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Summary. This paper proposes a validation method for solutions of linear
complementarity problems. The validation procedure consists of two suffi-
cient conditions that can be tested on a digital computer. If the first condition
is satisfied then a given multidimensional interval centered at an approxi-
mate solution of the problem is guaranteed to contain an exact solution. If
the second condition is satisfied then the multidimensional interval is guar-
anteed to contain no exact solution. This study is based on the mean value
theorem for absolutely continuous functions and the reformulation of linear
complementarity problems as nonsmooth nonlinear systems of equations.
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1. Introduction

Linear Complementarity Problems (LCP) model many important problems
in engineering, management and economics. Furtherinore linear and
quadratic programming problems can be written as LCP.

Several algorithms have been developed for solving LCP [11,21,22,25,
26,31], but few validation methods have been studied to give guaranteed
bounds on the distance between the numerical solution and the exact so-
lution. One likely reason for this omission is that the traditional interval
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methods were developed for continuously differentiable equations. The aim
of this paper is to give an efficient numerical validation method for solu-
tions of LCP by using the mean value theorem for absolutely continuous
functions.

Primal-dualinterior-pointalgorithmsare the most efficientmethodsto ,

date for solving linear'complementarity problems. For an excellent descrip-
tion of theoretical results and software development we refer the reader to
the recent monographof SteveWright [31].Typically a primal-dual interior-
point method produces a point with primal-dual gap less than a given toler-
ance E.It is then important to know if this approximate solution is dose to
an exact solution of the problem. If the point is produced by an infeasible-
interior-point method (see [31]) then the problem may not have a solution in
spite of the fact that a point with small primal-dual gap has been computed
(see Example 4.5).

The goal of the present paper is to give a sufficient condition that can be
tested on a digital computer and which guarantees that a multidimensional
interval centered at an approximate solution of the linear complementarity
problem contains an exact solution. In other words our paper will present an
algorithm for endosing the solution of the problem. We also give another
sufficientcondition which guarantees that a given multidimensional interval
contains no exact solution of the problem. Our algorithm uses tools from
interval analysis. In particular it uses an efficient interval extension of the
slope of a semi-smooth nonlinear operator associated with linear comple-
mentarity problems. For applications of the notion of interval extensions of
the slope of an operator in numerical optimisation see the recent book of
Kearfott [15].

The remaining part of this paper is as follow. In SecL 2 we discuss three
reformulations for LCP as nonlinear equations and present a new interval
operator for the numerical validation of the solution of LCP. In SecL 3 we
propose algorithmsfor testing the existence of solutions. In SecL4 we report
numerical results to illustrate the robustness of the new method.

In this paper we denote an interval by [x] = {x E Rn,;f < X < x}.

2. Verification of solutions of nonlinear equations

2.1. The Krawczyk operator

In the last decade a lot of effort has been spent on validation of solutions
of nonlinear equations H (x) = O.Most validation methods are endosing
methods that compute an n-dimensional interval [x] C Rn that is guaranteed
to contain an exact solution x*. In what follows we will construct such a
validation method for LCP.
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The Krawczyk operator and the validation method proposed by Alefeld,
Gienger and Potra [2] are applicable for validation of solutions of nonlin-
ear equations with continuously differentiable functions. Chen [4] studied
a generalization of the Krawczyk operator and the Alefeld-Gienger-Po~a
method to nondifferentiable equations.

The method in [2] is based on the mean value theorem for differentiable
functions and an interval extension of the derivative,stated quantitatively in
the form

(2.1) H(x) - H(y) E H'([x))(x - y), for all x, y E [x).

The Krawczyk operator is defined by

K(x, A, [x)) = x - A-1 H(x) + (I - A-1 H'([x))) ([x) - x),

where A is an n x n nonsingular matrix.
The method in [4] is based on the mean value theorem for local Lips-

chitzan functions

(2.2) H(x) - H(y) E co8H([x])(x - y), for all x, y E [x],

where "co" denotes the covex hull, 8F denotes the generalized Jacobian in
Clarke's sense [8] and

co8H([x)) = co{V E 8H(x),x E [x]}.

An interval operator for nonsmooth equations is defined by

B(x, A, [x])= x - A-1 H(x) + (1- A-1 L[x])([x) - x),

where L[x]is an interval matrix satisfying co8H([x]) C L[x]'See [4].
It has been observed repeatedly that the interval extension of the deriva-

tive of a differentiable function can be replaced by a smaller interval. For
example, the slope function [1,14,15,17,28,29].

In this paper we give smaller intervals for both differentiable and non-
differentiable functions. This study is based on the mean value theorem

(2.3)
f(x) - f(y) = l' df(x+ t(y - x); (x ~ y))dt,

where f : IRn -+ IRis absolutely continuous and df (u; v) is the directional
derivativeof f in the direction v. According to [27],the directionalderivative
exists almost everywhere and (2.3)holds. If the Frechet derivativeof f exists
at almost every point in co{x, y} then we can define

g(x,y) = l' f'(x + t(y - x))dt,
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and we have

(2.4) f(x) - f(y) = g(x, y)(x - y).

If we assume that we can define 9 so that (2.4) holds for all x, y, then 9 is a
slope for f [14]. Ifwe also assume that for any x E JRnand for any interval
[x) C JRn,we have an interval extension g(x, [x]) of g(x, y). Then for any
y E [x],

f(x) - f(y) E g(x, [x])(x - y).

Let H : JRn ~ JRnbe an absolutely continuous mapping. For given
x, y E JRnwe can find a slope Gi(x, y) for each component Hi of H. Let
Gi(x, [x])be the interval extension ofthe slope for Gi(x, y), i = 1,2, . . . ,n,
and let

(

Gl(~' [X])

)
G(x, [x]) = : .

Gn(x, [x))

Then we have

H(x) - H(y) E G(x, [x])(x - y), for any y E [x).

Replacing the interval extension of the derivative in the Krawczyk operator
by G(x, [x]),we obtain a new interval operator

L(x, A, [x))= x - A-1 H(x) + (I - A-1G(x, [x]))([x) - x).

This operator has the same properties as the Krawczyk operator for the
purpose of validation. In particular,

if L(x, A, [x]) c [x],then there exists a solution of H(x) = 0;
if L(x, A, [x)) n [x) = 0, then there is no zero of H in [x).
For completeness we repeat the weIl known simple proofs of these two

important properties:
Consider the mapping R : [x] C JRn~ JRnwhere

R(y) = y - A-1 H(y)

and where A is a nonsingular matrix. R is continuous since H is absolutely
continuous by assumption. For arbitrary y E [x]and a fixed x E [x]we have

R(y) = y - A-1 H(y)

= x - A-1 H(x) + y - x + A-1(H(x) - H(y))

= x - A-1H(x) + (y - x) + A-1G(x, y)(x - y)

= x - A-1 H(x) + (I - A-1G(x, y))(y - x)

E x - A-1 H(x) + (1 - A-1G(x, [x)))([x] - x) =: L(x, A, [x]).
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Therefore, if L{x, A, [x)) C [x), then R(y) E [x) for all y E [x), and by the
Brouwer fixed point theorem there exists a fixedpoint y* of R in [x] which
is also a solution of H (y) = O.
To prove the second part, assume that H(y*) = 0 for some y* E [x].Then,
as before,

y* = R(y*) E L(x, A, [x])

for a fixed x E [x). This contradicts the condition L(x, A, [x)) n [x)= 0.

Since G(x, [x]) ~ H'([x]) for x E [x] if H is differentiable on [x),
L(x, A, [x]) is smaller than the Krawczyk operator K(x, A, [x)). Notice
that G(x, [x]) is not only dependent on [x]but also on x. A good choice of
x can make G(x, [x)) much smaIler than H'([x]). The other advantage of
L(x, A, [x]) is that it is applicable even if His nondifferentiable.

2.2. The linear complementarity problem(LCP)

Let M E Rnxn and q ERn. The linear complementarity problem (LCP) is
the problem of finding an x E Rn such that

(2.5) Mx+q>O, X>O, (Mx+q)Tx=O.

Many algorithms for solving (2.5) are designed via an equivalent system of
nonlinear equations
(2.6) H(x) = O.

The equivalence means that x* solves (2.6) if and only if x* solves (2.5).
See for example [10]. .

2.3. The LCP as a system of non linear equations

In the study of LCP, the following three equivalent formulas of nonlinear
equations are often used.

Mangasarian's formula [21]

-

(
(mTx + ql)lmT x + qll + ~llxll- (mTx +ql - xd2

)
F(x) = : ,

(m~x + qn)'m~x + qnl+ xnlxnl- (m~x + qn - xn?
(2.7)

where mi E Rn is the i-th row of M.

Pang's formula [24]

(2.8) F(x) = min(Mx + q,x),
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where the "min" operator denotes the componentwise minimum of two
vectors.

The Fischer-Burmeister formula [11]

Xl + mix + ql - JXI + (mix + ql)2
(2.9) p(x) =

xn + mJx + qn - /x~+ (mJx + qn)2

The Mangasarian function is differentiable in }Rnand its derivative at x
lS

- T T
F[(x) = 2(mi x + qi - Xi (1 - sgn(xi)))ei

(2.10) +2(Xi - (mT x + qi)(l - sgn(mTx + qi)))mT,

where

sgn(a) =
{

I,
-1 ,

a>O- ,
a<O

and ei E }Rndenotes the vector with all elements equal to 0 except the i-th
element equal to 1.

The Pang function is piecewise linear. Each component Fi of F is dif-

ferentiable at x if mT x + qi =I=-Xi, and

F[(x) =
{

eT; ~f(mi-ei)~x+qi>O
mi,lf(mi-ei) X+qi<O.

The Fischer-Burmeister function is semismooth. Each component Fi of
Pis differentiable at x if (mT x + qi)2 + x; > 0, and

T

P[(x)=(l- Xi )eT+(l- mix+qi )m;.

Jx; + (mTx + qi)2 Jx; + (mTx + qi)2
- ~

Each component of F, F and F is absolutely continuous and we can
define their slopes. However,P' and P'are not easily used in the verification
methods. Although the Mangasarian function and the Fischer-Burmeister
function have nicer properties for global convergenceanalysis than the Pang
function, they are not linear in any domain. The Pang function is piecewise
linear and keeps the original linear form in each piece. This property is
advantageous for the interval extension. Therefore we study the slope and
the interval extension for the Pang function.



Numerical validation of solutions of linear complementarity problems

2.4. The slope for the Pang function

Let us denote

si = {x I x E [x], (mi - ei) TX + qi > O}

and

si = {x I x E [x], (mi - ei) TX + qi < O}.

For given x, y, if x E si u Si or y E si U Si, then

l F;(x + t(y - x))dt =

er, x,y ~ si
mr, x,y ~ si
m; + ti(ei- mi)T,x ~ Si, y E si
e; + ti (mi - ei) T, X ~si, y E si,

where
(m- - e-)Tx + q-

t- - 2 2 2

2 - (mi - ei)T(x - y)"

If x ~ si U Si and y ~si U Si, then for any t E [0,1],

(mi - ei)T(x + t(y - x)) + qi = O.

In this case,

Fi(x) - Fi(x + t(y - x)) = tm;(x - y) = tel (x - y).

This means that F is nondifferentiable on the line segment between x and
y. Nevertheless, it does not affect todefine the interval extension G(x, [x]).

To define the interval extension, we fix x and consider the following
linear programming problems

(2.11)

inf (mi - ei)Ty + qi

s.t. Y E Si
(if (mi - ei)Tx + qi > 0)

and

sup (mi - ei)Ty + qi

(2.12) S.t. Y E si.

(if (mi - ei)Tx + qi < 0)

Let yi be a solution of the linear programming problem, and let

(m- - e. )Tx + q-
t~ = 2 2 2

2 (mi - ei)T(x - yi)'

7
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Then we can define the interval extension by

Gi(x, [x]) =

eT, Si = 0
mT sj- = 0

2 , 2

mT + [t;,l](ei - mi)T, x tf-Si, Si =1=0
eT + [t;,l](mi - ei)T, x tf-Si, si =1=0

Lemma 2.1 Foranyfixed x E IR.n, y E [x], we have

F(x) - F(y) E G(x, [x])(x - y).

Proof Suppose (mi - ei)T x + qi > o. If y tf-Si and Si = 0, then

Fi(X) - Fi(Y) = Xi - Yi = eT(x - y) = Gi(x, [x])(x - y).

If y tf-Si and Si =1=0, then

Fi(X) - Fi(Y) = eT(x - y)

= (mT + (ei - mi)T)(x - y)

E (mT + [tI, l](ei - mi)T)(x - y)

= Gi(x, [x])(x - y).

If y E Si, then Si =1=0 and we have

l
t

1
1

Fi(X) - Fi(Y) = ( . eTdt+ mTdt)(x - y)
0 ti

= (mT + ti (ei - mi)T)(x - y),

where
(m- - e-)Tx + q-

t- - 2 2 2

2 - (mi - ei)T(x - y)"

Since 0> (mi - ei)Ty + qi > (mi - ei)Tyi + qi,

1 > t - > (mi - ei)TX + qi2 -
(

t*
mi-ei)T(x-yi) = i.

Hence

mT + ti(ei - mi)T E mT + [ti, l](ei - mi)T

and

Fi(X) - Fi(Y) E Gi(x, [x])(x - y).

Similarly, we can prove this lemma for the case (mi - ei)Tx + qi < o. 0
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3. Algorithm

In this section we first give an algorithm to define the interval extension
G(x, [x]) based on Pang's fonnula. Next we give a verification method for
the LCP by usingG(x, [x]). .

Notice that

m'f + [0, l](ei - mi)T = e'f + [0,l](mi - ei)T

= [min(e'f, m'f), max(e'f, m'f)].

By the analysis in the last seetion, if (mi - ei)TX + qi = 0, and both S;
and Si are nonempty, then

Gi(x, [x]) = [min(e'f, m'f), max(e'f, m'f)].

The following algorithm defines Gi(x, [x]) for a given interval [x].

Algorithm 3.1 Given x E }Rnand [x] c }Rn.

1. Solve the linear program

(3.1)

rnin (mi - ei)Tx + qi
s.t. x < x < x.

Let yi be a solution of(3.1). If(mi - ei)Tyi + qi > 0, (i.e.S; = 0), let
Gi(x, [x]) = e'f. Otherwise perform step 2.

2. Solve the linear program

max (mi - ei)T x + qi

s.t. x < x < x.(3.2)

Let zi be a solution of(3.2). If(mi - ei)T zi + qi < 0, (i.e. si = 0), let
Gi(x, [x])= m'f. Otherwiseperformstep3. .

3. (In this case, (mi - ei)Tyi + qi < ° and (mi - ei)T zi + qi > 0, i.e.
S; -I-0, si -I-0.) Weperform thefollowing steps.
3.1 If(mi - ei)Tx + qi = 0, let

Gi(X, [x]) = [min(er, m'f), max( er, m'f)].

3.2 If(mi - ei)Tx + qi > 0, let

(m' - e. )Tx + q.
t . - 1, 1, 1,

1,-

(mi - edT(x - yi)

and

Gi(x, [x]) = m'f + [ti,l](ei - mi)T.
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3.3 If (mi - ei)Tx + qi < 0, let

(m. - e-)Tx + q.
t . - ~ ~ ~

~ -
(mi - ei)T(x - zi)

and

Gi(x, [x)) = er + [ti,l](mi - ei)T.

Optimal solutions of linear programming problems (3.1) and (3.2) are
given by the formulae

i -

{

;I.j (mi - ei)j > 0
Yj - - . .

Xj otherWlse, ] = 1,2..., n

and

i

{

;I.j (mi - ei) j < 0
Zj = Xj otherwise, j = 1,2, ..., n.

Based on the results in [2,4], we propose the following verification
method.

Algorithm 3.2 Let r > 0 be a given tolerance and let x be an approximate
solution of

(3.3) F(z) = min(1Ylz+ q, z) = o.

Calculate

(3.4) [x]= x + r[-e, e]

where e = [1, . . . , 1JT and choose a nonsingular matrix A. Compute

(3.5) L(x, A, [x])= x - A-1 F(x) + (I - A-IG(x, [x]))([x] - x).

-If

(3.6) L(x, A, [x]) C [x],

then there is a solution x* E [x] of(3.3).
-If

(3.7) L(x, A, [x])n [x)= °,

then the interval [x] contains no solution of(3.3).
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4. Numerical resuIts

In this section we first give an example in JRto illustrate application of our
intervaloperatorL(x,A, [x])and compare with former operators. Next we .
report numerical results by using the programming languagePASCAL-XSC
[16] on an HP-9000 workstation.

Example 4.1 Let M = -1 and q = 1. Then the problem

F(x) = min(Mx + q,x) = 0

has two solutions x* = 0 and x* = 1. The function F is not differentiable

at x = 1/2.

We choose [x] = [~ - a,~ + b],where a, b > 0,a < ~.
First we apply the Krawczyk operator to the differentiable equation

F(x) = O. By (2.10), we have

F'([x)) = 2(-[x] + 1) - 2([x] - (-[x] + 1)(1- [-1, I)))
1 1 1 1 1 1

= 2(2 - b, 2 + a] - 2((2 - a, 2 + b]- [2 - b, 2 + a][O,2])
1 1

= [-4b,4a] + [- - b, - + a][O,4]2 2

= (-4b,4a] + [min(O,2 - 4b), 2 + 4a]

= [-4b + min(O, 2 - 4b), 8a].

Letm[x] bethemidpointof[x]. Then [x] -m[x] = ~[-(a+b),a+b] and

W((I - A-I F'([x))) ([x] - m[x])) > (1 + 41A-11min(a, b))(a + b)

> W([x]) = (a + b),

wheie W ([x]) denotes the diameter of the interval (x].
Hence if ~ E [x],then for any A, K(m[x],A, [x])g: [x].
Next we consider the operator for nonsmooth equations in [4]. By the

definition of (3.3),

{

X x<l
F(x) = min(Mx + q,x) =' - i

-x + 1,x > 2'

BYthe definition of 8F (x ),

co8F((x)) = [-cl, 1].

This implies that for any a, b > 0 and A,

(I - A-Ico8F([x)))([x] - m[x])

= [I-lA-lI, 1 + IA-I 1][-a;b, a;b]
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and

W((I - A-1co8F([x))) ([x] - m[x))) = (1+ IA-ll)(a + b) > W([x]).

Henceif ~ E [x],then for any A, ß(m[x], A, [x]) ~ [x].
Now we consider L(m[x], A, [x]).Since (mi - ei)T x + qi = -2x + 1,

x = ~ + b is the optimal solution of

min(mi - ei)T x + q
xE[x]

and ;f = ~ - a is the optimal solution of

max(mi - ei)Tx + q.
xE[x]

From(m-e)Tx+q = -2band(m-e)Tx+q = 2a,S- #- 0andS+ #-
0.Let x =m[x] = ~ + b;a andb > max{~, 3a}. Then (m- e)Tx+q < 0,

1
F(x) = -(1- b+ a),2

b-a

ti = b+ a

and
3a- b

G(x, [x)) = [-1, b + a ].

Let A = -1. Then

b - 3a a + b a + b

L(m[x],A, [x]) = 1 + [0,1- b + a ][-~, ~].

Hence for any b > max{~,3a}, L(m[x],A, [x]) C [x]. The point 1 is a
zero of F(x) and 1 E L(m[x], A, [x]).

We also can choose other x such that L(x, A, [x]) C [x].For instance,
we consider x = x. Using the analysis above,

(m-e);f+q at- --
- (m - e) (;f - x) - a + b'

a-b
m + (e - m)[t, 1] = [- b' 1]a+

and

a - b, 1].G(;f, [x])= [a + b
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Let A > 1. Then
1 a-b

L(x, A, [x)) = (1- A-l)("2- a) + [1- A-\ 1 - A-1 a + b][O,a + b]

1 1 a-b
= (1- A- )( - - a) + [0, (a + b)(l- A-1- )].

2 . a+b

If a = ~ and b < ~, then
1

[x] = [0,- + b]2

and
1 1 - 2b

L(;f, A, [x)) = [0,("2+ b)(l - A-l1 + 2b)] c [x].

In the remainder of this paper we present somenumerical results obtained
by an evaluation of Mx + q and a corresponding modification of algorithrn
(3.1) using a floating point system:

Perfonning algorithrn (3.1) on a computer using a floating point system
we have to take into account rounding errors. For example, in step 1 of this
algorithm we have to compute (mi - ei)Tyi + qi and to check whether it
is not less zero. However, in a floating point system there is no guarantee
that the true value is also nonnegative if the computed result is nonnegative.
Similar remarks hold for the sign tests in steps 2 and 3, respectively. In
order to inc1udethese possibilities we first compute floating point intervals
[hy]i, [hz]i and [hx]i satisfying

T . .
(mi - ei) y~+ qi E [hy]\

T i i
(mi - ei) z + qi E [hz] ,

T i
(mi - ei) x + qi E [hx] .

. .

where y~and z~ are the optimal solution ofproblems (3.1) and (3.2) . Then
Gi(x, [x)) is defined as follows:

1. If inf [hy]i > 0 (i. e. Si = 0), Gi(x, [x]) = er. Otherwiseperform
step 2.

2. If sup [hz]i < 0 (i. e. si = 0), Gi(x, [x)) = mr. Otherwise perform
step 3.

3. If inf [hy]i < 0 < sup [hz]i then we have one of the following cases
3.1 If 0 E [hxP, let Gi(x, [x]) = [min(e[, m[), max(e[, m[)].

3.2 If inf [hx]i > 0 (whichimpliessi =I 0), let

(
. f[h ]i

)
-l

[T]i be an enc10sure of 1 - ~n [ y]. ,mf hx'l. ti = inf [T]i,

and

Gi(x, [x)) = m[ + [ti, l](ei - mi)T.



14 G.E. Alefeld et al.

3.3 If sup [hx]i < 0 (which implies Si =I-0), let

[T]ibe an enc10sureof (1 ~ sup [hZ]:)-1, ti = inf (T]i,
sup hx

and

Gi(x, [x])= er + [ti,1](mi - ei)T.
0

With the slope G(x, [x]) computed by using the above modification of
algorithm (3.1), we choose

A =
{

m~dG(x, [x]) ~fm~dG(x, [x]) ~s~onsingular
ffildG(x, [x])+ 10-61 If ffildG(x, [x]) 1Ssmgular.

Then we ca1culate L(x, A, [x]) where we use an approximation invA of
A -1, which is computed by the module matinv in Hammer, Hocks, Kulisch
and Ratz [13].With the exception ofExample 4.5 we know an exact solution
x* of the problem. Then we take an approximate solution of the form

(4.8)
*

x = x - Tae,

where a is a given parameter in the interval (-1, 1) and we consider the
interval [xJgiven by (3.4). Therefore the starting interval [x]is

[x] = x* + T [-1 - a, 1 - a] e

and it always contains x* . All examples that have exact solutions are com-
puted using several values of the shifting coefficient a and the dimension n.
For each pair (a, n), we examine the range of T for which the validation
(3.6) is successfuL We have performed extensive testing of.the method. In
the following tables we give only two values Ta,Tbfor which the validation
was performed successfu11y.It is likely that the verification will be success-
ful for any radius T E [Ta,Tb].We have verified this first for three values
Ti = Ta + i rb~ra, i = 1,2,3. Furthermore we have chosen three values

1

between Ta and Tb in a geometrie progression by defining q := (Tb/Ta)4
and choosing Ti = q~Ta , i = 1,2,3. (This choice was suggested by one of
the referees since for the arithmetic progression considered before, the three
values are all of the same order as the right end point Tb). Also in this case
the verification was successful for a11Ti and for a11examples 4.2, 4.3, 4.4.

In many cases verification was possible for much smaller values of T,
but we decided to test with 10-16 which is sufficiently sma11for a11practical
purposes.

The LCP presented in Example 4.5 has no solution although it has an
E-approximate solution x with E = 6 . 10-6. In this case we show that
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condition (3.7) is satisfied for r = 0.25 which guarantees that the problem
has no exact solution in [x].

Example 4.2 (Murty [23])

122...2

012...2

001 ...2 q= -(l,...,l)T.M=
.

000...1

The solution of the LCP is

x* = (0,. . . ,0,1).

The radii for successful verification are:

0D n = 5 In = 10 I n = 20 I n = 50 In = 1001

Example 4.3 (Fathi [9])

12 2 ...

25 6 ...

26 9 ...

2

6

10 q=-(l,...,l)T.M=
. .

26 10 ... 4(n - 1) + 1

The solution of theLCP is

x* = (1,0, . . . ,0).

Ta 10-16 10-16 10-16 10-16 10-16
-0.75

4 . 10-2 2. 10-2Tb 1 3. 10-1 10-1

Ta 10-16 10-16 10-16 10-16 10-16
-0.5

10-1 5. 10-2 2 . 10-2 10-2Tb 4 . 10-1

Ta 10-16 10-16 10-16 10-16 10-16
0

2 . 10-2 5 . 10-3Tb 10-1 6. 10-2 10-2

Ta 10-16 10-16 10-16 10-16 10-16
0.5

3 . 10-2 10-2 6. 10-3Tb 9 . 10-2 3 . 10-3

Ta 10-16 10-16 10-16 10-16 10-16
0.75

3 . 10-2 10-2 2 . 10-3Tb 8 . 10-2 5 . 10-3
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The radii for successful verification are:

[ill n = 5 In= 10 I n = 20 I n = 50 In = 1001

Example 4.4 The dual of the linear program

mm CTU

(4.9) S.t. Au > b, u > 0,

can be written under the form

(4.10)

max bTY

S.t. AT Y < c, y > O.

By introducing the slack variables v > 0 and z > 0, the programs (4.9) and
(4.10) can be rewritten as

mm CTU

(4.11) S.t. Au - v = b, u > 0, v > 0,

and

(4.12)

max bTY

S.t. ATy + z = c, y > 0, z > o.

Since for any feasible u, v, y, z we have

CTU- bTy = uT(ATy + z) - yT(Au - v)

=uTz+yTv>O,

Ta 10-16 10-16 10-16 10-16 10-16

-0.75
Tb 7 . 10-2 2 . 10-2 5 . 10-3 8 . 10-4 2. 10-4

Ta 10-16 10-16 10-16 10-16 10-16

-0.5
Tb 4 . 10-4 10-2 3. 10-3 4 . 10-4 10-4

Ta 10-16 10-16 10-16 10-16 10-16

0
Tb 2 . 10-2 5 . 10-3 10-3 2. 10-4 5 . 10-5

Ta 10-16 10-16 10-16 10-16 10-16

0.5
Tb 10-2 3. 10-3 8 . 10-4 10-4 3. 10-5

Ta 10-16 10-16 10-16 10-16 10-16
0.75

Tb 10-2 2. 10-3 7. 10-4 10-4 2. 10-5
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it is easily seen that u, v, y, z is an optimal solution of (4.11) and (4.12) if
and only if x = (u, y) and 8 = (z, v) is a solution of an LCP ofthe form

(4.13) 8=Mx+q, 8>0, x>O, xTs=O

with

M=
(

0 -AT

)A 0 ' q = (c,-b).

For example in [20, p. 46] a problem ofthe form (4.10) with

(

211

)
AT = 1 23 ,

221 b=C). c=(:)

is solved by the simplex method and the exact solution

y = c~:). z = G)

is found. The corresponding primal problem (4.12) has the exact solution

(

6/5

)u = 3~5 , v=(+).

Therefore the solution of the LCP (4.13) is

x* = (6/5,3/5,0,1/5,0,8/5)
s* = (0,0,4,0,1/5,0).

The radii for successful verificationare:
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~n=61

Example 4.5 Let us consider now an LCP of the form (4.13) with

(

0 0 1

)
M= 0 0 1 ,

-1 -10 (

2

)
q - 1

-10-6

The primal-dual pair

(

10-6

) (

3

)
x = 10-6 , 3 = 2

1 10-6

is an approximate solution of this LCP in the sense that

(4.14) xT 3 = 6.10-6, 113 - Mx - qlloo= 4.10-6.

However the LCP has no solution since this LCP corresponds to a linear
programming problem whose primal (4.9) is infeasible (hereA = (-1, -1),
b = 10-6, C = (2, l)T). By taking [x]= x + r[-e, e]with r = 0.25 we
obtain .

(4.15) [x] n L(x, A, [x])= 0,

which shows that there is no solution of the LCP in [x]. We note that in
infeasible interior point methods [31] one often uses the stopping criterion

(4.16) max{xT 3, 113- Mx - qlloo} < E.

A primal-dual pair satisfying (4.16) is called an E-approximate solution.
Relation (4.15) guarantees that no exact solution existswithin an Zoodistance
of 0.25 trom an E-approximate solution with E = 6 . 10-6 !

- l

Ta 10-15
-0.75

Tb 12 - 10-2

Ta 1O-1"l
-0.5

Tb 2 . 10-
21

-

Ta 10-15
0

Tb 5 . 10-2-

Ta 10-15
0.5

Tb 6 . 10-2
-

0.75
Ta 10-15

l TbI5-1O-21
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Random test problems

The ideas of this paper have also been extensively tested on a number of
randomly generated problems with known solution characteristics, so that
different features of the algorithms can be tested. (cf.[4,6]). The procedure
for generating test problems allows the user to specify

- the size of the problem: n,
- the condition number of the matrix M: 7

- the structure of a solution x* ,
the number of components: nI, (Mx* + q)i = 0, xi = 0, i < nl
the number of components: n2, (M x* + q)i > 0,xi = 0, i < n2
the number of components: n3, (M x* + q)i = 0,xi > 0, i < n3
nl + n2 + n3 = n.

- the range of (M x* + q)i E [0,md
- the range of xi E [0,m2].

Method for generating an LCP

1. Generate M E ]Rnxn.

Randomly generate two orthogonal matrices U E ]Rnxn and Q E Rnxn
[18,19]. Define a diagonal matrix E E ]Rnxn whose diagonal elements are

E1,1 = 1/7

Ei,i = 7Vi, i = 2,. . . ,/ - 1
E-y,-y = 7,

E-y+l,-y+1 = 0, . . . , En,n = 0

where / < n is the rank of E and Vi,i = 2,..., / - 1 are uniformly
distributed in the interval (-1, 1). Let

M=UEQ.

The matrix M has the smallest non-zero singular value 1/7 and the largest
singular value 7. If the rank / of M is equal to n, then the condition number
of M is 72. If U = QT, then M is a symmetriepositive semi-definitematrix.

2. Generate q E ]Rn.First set

J= (0,...,0,1,...,1,2,...,2)T E]Rn.'--v--" '--v--"
nl nz

Next make a "perfeet shuffle" in J [6,18] such that the numbers 0,1 and 2
are randomly distributed in J.
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Randomly generate two positive vectors ij, x E m;.nwith elements in the
range (0, ml) and (0, m2) respectively. Let

*

{

Xi if Ji = 2

xi . 0 otherwise. i = 1,2, ..., n

and let

{

-(MX*)i + bi if Ji = 1

qi = -(lVI X*)i otherwise i = 1,2, ..., n.

The tests on the randomly generated problems show that our enclosing
method is very robust. The validation is obtained in one step, but the enclo-
sure can be improved by iterating with the Krawczyk operator L. In case
of problems with strictly complementary solutions (when nl = 0) anexact
(up to machine precision) enclosure is obtained in one or two iterations. In
the degenerate case (when nl > 0) tens of iterations are needed in order to
obtain an exact enc1osure,since the convergence of the iterative procedure
is linear. We only give the first iteration for two four-dimensional examples,
one with nl = 0 and one with nl = 1.

Examples

nl = 0, n2 = 2, n3 = 2, T = 2.000000000000000,
r = 2.000000000000000.10-1, ()t= 0, M = (M1IM2IM3IM4)

MI =

1.388713122168711

-4.699766249426920.10-1

7.370559770214220. 10-2

-4.110090461033111 . 10-1

M2=

-4.699766249426920.10-1

1.453401598450949

3.334909523505895.10-2

-5.175564143615730. 10-1

M3=

7.370559770214220.10-2

3.334909523505895 . 10-2

6.604515405730874.10-1

-1.651162344083680. 10-1
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M4=

-4.110090461033111 . 10-1

-5.175564143615730.10-1

-1.651162344083680. 10-1

1.477373564900058

Xsol =
0.000000000000000 \ 8.679035675427925. 10-1
0.000000000000000 I 2.692546385763099

2.908386450683878

)
' q = -1.549159013124430

2.251076643937769 -2.845459307376360

[x] = [ -2.000000000001 . 10-1,2.000000000001 . 10-1]

[ -2.000000000001 . 10-1,2.000000000001 . 10-1]

[ 2.708386450683,3.108386450684]

[ 2.051076643937,2.451076643938]

L = [ -5.281586749876 . 10-2,5.281586749876 . 10-2]

[ 0.000000000000,0.000000000000]

[ 2.906101880631,2.910671020737]

[ 2.236638467824,2.265514820052]

nl = 1, n2 = 2, n3 = 1, T = 2.000000000000000,

r = 2.000000000000000.10-1, Q = 0, M = (M1IM2IM3IM4)

21

1.388713122168711

-4.699766249426920.10-1
M -I

1 - 7.370559770214220. 10-2

-4.110090461033111 . 10-1

-4.699766249426920.10-1

M2= I 1.453401598450949

3.334909523505895 . 10-2

-5.175564143615730. 10-1

7.370559770214220. 10-2

M3= I
3.334909523505895. 10-2

6.604515405730874.10-1

-1.651162344083680. 10-1
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M4=

-4.110090461033111 . 10-1

-5.175564143615730. 10-1

-1.651162344083680. 10-1

1~477373564900Q58
'''..",

XsoI=

0.000000000000000

0.000000000000000

0.000000000000000

2.251076643937769

q=

9.252128641303051 . 10-1

2.789538442487311

9.950524251712144. 10-1

-3.325681126317601

[x] = [ -2.000000000001 . 10-\ 2.000000000001.10-1]

[ -2.000000000001 . 10-1,2.000000000001 . 10-1]

[ -2.000000000001 . 10-\ 2.000000000001 . 10-1]

[2.051076643937,2.451076643938]

L = [-1.181342316972 . 10-1,1.181342316972. 10-1]

[ 0.000000000000, 0.000000000000]

[ 0.000000000000, 0.000000000000]

[2.218211403191,2.283941884684]

Acknowledgements. We thank both referees for their valuable suggestions and remarlcs
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