E IR by [a]U [b]. For interval vectors and interval matrices,
these quantities are defined entrywise. In particular, lAI = (Iaij D E JR1'nXn for point

matrices A E JRmxn. The operations for intervals etc. can be found in [5]. Based on
the elementary rules

HaJl :S

/[a]:I: [bJl :S

j[a][bJl -

d([a])

d ([a] :!: [b])

d([a][b])

d(c[a])

I [b] I for [a] ~ [b] ,

/[a]1 + l[b]l,

HaJlI[bJl '

:S d([b]) for [a] ~ [b] ,

= d([a]) + d([b]) ,

:S HaJl d([b]) + d([a]) HbJl '

- !cld([a]) ,

for [a], [b]E IR, c E JR, one easily proves the same relations for interval matrices
[A], [B] and for real matrices C of the appropriate dimensions, with the exception of
the third line in which the equality sign has to be replaced by ":S". We recall the
subdistributivity

(2.1) [a]([b]+ [e])~ [a][b]+ [a][e]

of the interval arithmetic which shows that algebraically (IR, +, .) is neither a ring
nor a field. In fact, (IR, +) and (IR,.) are two commutative semi - groups with the
zero elements 0 and 1, respectively. The subdistributivity (2.1) also holds if [a], [b],[c]
are replaced by interval matrices.

Convergence and continuity in IR, IRn, IRmxn are understood with respect to

the Hausdorff distance q( . , .) which reads q([a], [b]) := max { Ig - QI, la - bl} for

elements [a] = [g,a], [b]= [Q,b] of IR, and which is defined entrywise in IRn and
I R1'nxn.

For further details on interval analysis we refer to [5] or [16].

As we already mentioned, we write 11 . 112for the Euclidean norm in JRn, and we
use 11.1100for the maximum norm of vectors and for the row SUffi norm of matrices,
respectively. By A := diag (al,..., an) E JRmxn we denote the rectangular diagonal

matrix with the entries aij := 0 if i =I-j and aii := ai in the diagonal.
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3. An auxiliary result from interval analysis

In this section we provide an essential tool (Theorem 3.1) for verifying and enclosing
a fixed point x* of some given function t : D ~ JRn -+ JRn which is assumed to be
twice continuously differentiable on a given open set D. Let tl denote the derivative
of t. With some fixed vector x from D we will consider the interval function

(3.1) [g]([x],x) := tex) + tl(x)([x] - x) + [h] ([x],x)

for [x]~ D. For all such [x]we require

(3.2) t(x) E [g]([x],x) for all x E [x],

and

(3.3) 11I[h]([x], x) 11100 ~ 'Y IlHx] - xlll~ .

Here, the interval function [h] with [h]([x],x) E IRn is supposed to be continuous
vvith respect to the first argument and inclusion monotone (i. e., [x] ~ [y] implies
[h]([x],x) ~ [h]([y],x) for fixed x). The constant 'Y is nonnegative and fixed for all
[x] ~ D; it may depend on X.

In the subsequent Theorem 3.1 we will indicate a way how to construct an interval
vector [x] such that tex) E [x] holds for all x E [x]. Hence Brouwer's fixed point
theorem guarantees the existence of at least one fixed point x* E [x] of t. In Section
4 we will choose

(3.4) tex) := x - Pf(x)

with some nonsingular matrix P. Then the fixed points of t are the zeros of fand vice
versa. Thus, together with (3.4), Theorem 3.1 also provides a mechanism for verifying
and enclosing zeros of f.

Theorem 3.1. With D, [g],[h],t, x as in (3.1) - (3.3) and with 'Y> 0 from (3.3)
choose r E JR with r ~ 0 such that [x]O:= x + [-r, r]e~ D, anddefinea, ß by

a := 11tex) - x 1100 ,

Let ß < 1, ß:= (1 - ß)2 - 4a'Y ~ 0 and let

ß := 11t'(x) 1100'

r- := (1- ß - JL\)/(2'Y), r+:= (1- ß + JL\)/(2'Y).

a) If r ~ r- then t has at least one fixed point x* E [x]o. The iteration

[X]k+l := [g]([x]k,x) n [x]k , k = 0,1, ...,

convergesto some interval vector [x]* with

x* E [x]* ~ [X]k ~ [x]k-l ~ .. . ~ [x]O, kEIN .

b) If r E [r-, r+] then t has at least one fixed point x* E [x]o. In addition,
[g]([x]O,x) ~ [x]Oholds and the iteration

[X]k+1 := [g]([x]k,x) , k=O,I,...,
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converges to some interval vector [xJ*with

x* E [x]*S [x]kS [xt-l S . . . S [x]O,
c) In addition to (3.3), let [h]fulfill

kt;JN.

(3.5)
11 d([h]([x], x)) ILX) ~ 2811j[x] - xllloo 11d([x]) 1100

for all interval vectors [x] ~ D and for some positive number 8 which is independent oi
[x] but which may depend on x. Define Li, f-, f+ as ß, r-, r+, with, beingreplaced
by l' := max{,,8}. If Li 2 0 and if r E [f-, (f- + f+)/2) then the function t has
exactly one fixed point x* E [x]O;[g]([x]° , x) ~ [x]O holds, and the iteration

[xt+1 := [g]([x]k,x) , k = 0,1, ...,

converges to x* with

x* E [x]k ~ [x]k-l ~ . . . ~ [x]O, k E JN .

Although variants of Theorem 3.1 have already been proved in [5], [15] and [19] we
shortly repeat the major steps of its proof.

Proof. From ß < 1 and ß 20 we have 0 ~ r- ~ r+.

a) is proved by b) applied to some vector [x]O= x + [-f, f] with r 2 f E [r-, r+].
b) The inclusion [g]([x]O,x) ~ [x]Ois equivalent to

(3.6) [g]([x]O,x) -x ~ [x]O-x.

Therefore, this inclusion certainly holds for [x]O:= X + [-r, r]e if

It(x) - xl + It'(x)lre+ I [h]([x]O,x) I < re.

This, in turn, is true if

(3.7) a + ßr + 1'r2 ~ r -{::=} l' (r - r-)(r - r+) ~ O.

Hence (3.7) is fulfilled for each r E [r-, r+]. Since

t(x) E [g]([x]O,x) ~ [x]O for x E [x]O,

Brouwer's fixed point theorem guarantees that t has at least one fixed point x* E [xJo.
The relation

x* = t(x*) E [g]([x]k,x) = [x]k+1~ [g]([x]k-l,x) = [x]k, k = 1,2,...,

holds by induction; in particular, [x]*:= limk~oo[x]k exists.
c) Since l' 2 l' we have Li ~ ß and

2a ~ ~ + + 2a
r- = < r- < r < r = .

l-ß+JK - - - l-ß-V75.
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Therefore, r is contained in [r-,r+], and b) is used to prove most ofthe assertions in

C). In particular, x* and [x]*= [9]([x]*,x) exist, and

d([x]*) = d([g]([x]*,x)) :S It'(x)ld([x]*) +d([h]([x]*,x))

by the elementary mIes for the diameter mentioned in Section 2. Apply 1/.1100to this
inequality and let d* := IId([x]*)1100. Then

d* :S ßd* + 28I1lrx]*-xlllood* :S ßd* + 28 11 Hx]O-xlllood* :S ßd* +2rid*.

If d* > 0, we obtain 1 :S ß + 2ri which yields to the contradiction

r > 1 - ß f-
+ A+

- - r
2i - 2

Therefore, d* = 0, and x* E [x]* implies [x]* = [x*,x*]. In particular, this proves
uniqueness. 0

One often chooses t as in (3.4) and

(3.8)
1

[h] ([x],x) := -2(P f)" ([x]Ux) ([x] - x) ([x] - x)

with f"(x)yz = (yT (~:;~~~)z) E JRn for f(x) = (Ji(x)) E JRn, x E D and y, z E
}Rn. For x E [x] the function [g]is identical with the function k2 in [5], p. 239, and k1
in [19], p. 29. As was indicated in [15], there are cases, in which [h]differs from the
choice in (3.8).

If one chooses t according to (3.4) without knowing about the regularity of the
matrix P then one can verify its nonsingularity by checking the assumption ß < 1 of
Theorem 3.1. If it is true then the spectral radius of t'(x) = 1- P1'(x) is less than
one; hence P and l' (x) cannot be singular.

4. Enclüsures für generalized singular values

We now will present our method für verifying and enclosing generalized singular
values and the corresponding vectors from the two decompositions (1.10), (1.11). Let
Ui, Vi, xi be the i-th columns of U, V and X, respectively. We want to express these
vectors and the corresponding generalized singular values (Ci,Si) as a zero of some
function f. To this end we multiply (1.10) by U and (1.11) by V in order to obtain

(4.1)

(4.2)

AX = U:EA,
EX = V:EB.

By transposing (1.10), (1.11) we get

(4.3)

(4.4)

XTAT U - :ET- A,

XTETV = :E~.
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Let 'tA := (g) E IRqxn, 'tB := (;) E IRPxn. Note that 'tA, 'tB differ from ~A, ~B

by the l1umberof rows. Multiply (4.3) by tB and (4.4) by tAo Then

(4.5)

(4.6)

T T A TA

X A U~B = ~A~B = es,
T T A TA

X B V~A = ~B~A = se = es,

where the last equality holds since e, S are n x n diagonal matrices. Multiplying (4.5)

and (4.6) by (X-l)T and equating the left-hand sides results in

(4.7)
TAT ~

A U~B = B V~A.

From (4.1), (4.2) and (4.7) we obtain the following set of equations:

(4.8)

(4.9)

(4.10)

A i i
X = CiU ,

BX2 = SiV2,

siAT ui = CiBTvi,

which we complete by

(4.11)

(4.12)

(
"

)
T "

u2 u2 = 1,
c; +s; = 1 (Ci, Si 2:0).

Equation (4.11) follows from the orthogonality UTU = I, and (4.12) is part of the
normalization (1.12).

From (4.10) we get

Si(Xi)T ATui = Ci(xi)TBTvi ~ sdAxi)Tui = ci(Bxi)Tvi

which yields to

(
.

)
T .

(
"

)
T "

CiSi u2 u2 = CiSi v2 v2

by (4.8) and (4.9). Using (4.11) we obtain

CiSi (1- (vi)T Vi) = 0

which implies the corresponding normalization

(4.13) (
"

)
T "

v2 v2 = 1

for v, provided that CiSi =I O. Note that in the case CiSi = 0 the equations (4.8) -
(4.12) do not necessarily imply (4.13). If Ci= 0 then Si = 1, Axi = 0 and Bxi = vi.
Hence xi, vi can be replaced by any pair Txi, TVi (T E IR) in the solution vector of
(4.8) - (4.12). Similarly, in the case Si= 0, Ci = 1 any vector from the null space of
BT can be chosen for vi.

Therefore we will assurne CiSi=I 0 in the sequel.
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Let us now start conversely with (4.8) - (4.12). Then (4.8) and (4.11) guarantee
Xi =f 0, and (4.8) - (4.10) yield to

(4.14)

(S;ATA-c;BTB)Xi = S;CiATui_qSiBTvi

= SiCi(SiAT ui - CiBT vi)

= 0

whence det (s;AT A - c~BTB) = O. This proves (Ci, Si) to be a generalized singular
value of (A, B). Assume now that

0

(
° T

(
O

)
T

(
O

)
T

)
T °

((
"

)
T

(
"

)
T

(
"

)
T

)
T

zt = (ut), vt , xt ,Ci, Si and zJ = uJ , vJ , xJ ,Cj,Sj

are two solutions of the system

Ax = cu, Bx = sv, sAT U = cBT v, uTU = 1, C2+ S2 = 1 (c, S 2::0)

with (Ci,sd f= (Cj,Sj). We want to show that (ui) Tuj = (vi) Tvj = O. To this end
multiply (4.14) by (xj)T from the left. Using (4.8), (4.9) yields to

0 = s;(xj)T ATAxi - c;(xj)T BTBxi = S~CiCj(uj)T Ui - C;SiSj(vj)T vi

whence

(4.15) SiCj(uj)TUi_SjCi(vj)TVi = O.

Exchanging the roles of i and j results in

(4.16) (
-
)

T " " T "

SjCi uJ ut - SiCj(VJ) vt = O.

Multiply (4.15) by SiCj and (4.16) by SjCi and subtract both equations in order to get

(s;c; - s; cD (uj) T Ui = 0

or, by (4.12),

0 = (c; - cD (uj)T ui = (s; - sJ) (uj)T ui.

Since (Ci,Si) f= (Cj,Sj) the orthogonality (Ui)Tuj = 0 follows,and (4.15) or (4.16)

proves (vi) T vj = O. Therefore, each zero z* of the nmction

JRP+q+n+2 ~ JRP+q+n+2

Ax - cu

Bx - sv
(4.17) j :

z = (uT,vT,xT,c,s)T ~ j(z) sAT U - cBT v

1 - uT U

1 - 2 - S2
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with c*s* f: 0 and c* 2::0, s* 2::0 has the following property:
1. (c*,s*) is a generalized singular value of (A, B). This property still holds if OUf

general assumptions (1.8),p, q 2 n and c*s* -# 0 are not fulfilled, as the deduction of
(4.14) shows.

2. If (c*, s*) is a simple generalized singular value, then u*, v*, x* are eolumns
of U, V, and X, respectively, in the generalized singular value deeomposition (1.10),
(1.11).

3. If (c*, s*) is a multiple generalized singular value, then u*, v* belong to the
subspaee whieh is spanned by the eorresponding eolumns of U and V respeetively.
This ean be seen as follows:

Sinee x* solves (4.14) it ean be represented as a linear eombination x* = L: j Clijxij
of those veetors xij whieh are part of the solutions of (4.8) - (4.12) arising from
the generalized singular value decomposition of (A, B) and belonging to the multiple
generalized singular value (c*,s*). By (4.8), (4.9) the vectors u*, v* ean then be repre-
sented as a linear eombination of the eorresponding eolumns of U and V, respeetively,
with the same eoeffieients Cli. as in x*.}

We remark that the veetors u*, v* need not eoincide with the eolumns themselves
as ean be seen from the example A = B = I E IR2X2 for whieh (c*, s*) = (Cl,0:)

with Cl := Jz is the unique generalized singular value which is a double one. The
zeros Zl = (1,0,1,0, Cl,0, Cl,Cl)T and z2 = Cl(1, 1, 1, 1, Cl,Cl,1, l)T of f eontain the
two linearly independent veetors Ul = (l,O)T, U2= (o:,Cl)Twhieh are eertainly not
orthogonal and whieh therefore eannot both be a eolumn of the orthogonal matrix U.

We note that a zero Z of f with c < 0 yields at onee to a zero z* of f with c* > 0
by replaeing U, ein z by u* := -u and c* := -Co One ean proeeed similarly if s < O.

Let now z := (ii.T,vT, xT, 8, e)T be an approximation of a zero z* of fand let
t(z) := z-Pf(z) with anonsingular (p+q+n+2) x (p+q+n+2) matrix P. Expand
the nmction t in a Taylor series at z = z. Then

t(z) = t(z + (z - z))

= z + (z - z) - Pf (z + (z - z))
A(x + (x - x)) - (e + (c - e))(u + (u - u)

B(x + (x - x)) - (8 + (s - 8))(V + (v - v))

= z + (z - z) - P 1(8+ (s - 8))AT(u + (u - u)) - (e + (c - e))BT(v + (v - v))
1 - (u + (u - u))T(u + (u - u))

1 - (c + (c - e))2 - (8+ (s - 8))2,

= Z - Pf(z) + (I - PR)(z - z) + h(z,z)

with the (p + q + n + 2) x (p + q + n + 2) matrix

-elp 0 A

0 -8Iq B
8AT -eBT 0 _BTv ATu

_2uT 0 0

0 0 0

\

-u 0

0 -v

(4.18) R :=

0 0

-2c -28
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and the vector

(c - c)(u - ü)

(s-s)(v-v)

(c - c)BT(v - v) - (s - s)AT(u - ü)

(u-ü)T(u-ü)

(c - c)2 + (8 - s)2

E JRP+q+n+2(4.19) h(z, z) := P

Define the interval function [g]by

(4.20) [g]([z], z) := z - P j(z) + (1 - PR) ([z] - z) + h([z],z) EI RP+q+n+2

where h([z], z) is the interval arithmetic evaluation of h(z, z). It is dear that the
analogue of (3.2) holds. We want to show that [hJ= h([z],z) fulfillsthe properties
(3.3) and (3.5). With the mIes in Section 2 for the absolute values and the diameter
we get

Ih([z], z) I :s; IPI elIHz]- zlll~,

d(h([z],z)) :s; 21PIe 11Hz] - z!ll= Ild([z])"= '

with
ep

eq

e := IATIep + IBTI eq

p

2

E JRP+q+n+2

Hence (3.3), (3.5) are valid with

ep

eq

(4.21) 'Y := /j := IIIPle 11= :s; IPII (IIATII= + IIBTILX))en

p

2 =

or with

(4.22) 'Y := /j := IIIPIII= max {2, p, IIATII=+ IIBTII=} .

We are now ready to apply Theorem 3.1 to our situation. The results are collected
in the following Theorem 4.1. Before formulating it we remark that up to now we
generally had assumed

(4.23) (1.8), p, q 2: n, and c*s* i- o.
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The first two assumptions were necessary in order to guarantee the representation
(1.10), (1.11) in Theorem 1.3 which led us to the crucial function f in (4.17). By
means of the third one we showedthe normalization (4.13). None of these assumptions
will be needed to prove Theorem 4.1 since it only deals with zeros

z* = ((u*f,(v*)T,(x*f,c*,s*}T

of f from (4.17). Therefore, we will formulate it without requiring (4.23). But we
emphasize that even if (4.23) is false, Property 1 below (4.17) guarantees that the last
two components c*, s* of z* form a generalized singular value of (A, B). This remark
is important since normally we do not know in advance whether (1.8) holels. If (4.23)
is not true, a generalized singular value decomposition analogously to (1.10), (1.11)
need not exist as we showed by a simple example preceding Corollary 1.4. If it exists,
however, and if (c*, s*) forms a simple generalized singular value then u* is a column
of U and v*, x* coincide with columns of V, X up to a multiplicative factor which is
equal to one provided that c*s* -I O. If c*s* = 0 then IIv*1I2= 1 may not be true. In
this case one can normalize v* by v* /lIv*lb provided that v* -10. If c* = 0 one must,
in addition, replace x* by x* /lIv*lb. This does not influence the representation (1.10)
since then Ax* = O.

Theorem 4.1. Let A E JRPxn, B E JRqxn. Let P be some nonsingular real

(p+q+n+ 2) x (p+q+n+ 2) matrix, let z = (üT, ijT, j;T, c, s) T E JRP+q+n+2and let f be
given as in (4.17). Let the assumptions of Theorem 3.1 befulfilledfort(z) := z-Pf(z),
[g],h from (4.20), (4.19), and, from (4.21) or (4.22), and define rI as in that theorem.
Then the following asserlions hold for [z]O:= z + [-r, r]e E IRP+q+n+2 :

a) If r 2: r- then f has at least one zero z* E [z]o. The iteration

[Z]k+l := [g]([z]k, z) n Jz]k , k=O,I,...,

converges to some interval vector [z]* with

z* E [z]* ~ [z]k~ [zt-l ~ ... ~ [z]O, k E JN.

b) If r E [r-, r+] then f has at least one zero z* E [z]o. In addition, [g]([z]O,z) ~ [z]O
holds and the iteration

[Z]kH := [g]([z]k,i) , k=0,1,...,

converges to some interval vector [z]* with

z* E [zJ* ~ [z]k ~ [z]k-l ~ .. . ~ [z]O, k E JN.

c) If r E [r-, (r- + r+)/2) then the junction f has exactly one zero z* E [z]O;
[g]([z]O, z) ~ [z]O holds, and the iteration

[Z]k+l := [g]([z]k, z) , k = 0,1, ...,

converges to z* with

z* E [z]k ~ [z]k-l ~ . . . ~ [z]O, k E JN.
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Note that we could use rX in Theorem 4.1c) since T =0 (cf. (4.21), (4.22)) implies
r::l:= fX in Theorem 3.1 .

In order to fulfill the assumption in Theorem 4.1 for ß, one normally chooses the
matrix P as P ~ R-1. Then ß ~ 0; in particular, ß < 1. In this case P is nonsingular
according to aremark after the proof of Theorem 3.1.

Due to the choice of P ~ R~l, it is interesting to know whether all the matrices near
R are invertible. Together with the continuity of the matrix inversion the following
Theorem 4.2 guarantees this, provided that (c*, s*) is a simple generalized singular
value and provided that z comes sufficiently elose to z*.

But Theorem 4.2 can also be used to guarantee the simplicity of (c*, s*) itself,
provided that ß < 1 is known and provided that z approximates z* very weIL In this
case R-1 exists and the continuity of the matrix inversion implies the nonsingularity
of the matrix R* in the subsequent theorem.

Note that a good approximation z ~ z* also guarantees ß 2:0 in Theorem 3.1.

Theorem 4.2. Let A E m.pxn, BE lRqxn and f as in (4.17). Let p, q 2:n and let

(1.8) hold. [fz* = ((U*)T, (v*)T, (x*)T,c*,s*)T is a zero 01 f with c*s* # 0 then the
lollowing statements are equivalent:

a) The pair (c*, s*) is a simple generalized singular value 01 (A, B).
b) The real (p + q + n + 2) x (p + q + n + 2) matrix

Proof. a) :::} b): Let (c*,s*) be a simple generalizedsingular value of (A, B) and

assume that R* is singular. Then there exists a vector W = (w[, wI, w[ ,W4,W5)T E
lRp+q+n+2\{O}with block vectors Wi such that R*w = O. Thus the following system
holds:

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

0 = -C*Wl + AW3 - U*W4,

0 = -S*W2 + BW3 - V*W5,

0 *A T *B T B T * + AT *
= S Wl - C W2 - V W4 U W5 ,

0 = (u*)TWl,
0 = C*W4+ S*W5'

Multiply the equations (4.25), (4.26) and (4.27) by (u*)T, c*(v*)T and (x*)T, respec-
tively, and use (4.11), (4.28), and (4.10), (4.13), and (4.8), (4.9), (4.11), (4.13), (4.28)
respectively, in order to get

(4.30) 0 = (u*)T AW3- W4,

-c*I 0 A -u* 0p

0 -s*[ B 0 -v*q

(4.24) R* :=
I

s*AT -c* BT 0 -BT v* ATu*

-2(u*)T 0 0 0 0

0 0 0 -2c* -2s*'\

is nonsingular.
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(4.31)

(4.32)
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{

0 = -c*s*(v*)T W2+ c*(v*)TBws - c*ws

= -c* s*(v*)Tw2+ s*(u*)T Aws - c*ws,

{

0 = s*(x*)T AT Wl - c*(x*)T BT W2 - (x*)T BT V*W4 + (x*)T AT u*ws

= c*s*(u*)TWl - c*S*(v*)T W2 - S*W4 + c*ws

= -c*s*(v*)T W2 - S*W4 + c*ws.

From (4.31), (4.32) and (4.30) we deduce

(4.33)

0 = s*(u*)TAws - c*ws+ S*W4- c*ws

- S*W4- c*ws + S*W4- c*ws

- 2(S*W4 - C*W5) .

Together with (4.12) and (4.29) this implies W4 = W5 = 0, whence from (4.30) - (4.32)
we get

(4.34) 0 = (v*f W2 = (u*)TAws = (v*)TBws.

In addition, (4.25) - (4.27) reduce to

(4.35)

(4.36)

(4.37)

Aws = C*Wl,

Bws = S*W2,
*AT *B T

S Wl = C W2 ,

which implies

(4.38) ((S*)2AT A - (c*)2BT B) Ws = (S*)2AT C*Wl- (c*)2BT S*W2 = o.

Since we assumed (c*, s*) to be a simple generalized singular value, we must have
Ws = TX* with some real number T i=o. Using (4.9) we get from (4.36)

(4.39) S*W2= Bws = TBx* = TS*V*.

Multiplying (4.39) by (v*)T and taking into account (4.13) and (4.34) yields to TS* = 0,
whence the contradiction T =0 folIows.Therefore, w = 0 in contrast to our assump-
tion.

b) =} a): Let R* be nonsingular and assurne that (c*, s*) is a generalized singular
value which is not simple. Taking into account Theorem 1.3, there are two different
zeros z*, i of f such that (c*, s*) = (c, s) and (u*)TU = O. (H (u*)T u i= 0 one can
choose an appropriate normalized linear combination u := (u* + 1}uof u*, u such that

(u*)Tu = 0 holds.) This implies R*(uT,vT,xT,O,O)T = 0 whence u = 0 in contrast
to uTu = 1. 0

We now compare the method oftllls paper with two methods discussed in [l1J. There

i
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it was started using the equations

Ax = CIU,

Ex = sv,

(4.40)
sAT U = c2BT v,

T - 1U U - ,

VT V = 1,

CIC2+ S2 = 1

which differ from (4.8) - (4.12) by the two unknowns Cl, C2 and by the normalization

vT V = 1. However, the normalization can also be deduced from the set (4.8) - (4.12);
see (4.13). Adding the equation vT v = 1 to (4.8) - (4.12) implies that the number of
scalar equations is increased by one. Therefore in order to have still the same number
of unknowns and (scalar) equations one has to introduce an additional unknown. This
was done in [11] by replacing Cby Cl, C2. Note, however, that each solution of (4.40)
satisfies

(4.41) SCI = SCI uT U = suT Ax = C2vTBx = C2svT V = C2S,

whence Cl = C2provided that S i= O. Note that Cl = C2= 0 is possible here while
we assumed cs i= 0 in the method of this paper thus decreasingthe dimension of the
vectors and matrices. The generalized singular value (c, s) = (1,0) can also be handled
by (4.40) when interchanging the role of A and B. Assuming s i= 0 the solutions of
(4.40) are precisely the zeros of the function

IRP+q+n+3 --+ IRP+q+n+3

Ax - ClU

Bx - sv

sA Tu - c2BT V

1 T
-(1 - u u)
P
1 T
-(1 - v v)
q

1 2
- (1 - ClC2- S )2

which was used in [11]. It is obvious that the same steps can be done as for the method
of this paper ending up with similar results. The factors 1, 1 and _21 are scaling factors.p q
They have been introduced in order to decrease the value of the factors 'Yand /j in
(4.21). It can easily be checked that these factors now read

(4.42) f :

z = (uT,vT,xT,CbC2,S)T1---7 fez)

(4.43) 'Y := /j .- IPI

ep

eq

IATlep + IBTI eq
1

1

1 00



But note that the scaling infiuences the matrices P, R and the vector h(z, z). We
remark that similar scaling factors could also be introduced in (4.17).

Clearly, Theorem 3.1 applies again. The results are then identical with those in [11].
We leave it to the reader to formulate them. The matrix R* from Theorem 4.2 is now

a (p + q + n + 3) x (p + q + n + 3) matrix and reads

-cilp 0 A -u*

0 -s* Iq B 0

s*AT -c;2BT 0 0

22
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0

R* .-

-BTv* ATu*

-v*

0 0

1 * 1
0 - - ~ - - Cl2 2

Theorem 4.2 holds analogously, as was shown for the
The proof can be performed analogously to that in this

(4.44) -~ (u*f
p

0 0

0 0

0

0

-~ (v*f
q

0

0

where we assume s* ;j:.o.
implication a) => b) in [11].
paper.

A second variant in [11] uses the transposed inverse Y :=
combining (4.3) and (4.4) into (4.7) one rewrites (4.3), (4.4) as

(4.45) ATU = Y~~,

(4.46) BTU = Y~~,

and starts with the equations

(4.47)

Ax = Cl U ,

Bx = sv,

ATu = C2Y,

BTV = sy,

UTu = 1,

VTV = 1,

0

0

-s*

T
(X-I) . Instead of

ClC2 + s2 = 1,
in whichthe numbersofequationsand unknownsare nowincreasedto p + q+ 2n + 3.
The third and the fourth equation imply sATu = SC2Y = c2BTv which is the third
equation of (4.40). Therefore, as in (4.41) one obtains Cl = C2 =: C for each solution
of (4.47), provided that s ;j:.O. In addition xT Y = 1 holds in this case because of

xT Y = (C2 + s2)xT y

= xT (c(cy) + s(sy))

= xT (cA Tu + sBT v)
= c2uTu + s2vTv

- C2+ s2

= 1.

..1



AlefeldjHoffmannjMayer, Generalized Singular Values 23

Assuming s "# 0 the solutions of (4.47) are the zeros of the nlllction

JRP+q+2n+3 -7 JRP+q+2n+3

(4.48) j : -
( T T T T

)z - u, v , x , Cl,C2,s, Y I--t j(z) '-

Ax - ClU

Bx - sv

ATU-C2Y

BT v - sy

~(l-uTu)P

~ (1 - vT v)q
1 2

)- (1 - ClC2- s2

with which one can again construct the functions t(x) := x - P j(x), h and [g] as
above. Theorem 3.1 yields at once to the results in [11].The factors , and (j in (4.21)
now read

(4.49) , := (j := 11IPI 1100 .

The matrix R* from Theorem 4.2 is here a (p + q + 2n + 3) x (p + q + 2n + 3) matrix
which is given by

as was shown in [11]. It can be seen by adding the (-c*) multiple of the fourth block
row of R* to the s* multiple ofthe third block row. (Here we used again c* := ci = c;.)

. This cancels -ciI at the end of the third block row. Evaluating now the determinant
along the last n columns and taking into account c*y* = AT u*, s*y* = BT v* yields
to (4.51). Therefore, R* is nonsingular if and only if R* has this property. Hence
Theorem 4.2 holds again.

-cilp 0 A * . 0 0 0-u

0 -s*[ B 0 0 -v* 0q

AT 0 0 0 -y* 0 -c;In
0 BT 0 0 0 -y* -s* In

(4.50) R* := I

- (u*f 0 0 0 0 0 0
p

0 - (v*)T 0 0 0 0 0
q

0 0 0 1 * 1 * -s* 0-- --c
2 2 I

To avoid confusions we rename the matrix R* in (4.44) by R*. The determinant of
R* from (4.50) is connected to det R* by

(4.51) IdetR*1 = 1(-s*)ndetR*1
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5. A numerical example

We consider here an exarnple from [13], p. 16, which was also used in [11]:

Since B has less rows than columns the assumption q 2':n of Theorem 1.3 is certainly
not fulfilled. Furthermore, we do not know whether (1.8) is true. Therefore, Theorem
1.3 is not applicable, even if we supplement B with a fifth row which consist only of
zeros. Nevertheless a generalized singular value decomposition (1.10), (1.11) can exist.
We assume this for the moment.

Since the matrices A, B are not representable exact1y by machine numbers we mul-
tiply them by 10 000 in order to get rid of this problem. Apparently, this scaling does
not change the generalized singular values, but it influences the matrix X in (1.10),
(1.11) which has to be multiplied by 10~OO' In order to get a good approximation
ui, ii, j;i, Ci,Si for the i - th columnof U,V, and X, respectively,and for the i - th
generalized singular value (Ci,Si) one can use the LAPACK driver routine SGGSVD
which is based on an algorithm described in [8], [9]and [17];cf. [7],pp. 22 - 24 and
pp. 204 - 206. Here, we adopt the approximations given in [11] which result from a
maximum of three cycles of the method in [17]for each index i. For the generalized
singular values they read

Z Ci S'1

1 9.570 592 041 847 E-1 2.898925 312 698 E-1

2 1.465 216 233 701 E-4 9.999 999 892 650 E-1

3 1.793 178 754 891 E-5 9.999 999 998 390 E-1

4 9.999999 993 410 E-l 3.628 796 180 383 E-5

5 1.000000 000 000 E+O 1.719 618 144 959 E-27
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For i = 1 the approximations of the corresponding vectors are

iLI =

-4.011 110 453 219 E - 1

-1.177826718754 E - 1

3.394 476 862 897 E - 1

-4.853 318 178 425 E - 1

-6.853 583 334 942 E - 1

6.891604385 773 E - 2

-1
, v -

7.661493 109 139 E - 1

-5.975 833 109 085 E - 1

- 2.363 304 068 684 E - 1

-7.573552568414 E - 3

1-1 -
X = 10 000

7.948 534 941 564 E - 1

-3.765 662 673 654 E - 1

6.165 784424092 E - 1

-1.202 198 346 284 E + 0

1.929 618 810 567 E - 1

For the quantities in Theorem 3.1 and 4.1 we obtained

a E [1.614862 135 784 14~ E - 7] , ß E [1.79 E - 12,1.81 E - 12],

'Y E [5.350 007 052 147 07~ E + 1] , ß E [9.999654 419 011~ E - 1] ,

r- ::; 1.614876 088 063078 E - 7, r+ 2: 1.869 140 265 896 325 E - 2.

Here, [1.614862 135 784 14~ E - 7] denotes

[1.614862 135 784 146 E - 7 , 1.614862 135 784 148 E - 7] .

We used r := 1.614 876 088 063 078 E - 7 E [r-, r+] in order to compute [z]O=
z + [-r,r]e and PASCAL-XSC as programming language running on a workstation
HP 715/100. Iterating twice according to Theorem 4.1 we got the following enclosures
for Cl, SI, ul, VI, Xl:

[Ul] -

[Cl] = [9.570 592 041 841 63~ E - 1],

[SI] = [2.898925 312 70427ÖE - 1],

[ -4.011 1088383567~i E - 1 ]

[ -1.177 8281791598g8 E - 1 ]

[ 3.394477 797 77947ä E - 1 ]

[ -4.853319058 14842~E - 1 ]

[ -6.853 582 905 53560gE - 1 ]

[ 6.891 608 116971 8~§E - 2]
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[vl] =

[ 7.661 493 109 070 ~gg E - 1 ]

[ -5.975 833 109 169 76g E - 1 ]
[ -2.363304068 704 ~ÖÖ E - 1 ]

[ -7.573552 573 095 4~~ E - 3 ]

[Xl] =

[ 7.948535396 408 3~~ E - 5 ]

[ -3.765661 076 084 8~ E - 5 ]

[ 6.165781424226 27i E - 5 ]

[ -1.202 197947052 54gE - 4 ]

[ 1.929614 108910 59~E - 5 ]

We remark that the two variants in [11]produce essentially the same inclusions.
Similarly, we get

H we know that (1.8) holds, then the generalized singular value (cs, ss) = (1,0) can be
deduced direct1y from the dimensions of A, Band from the enclosures [Si],i = 1, . . . ,4,
as can be seen in the following way: We apply Theorem 1.3 and Corollary 1.4 to A

and B := (~) E JRsxs, where we have to enlarge B to B since we assumed q 2:: n in

Theorem 1.3. The generalized singular values remain the same as for (A, B), therefore

(5.1) 4 2:: rank (B) = rank (B) = rank (8) 2:: 4

which means rank (B) = 4. For the last inequality in (5.1) we used the fact that the
enclosures for Si, i = 1,...,4 are pairwise disjoint and do not contain zero. Thus,
rank (8) = 4, hence Ss must be zero and Theorem 1.3 implies Cs= 1.

Unfortunately, we do not yet know whether (1.8) is true. We are now going to prove
this using the iteration method of this paper: The approximation (CS,8S) indicates
(cs, ss) = (1,0). Therefore, we start our program with Cs= 1, 8S= 0, ijs = 0 and

i/,S=

6.373 109 613 136 E - 1

5.561 243 807 402 E - 1

-1.129007623404 E - 1

2.801 674 929 222 E - 1

4.393 577 391 708 E - 1

1-S_-
, x .- 10 000

9.619 099 638 573 E - 1\

3.564487242938 E - 1

-4.914070317944 E-1

4.307023 711 361 E - 1

-8.850 092 357 967 E - 1

Z [Ci] [Si]

1 [9.570 592 041 841 63 E - 1] [2.898925 312 704 276 E - 1]

2 [1.465 216 233 516 22 E - 4] [9.999 999 892 657 0 g E - 1]
3 [1.793 178 750 459 gg E - 5] [9.999 999 998 392 25 E - 1]

4 [9.999999 993 415 9 iä E - 1] [3.628 796 176 862 38 E - 5]
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The choice iis = 0 can be motivated as folIows: The enclosures for Si, i = 1,.. . ,4, are
pairwisedisjointand do not containzero. In addition,0 f/. [Ci]whence SiCi #-0 for
i = 1,...,4. Therefore, the corresponding vectors vI,.. . ,V4 are pairwise orthonor-
mal according to the arguments preceding (4.17) for which no assumptions (4.23) are
needed. Hence (4.9)implies rank (BT) =rank (B) =4 since rank (B) is the dimension
of the range of the linear mapping x H Bx. From (4.10) and from the assumption
(cs, 8S) = (1,0) we get BT vS = 0 which implies VS= 0 by the rank of B. This is the
feason, why we put vS = o.

For the quantities in Theorem 3.1 and 4.1 we obtained

a E [3.755282052 424 44~ E - 11],

ß E [1.975 959 3~ E - 8],
'Y E [3.519 783 275 163 5 ~~ E + 5],
.ö. E [9.999470893649 6 ~~ E - 1],

r- ~ 3.755331 764470081 E - 11,
r+ > 2.841 046405 733 589 E - 6.

We used r := 3.755 331 764470 081 E - 11 E [r-, r+]. After two iterations we got
the following enclosures for Cs, 8S, uS and xs:

(CS]= [9.999999999999998 E - 1, 1.000000000000001 E + 0],

[ss] = [-3.2 E - 30, 3.2 E - 30],

[uS] -

[ 1.687550 110 072 o~g E - 2]

[ 6.373 109 613 222 01~ E - 1 ]

[ 5.561243807 173 o~~ E -1 ]

[ -1.129 007 623 779 52g E - 1 ]

[ 2.801 674929369 78i E - 1 ]

[ 4.393 577 391 703 15~ E - 1 ]

[XS] =

[ 9.619099638 742 1~~ E - 5]

[ 3.564487242 945 36~E - 5 ]
[ -4.914 070 317 892 76~ E - 5 ]

[ 4.307023 710 673 22~ E - 5 ]

[ -8.850 092 357 418 17§ E - 5 ]

The enclosures [cd, i = 1,...5, are pairwise disjoint and do not contain zero. There-
fore, the corresponding vectors Ul,. . . ,us are pairwise orthonormal, where we again
use the arguments preceding (4.17). Hence (4.8) implies rank(A) = 5 which guaran-
tees (1.8). From this, (cs, ss) = (1,0) follows, as we already saw above. Note that in
[13], p. 16, it was stated that the rank of both matrices A and B is three.
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