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. Abstract. A standard system of interval linear equations is defined by Ax = b, where A is
~an m x n coefficient matrix with (compact) intervals as entries, and b is an m - dimensional vector
. whose components are compact intervals. It is known that for systems of interval linear equations the
. solution set, i.e., the set of all vectors z for which Az = b for some A € A and b € b, is a polyhedron.

In some cases, it makes sense to consider not all possible A € A and b € b, but only those A and b
that satisfy certain linear conditions describing dependencies between the coefficients. For example,

* if we allow only symmetric matrices A (a;j = a.j,'), then the corresponding solution set becomes (in
- general) piecewise —quadratic.

In this paper, we show that for general dependencies, we can have arbitrary (semi)algebraic sets as
" projections of solution sets.

1. Imnformal Introduction

Many real —life problems require solution of the systems of linear equations Az = b,

or
T
E aijz; = bi,
i=1

where the coefficients a;; and b; are known, and the values z; have to be determined.

In applications, the values of the physical quantities that are denoted by these co-
efficients a;; and b; come from measurement and are, therefore, only approximately
known. For each of these quantities ¢, the only information that we usually have after
the measurement is that the difference Ac = ¢—c between the actual (unknown) value
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¢ and the measured value ¢ cannot exceed the bound A(c) guaranteed by the man-
ufacturer of the corresponding measuring instrument. In other words, we know that
the actual value ¢ belongs to the interval ¢ = [¢ — A(c), ¢+ A(c)]. In such situations,

we arrive at the following problem: 5

We know: the intervals a;; and b; for the coefficients.

We want to find: the solution set, i.e., the set of all the vectors z = (z4,...,z,) for
which Zj a;;T; = b,‘ for some aq; € aj; and b;’ = b,’.

In many applications, we are interested only in some of the variables (zi,...,z,).
In this case, in mathematical terms, we are interested in the projection of the solution -
set on a subspace formed by the desired variables.

This problem is usually described as the problem of solving the system of interval -
linear equations ) ;24T = b;, or Az = b, where A and b are a matrix and a vector
with interval components a;; and b;, respectively. For examples of applications of
these systems, see, e.g., [K, KK].

It is known that the solution set for this system is a polyhedron [OP, Be, H, R, N,
AM, AKM96], and therefore, its projection is also a polyhedron.

The above description of a solution set makes sense if the measurement errors in all
coefficients are independent; in other words, if the values of a;; and b; are not a priori
related. In real life, sometimes, they are related. For example, in some physically
meaningful situations, we know that the matrix a;; is symmetric (a;; = a;; [J]). In
this case, it makes sense to look only for such vectors z for which }_ a;;z; = b; for
some b; € b; and for a symmetric matrix a;; € a;;. It turns out [AKM96], that the
shape of such symmetric solution set is not necessarily a polyhedron (i.e., a set with
a piecewise —linear border): in general, it is a set with a piecewise — quadratic border.

A similar shape can be proven for the case when we know that the matrix a;; 1s
skew —symmetric [J, AKM95]. '

In some applications [J] (especially in control [Ba]), we can have even more compli-
cated dependencies between the coefficients. How can we describe these dependencies
in precise mathematical terms? The main reason for this dependency is that the errors
in several different coefficients may be caused by the same factor. Let us denote all the
factors that influence the coefficients by fi,..., f,. Then, the coefficients a;; and bi
depend on these factors: a;; = aij(f1,-.-, fp) and b; = bi(f1,..., fp). For each of these
independent factors f,, we know the interval f, of possible values. These factors are
usually small, so, we can neglect quadratic terms in the dependency of the coefficients
on f,, and thus restrict ourselves to the case when the dependency is linear, i.e., when
b= aﬁ?) +Y . Gijafo and b; = bgﬁ) + Y bia fa- In this case, we can define a solution
set to be the set of all possible vectors z for which for some f, € f,, 3 a;;z; = b; for
the corresponding a;; and b;.

As an example, we can consider the following dependency of the coefficients aij,
1 <12,7 <2, on the factors fq:

4 — Y 2+ f; N
fi+fe 7



Alefeld/Kreinovich/Mayer, Linear Interval Systems with Dependent Coefficients 25

where fi € [-1,1] and f» € [0,1]. This dependency can be described by

2.
A = AO +ZA(an“’

a=1

5 2 0 1
A® — (9Y = , AN = (a:n) = ,
(a‘!J ) 0 7 (a' .?1) 10

00
A — (aij2) = (1 0),

Standard systems of interval linear equations Az = b can be viewed as a particular
case of this definition: namely, we can take p = m - n + m, so that each of m x n
coefficients a;; and each of m coefficients b; are equal to the corresponding f,, with
£, equal to a;; or, correspondingly, to b;.

Similarly, symmetric systems of interval linear equations can be thus represented, if
we take factors f, that correspond to b; and factors f, that correspond to unordered
pairs (¢, 7); in this case, p = n(n + 1)/2 + n, and a;; and a;; are equal to one and the
same factor f,. For example, a general symmetric interval 2 x 2 matrix

a11  A12
A =
A1 Q22

with a;2 = ap; can be represented as

where

A= A4 AW f 4 A@ £, 4 A f

10 0 1 0 0
(0) —— (1) = {2) e (3} ==

fi€an, fao€ap = axn, fz3€ax.

- What shapes can the correspondent solution sets and their projections have?

(a) For no dependencies, we get piecewise—linear shapes.

(b) For the simplest possible dependencies (i. e., for symmetric or skew —symmetric
matrices), we get piecewise — quadratic shapes.

(c) It is natural to assume that in the general case of dependencies, we will get
algebraic dependencies of arbitrary order.

In this paper, we prove that this assumption is correct. Thus, we get a complete
description of all possible shapes.
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2. Definitions and the main result

Definition 2.1. (i) Let m, n, and p be integers. By a system of interval linear
equations with dependent coefficients, we mean a tuple

({a9} {asa {80} {ba} {&}), 12igm, 1<i<m, -

where aEJ), Bivas b{ﬂ} and b;, are real numbers, and f, are intervals.

(ii) We say that a vector z = (z1,...,%,) is a solution of the system of interval
linear equations with dependent coefficients if for some f, € f,, we have

n

(2.1) Y ez = b for all i,
j=1

where

(2.2) aij = (0) #F Za:mfa

and

(2.3) b = b0+ mefa

a=1

The set of all solutions of a given system is called its solution set.

(iif) Let I = {¢1,...,14} C {1,...,n}. By a projection of the solution set on I, we
mean the set of all vectors (z;,,...,z;,) € IR? that can be extended to a solution
(z1,..-,Zn) of a system.

To describe projections of solution sets in the general case, we need the following
definition (see, e.g., [A]):

Definition 2.2. A set S C IR? is called semialgebraic if it is a finite union of subsets,
each of which is defined by a finite system of polynomial equations P,(z,...,z,) =0
and inequalities of the types Py(z1,...,z4) > 0 and Pi(zi,...,z4) > 0 (for some
polynomials P;).

Theorem 2.3. (i) Each projection of the solution set of a system of interval linear
equations with dependent coefficients is semialgebraic.

(ii) Every semialgebraic set can be represented as a projection of the solution set Of
some system of interval linear equations with dependent coefficients.

3. Proof

Remark 3.1. To make this proof easier to read, we will emphasize certain irnportant.
parts of the proof. We will use three different types of emphasis:
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(a) The important mini—goals that we are going to achieve in the course of proving
the theorem will be underlined by a single line.

(b) The important methods that we use to achieve these mini—goals will be under-
lined by a double line.

(c) Finally, the formulations of the important intermediate mini-results (lemmas)
that are proved in the course of proving the theorem, and important displayed formu-
las, will be framed.

Proof of the first part. The first part of this theorem follows directly from the fa-
mous Tarski—Seidenberg theorem [T, S] (see also [A]), according to which, crudely
speaking, every relation that is obtained from a semialgebraic relation by adding
quantifiers Vz, 3z (that run over all real numbers z), is still semialgebraic. In
other words, if the set S C IR” of all tuples (z,...,2,) that satisfy a certain rela-
tion P(z1,...,2y) is semialgebraic, then the set of all tuples that satisfy the relation
(Q121)(Q222) - .. P(21,-..), where each Q; is a quantifier (V or 3), is also semialgebraic.

For our problem, a vector (z;,,...,z;,) € IR? belongs to the projection 7(S) of the
solution set S iff there exist real numbers z1,...,Zx, fi1,--., fp, {@ij}, and {b;} that
satisfy the algebraic equalities (2.1) — (2.3) and inequalities f; < fo < fF, where fT
denote the bounds of the interval f, (f, = [f;, f}]). Formally,

#(8) = {(Bhy-osti) € R IE1 s B8 T Ty soe T, 2(21) —1(2:3) Biold,
and f; < fa < f}}.

Conditions (2.1) - (2.3) are polynomial equalities, and p conditions f; < fo < fi,
1 < a < p, are polynomial inequalities. Therefore, the set of all tuples

(Ila"':zn:fla"')fp)

that satisfy (2.1) — (2.3) and these inequalities for f, is a semialgebraic set. Hence,
by Tarski—Seidenberg’s theorem, the projection 7(S) is also a semialgebraic set.

Proof of the second part. Let us now prove the second part of the theorem, that
every semialgebraic set S C IR? can be represented as a projection of an appropriate
solution set. We will construct the corresponding system of interval linear equations

with dependent coefficients step — by —step. Initially, we start with the variables z;,
..., Zg. On each step, we will add new variables, new parameters f,, and new equa-

tions.

Remark 3.2. Some constructions used in this proof were originally proposed (for
a different purpose) in [KLN].

1. First, we will add the following new variables:

(a) variables z[Ps] that correspond to all the polynomials P, from the definition of
the semialgebraic set S;

(b) variables z[M,] that correspond to all non - constant monomials M, that form
these polynomials;

(c) variables z[m] that correspond to all the monomials that are obtained from
monomials M by decreasing the degrees of some (or all) of the variables, and that
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are different from the variables themselves (for monomials m that coincide with one
of the variables z;, we will take this very variable as corresponding to m, i.e., we will
take .’L'[.’I:i] )

For example, for a polynomial P = 2z} + z2z2 + 5, we add:

(d) a variable z[P] that corresponds to this polynomial;

(e) variables z[M;] and z[M>] that correspond to the two monomials M; = z3 and
M, = 7222 that form this polynomial, and

(f) variables z[m] that correspond to the monomials z7, 7123, 7372, 7122, and z3.

2. We will form the system of equations in such a way that if the variables z[m]
(including z; = z[z;]) are taken from the solution set of this system, then for each
monomial m, the value of z[m] is equal to the value m(z,...,z,) of the monomial m,
and the value of z[P] is equal to the value P(z,,...,z,) of the polynomial P for the
given zy,...,2,. The first equations from the desired interval system are as follows:
for every polynomial P; = ¢y + ¢y M; + -+ + ¢. M, we form an equation

(3.1) z[Ps] — az[My] — ... —c:z[M;] = 0.

These equations do not depend on any factors f, at all; they guarantee that if z[M;] =
MoCEi s ooentty) Borall s = 1, vouyz, then &l P,] = Po(@iy i)

3. In order to guarantee the proper relationship between the variables that corre-
spond to different monomials (e.g., monomials z;, z3, and z;z2), we must be sure
that if a m"” = m-m/, then z[m"] = z[m] - z[m']. To be sure in that, we must describe
this relationship in terms of a system of interval linear equations.

Actually, since with every variable z[m], we have variables that correspond to all
monomials of smaller degree, it is sufficient to consider the case when m' = m - z;.
Indeed, if we can guarantee that for all monomials m, z[m-z;] = z[m]-z[z;] = z[m]-z;,
then, starting with the variables themselves, and adding one variable at a time to the
product representing the monomial, we will be able to prove that z[m] = m(z4,...,24)
for each monomial m.

Indeed, e.g., for m = z2z2, we will be able to prove this property by consequently
considering:

zlxi] = =4,
w3l = gge-m] = #e)om = 555
slxiza] = izt -] = {zl]-32 = Fx,,
wlarad] = wlzleian] = sleinlim = im)om = wha.

4. So, for our purpose, it is sufficient to be able, for every pair (m,z;) con-
sisting of a monomial m and a variable z;, to describe the relationship z[m - z;] =
z[m] - z; in terms of an appropriate system of interval linear equations.

To do that, for each such pair, we add two new auxiliary variables z;[m,z;] and

T2[m, x;}, and two new auxiliary factors fi[m,z;] and fa[m, z;] with

fl[m, 55{] - fg[m, .’171‘] - [“‘1, 1] .

These auxiliary factors and variables will only be used in the following equations that
describe this relationship:
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(3-2) film,zi] - z[m - zi] + fo[m, z;] - z[m] = 0,
(33) film,zi] -z = —folm,z],
(3-4) fl [m, J"L'i] I [m,:c,-] + fz[m, Ii] . 172[?71, 1;:-] == i

~ Let us show that for every three variables z;, z[m], and z[m - z;], | the equality

|:;:[m - ;] = z[m] - z; holds iff the system (3.2) — (3.4) has a solution for some

z1[m,z;], z2[m,z;], fi[m,z;] € film,z;], and fo[m,z;] € fo[m, z;] |

4.1. Let us first assume that z[...] and f[...] € f[...] satisfy the equations (3.2) -
(3.4), and show that in this case, z[m - z;] = z[m] - z;.

Let us first show that fi[m,z;] # 0. Indeed, if fi[m,z;] = 0, then, from (3.3), we
will conclude that fa[m,z;] is also equal to 0. Therefore, the left—hand side of (3.4)
is equal to 0, and it cannot be equal to 1. The contradiction shows that f;[m,z;] # 0.

Since fi1[m,z;] # 0, from equation (3.2), we conclude that

1 fao[m,zi]
(3.5) zlm - z;] = 3 z[m],
and from (3.3), we conclude that
- _flmz]
_ (3-6) iy = iz

Substituting (3.6) into (3.5), we conclude that z[m - z;] = z[m] - z;.

4.2. Let us now show that if z[m - z;] = z[m] - z;, then there exist values z[...] and
fl...] € f[...] that satisfy (3.2) - (3.4).

To prove this statement, we will consider two possible cases:

(a) If |z;] < 1, we take fi[m,z;] = 1, fo|m,z;] = —2;, z1[m, ;] = 1, and z3[m, z;] =
0. It is easy to see that f[...] € f[...] =[-1,1], and that equations (3.2) — (3.4) are
satisfied.

(b) If |z;] > 1, we take fi[m,z;] = —1/z;, fa[m,z;] = 1, z1]m,z;] = 0, and
w3 lm,ag] = 1.

5 — 11. Let us now describe how to represent equalities and inequalities that are
used in the definition of a semialgebraic set.

By definition, a semialgebraic set S is a finite union S = S; U...U S, of the sets Sy
that are described by these equalities and inequalities.

95— 7. The case of u = 1.

9. Let us first consider the simplest case, when this union consists of only one such
set (i.e., when u = 1). In this case, an equality P, = 0 can be described by adding the
equation z[P;] = 0 to our system. Let us now show how to represent the inequalities
z[P] > 0 and z[P] > 0.
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6. To represent the inequality z[P] > 0, we add an auxiliary factor f[P], and an equa-
tion

(3.7) fIP)-z[P] = 1= fIFl;

where f [P] = [0,1]. Let us show that | z[P] > 0 iff this equation has a solution.

Indeed, if z[P] > 0, then we can take f{P] = 1/(1+«[P]). This value is in [0,1], and
the direct substitution confirms that it satisfies the equation.

Vice versa, if the equation is satisfied, and f[P] € [0,1], then f[P] > 0 and 1 f[P] >
0. Let us show that f[P] > 0. Indeed, if f[P] =0, then from the equation, we would
conclude that 1 — f[P] = 0, i.e., that f[P] = 1 # 0. The contradiction shows that
FIP] > 0. Hence, from the equation, we conclude that z[P] = (1 — f[P])/f[P] > 0.

7. We will represent strict inequality z[P] > 0 as a system consisting of the above-

described representation of an inequality z[P] > 0, and another system that represents
z[P] # 0.

To represent the relation z[P] # 0, we will introduce two auxiliary variables z; [P]
and z5[P] and two factors fi[P] and f>[P] with f;[P] = £[P] = [~1, 1}, and add three
new equations:

(3.8) flP)-z[P] = f[F],
(3-9) filP]-z[P] = 1,
(3.10) flP|-mlP] = 1.

Let us show that z[P] # 0 iff this system has a solution.

7.1. Let us assume that z[P] # 0. To show that a solution exists, we will consider
two possible cases: :

(2) If |z[P]] < 1, z[P] # 0, then we can take f1i[P] = 1, f2[P] = z[P], -;y[P] = 1,
z2[P] = 1/(z[P]). :
([b)1 Tf |z[P]| > 1, then we can take f1[P] = 1/(z[P]), fz[P] = 1, z:1[P] = «[P}, and

Ty Pl= i

7.2. Let us now assume that the system (3.8) — (3.10) has a solution. Then, from.
(3.9), we conclude that f,[P] # 0; from (3.10), that f>[P] # 0; and therefore, from
(3.8), that z[P] = —fo[P)/ f1[P] # 0. '

Conclusion for u = 1. Since we are now able to represent equalities and inequalities iB
terms of linear interval equations with dependent coefficients, we have thus concluded
the proof of the second part of the theorem for the case when the semialgebraic set
consists of only one component.
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- 8- 11. The case u > 2.

8. Let us now consider the case when the given semialgebraic set S is a union of
finitely many sets S = S1U...USy, u > 2, and each of the sets 5, .. ., S, is described
by a system of polynomial equalities and inequalities. In this case, a vector z =
(z1,---,%¢) € R belongs to S iff for one of these sets, it satisfies the corresponding
“equalities and inequalities.

To describe the condition z € S in terms of interval linear systems, we will do the
following:

(a) First, we will introduce u new variables s, ..., s4, and add interval linear
equations that will guarantee that the values of each of these variables will be 0 or 1
(sg = 1 will mean that the solution vector z belongs to Sk, and sxy = 0 will mean that
it does not).

(b) Second, we will add interval linear equations whose solvability is equivalent to
the fact that at least one of these variables s;,. .., s, be equal to 1 (this means that it
is = belongs to one of the sets Si,...,S,, and thus, that it belongs to their union S).

(c) Third, for each of the sets Si, for every of the conditions P.(zy,...,24) = 0,
Pi(z1,-.-,Z4) > 0, Pi(z1,...,24) > 0 that define this set S, we will add new interval
linear equations that represent the corresponding conditional statements:
= (d) “if s =1, then P, =07;

(e) i s =1, then B, = 07

()%t o= 1, then B, > 17,

Then, if z is a solution of the resulting system of equations, we will have one of the
variables s; equal to 1, and for this variable si, all equalities and inequalities that
define Sy, will be satisfied. Thus, we will have z € S; and therefore, z € S = {J Sk.-

- Vice versa, if z € S, then = € S; for some k, so, for s = 1, we will have a solution
of the combined interval linear equation system.

9. Let us first describe how to ensure that a variable s; only takes the values 0 or 1
(i.e., in computer terms, that it is a Boolean variable).
To ensure that, for each k = 1,...,u, we will introduce two new factors: fi[sx] and

falsk) with fi[sx] = £[s¢] = [-1,1], and add two new equations:

(3.11) 2filse] - sk = 1+ fa[sk],

(3218} 25k = 1+ fosi].

Let us show that sg € {0,1} iff this system has a solution.

9.1. If s = 0, then we can take fi[sz] = fo[sk] = —1. If s = 1, then we can take
filsk] = false] = 1.
~ 9.2. Vice versa, if equations (3.11) — (3.12) are satisfied, then for z = 2s; — 1,
from (3.12), we conclude that |z| = |fa[sk]] < 1, and from (3.11), we conclude that
z- filsk] = 1, and therefore, |z| > 1/|fi[sk]] > 1. Hence, |z} < 1 and |z| > 1, so,
|z = 1, and z = +1. From 2s; — 1 = +1, we conclude that sy = 0 or s = 1.

10. Let us now express the fact that at least one of the given u Boolean variables
$1,...,8, must take the value 1.
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To express it, we need u new factors f[sx], 1 < k < u, with f3[sg] =[-1,1], and a

new equation
(313) fg{sl}-sl+---+f3[su]-su = 1.

Let us show that for Boolean variables si, this equation is satisfiable iff one of the
Boolean variables is different from 0.

Indeed, if this equation is satisfied, then all variables s; cannot be equal to 0, because
then, the left —hand side of this equation would be also equal to 0, and not to 1. Vice
versa, if, e.g., sy = 1, we can satisfy the equation by taking f3[sx] =1 and f3[s;] =0
ot 8 0

11. Let us now describe how conditional statements “if s = 1, then ...” described
in Part 8 of the proof can be represented in terms of interval linear equations.

11.1. The conditional statement “if sy = 1, then P = 0” will be represented as
Sk - o — 1D

Indeed, if s; = 0, then this equality is always true, and if s = 1, then it is exactly
P={].

The expression sy - P is a polynomial in terms of the variables s; and z;, and
we already know how to represent (unconditional) polynomial equations in terms of
systems of interval linear equations.

For example, we can follow the construction from Part 4 of this proof: Namely, we
introduce the new variable z[s; - P] with the property that z[si, P] = s - z[P], and
add the equation z{sy - P] = 0.

For that purpose, we add two auxiliary variables z; [P, sx] and z3[P, s¢], two auxiliary
variables f1[P,sx] € [-1,1] and fo[P,s] € [-1,1], and four new equations (these
equations are similar to (3.2) - (3.4)):

(3.14) AP se] - xlsi - Pl + f2[P,se] - sx = 0,
(3-15) filPsi] - z[P] = —fo[P,sk],

(3'16) fl[P: sk] - Iy [Pt Sk] + fQ[P:l sk] . n';2[-P, sk] = 1:
(3.17) #HP 8¢ = 0.

11.2. The conditional statement “if s, = 1, then P > 0” will be represented 2s
Sk * ¥ ot Z 0.

Indeed, if s = 0, then s; - P = 0 > 0, so, this inequality is always true; if sy = 1,
then this inequality is exactly P > 0.

We already know (see Part 6) how to represent inequalities of the type z[sy - P] > 0
in terms of systems of interval linear equations.

11.3. Similarly to Part 7 of the proof, we will represent the conditional strict inequal-
ity “if sz =1 then P > 0” as a combination of a conditional non—strict inequality “if
sg = 1 then P > 07, and an auxiliary conditional inequality “if s, = 1 then P #0.”

To represent an auxiliary conditional inequality in terms of an system of interval
linear equations, we will first reformulate as an equivalent unconditional inequality:
namely, an inequality 1 — sz + P2 # 0.
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Indeed, if s; = 1, then this inequality turns into P # 0. If sy = 0, then 1—s;+P? =
1+ P? # 0 for all values of P, so this condition does not impose any restrictions on
the value of P.

The left —hand side of this equivalent inequality is a polynomial in s and z;, so, we
know how to describe a variable z]...] that is equal to the value of this polynomial.
Another possibility is as follows:

(a) first, we describe a new variable m[Pz] for P2, by using a construction similar
to the one used in Part 4;

(b) second, we describe a new variable 3:[1 — S+ Pz] by using a construction from
Part 2; and

(c) third, we describe the condition z[1 — s + P?] # 0 as in Part 7.

In other words, first, we add three new auxiliary variables z[P?], z;[P, P], and
z2[P, P), and two new auxiliary factors f1[P, P] and fo[P, P] with f,[P, P] = [P, P] =
[-1,1]. These auxiliary factors and variables will only be used in the following equa-
tions that describe this relationship (these equations are similar to (3.2) — (3.4)):

(3.18) filP,P]-z[P?] + f,[P,P]-[P] = 0,
(3.19) filP,P]-z[P] = - fsP, P],
(3.20) filP, P] - z1[P, P] + fo[P, P} - z5[P,P] = 1.

Second, we add a new variable z[1 — s + P?] and a new equation (this equation is
similar to (2.2)):

(3.21) z[1 = sp + P?] + s —z[P?] = 1.

Third, we introduce two auxiliary variables z; [1 — s¢ + P?] and z2[1 - sx + P?] and
two factors fi [1—sx+P?] and fy[1—sx+P?] with f; [1—s;+P?] = f[1—sx+ P?] =
[-1,1], and add three new equations (these equations are similar to (3.8) — (3.10)):

(3.22) fill—sg+ P z[1—sp+ P?] = fo[l— s+ P?],
(3.23) fill=se+P? -zq[1-s+ P =1,
(324) fg[l—sk +P2]'$2[1—8k+P2] = 1.

We have shown how to describe all conditions in terms of systems of interval linear
equations. By combining all these systems of interval linear equations, we get a large
system that is solvable iff z € S, i.e., for which S is a projection of the solution set. O

Remark 3.3. To make this complicated construction more understandable, in
the next section, we will illustrate it on the example of a simple (two-component)
semialgebraic set.
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4. Example

Let us illustrate the above construction on the example of a semialgebraic set S =
S1 U S;, where S; is the interior of the unit circle, and S, is the exterior of the open
circle of radius 2 with a center in 0.

JOE
2

Here, ¢ = 2, §; is described by an inequality P, > 0, where Py (z1,22) = 1 — 2} — 23,
and S is described by an inequality Py(z1,z2) > 0, where Py(z1,72) = 23 + 22 — 4.
We will follow the algorithm described in the proof step - by —step.

1 - 2. On Steps 1 - 2, we introduce the new variables z[P;], z[Ps], z[z?], and
r[x%] , and the equations that follow the sample (3.1). These equations guarantee the
proper relationship between the variables z[P;] that represent the polynomials and the
variables that represent monomials.

3 - 4. On Steps 3 — 4, we add the following:

(a) For the monomial z7, we introduce the new variables z;[zy,z1] and {21, 71],
the new factors fi[z1, 1] and fo[zy, 2] (with [z, 7] = f2[z1, 21] = [~1,1]) and add
equations that follow the samples (3.2) — (3.4). '

(b) For the monomial z3, we introduce the new variables z; [z2, z2] and za[z2, z2),
the new factors fi[z2,z2] and fo[zs, z2] (With fi[z2, 22] = f2[22, 73] = [~1,1]) and add
equations that follow the samples (3.2) — (3.4).

These equations guarantee that the values of the variables z[m] that correspond to
monomials is indeed equal to the value of the monomial m(z,...,z,).

Since the given set S has two components (u > 1), we skip steps 5 — 7 and go straight
to step 9. :

9 — 10. We have two subsets Si here, so, we add two new variables s; and s,. For
each of these variables, we do the following:

(a) We introduce two new factors: f;[s;] and fa[s1] with fi[s1] = f[s1] = [-1, 1),
and add two new equations that follow the samples (3.11) — (3.12).

(b) We introduce two new factors: fi[sy] and fasa] with fi[se] = f[ss] = [-1,1),
and add two new equations that follow the samples (3.11) - (3.12).

These equations guarantee that variables sj are Boolean, i. e., take values only from
the set {0,1}.

Also, we add two new factors f3[s1] and fs[ss], f3[s1] = f2[s2] = [0,1], and a new
equation that follows the samples (3.13). This equation guarantees that at least one
of the variables s; is equal to 1.

11. We must describe two conditional inequalities: “if s; = 1 then P, > 0” and “if_'
sa=1 then P2 2 0.2

11a. The second conditional inequality is easier to describe, so, we will start with it-
We introduce three new variables: z[s; - Py}, z1[P2, s3], and z2[Ps, 55}, two auxiliary
variables fi[P,,s2] € [-1,1] and f5[P2,s2] € [~1,1], and four new equations that
follow the samples (3.14) — (3.17).
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To describe the condition s; - P, > 0, we follow Step 6: add an auxiliary factor
fls2 - P2] with f[sz - P2] = [0,1], and add an equation that follows the sample (3.7).

11b. The first condition is represented (as in 11.3) as a collection of two conditional
inequalities “if s; = 1 then P, > 0” and a conditional inequality “if s; = 1 then
P #07

The first of these conditional inequalities can be represented in the exact same way
as the inequality “if s; = 1 then P, > 0” that we analyzed in 1la: namely, first,
we introduce three new variables: z[s; - P\|, z1[P1, 1], and z2[Py, 51], two auxiliary
variables f1[Pi,s1] € [-1,1] and fo[P1,s:1] € [-1,1], and four new equations that
follow the samples (3.14) — (3.17).

To describe the condition s; - P; > 0, we follow Step 6: add an auxiliary factor
fls1 - P1] with f[s; - P;] = [0,1], and add an equation that follows the sample (3.7).

11.3. To describe the condition “if s; =1 then P, # 0”7, we follow step 11.3:

(a) First, we add three new auxiliary variables :c[Pf], z1[P1, P1], and z3[P, P,
and two new auxiliary factors fi[Py, Pi] and fo[P;, Py] with fi[P,, 1] = [P, P1] =
[~1,1]. These auxiliary factors and variables will only be used in the equations that
describe this relationship; these equations follow the samples (3.18) - (3.20).

(b) Second, we add a new variable z[1 — s; + P7] and a new equation that follows
the sample (3.21).

(c) Third, we introduce two auxiliary variables z; [1—3; +P12] and x5 [1-—31 +P12] and
two factors fi [1—s;+PZ] and fo[1—s; + P?] with fi[1—s;+ PZ] = f[1—s;+ P?] =
[-1,1], and add three new equations that follow the samples (3.22) — (3.24).

Then (as we have shown in the proof of the theorem), the projection 7(X) of the
solution set X of the resulting system of interval linear equations with dependent
coefficients on IR? is the given set S: 7(X) = S.

Acknowledgements

This work was partially supported by NSF Grants No. CDA -9015006 end EEC - 9322370,
by NASA Grants No. NAG 9-757, and NCCW - 0089.

References

[AH] ALEFELD, G., and HERZBERGER, J.: Introduction to Interval Computations, Academic
Press, N.Y., 1983

[AKM95] ALEFELD, G., KREINOVICH, V., and MAYER, G.: The Shape of the Symmetric and Skew -
Symmetric Solution Set, SIAM J. Matrix Anal. Appl. 18 (1997)

[AKM96] ALEFELD, G., KREINOVICH, V., and MAYER, G.: The Shape of the Symmetric Solution
Set, In: R.B. KEARFOTT, V. KREINOVICH (Eds.), Applications of Interval Computations,
Kluwer, Boston, MA, 1996, pp. 61-80

[AM] ALEFELD, G., and Mayer, G.: On the Symmetric and Unsymmetric Solution Set of Interval
Systems, SIAM J. Matrix Anal. Appl. 16 (1995)
[A] ARrNOLD, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations,

Springer - Verlag, N.Y., 1983
[Ba) BARrMISH, B. R.: New Tools for Robustness of Linear Systems, McMillan, N. Y., 1994



36

Math. Nachr. 192 (1993)

[Be] Beeck, H.: Uber Struktur und Abschitzungen der Lésungsmenge von linearen Gle-
ichungssystemen mit Intervallkoeffizienten, Computing 10 (1972)

(H] HARTFIEL, D. J.: Concerning the Solution Set of Az =bwhere P< A< Qandp<b<yg,
Numer. Math. 35 (1980)

[J] Jansson, C.: Interval Linear Systems with Symmetric Matrices, Skew —Symmetric Matri-
ces and Dependencies in the Right — Hand Side, Computing 46 (1991)

[KK] KearroTT, R.B., and KrEINOVICH, V. (Eds.), Applications of Interval Computations,
Kluwer, Boston, MA, 1996

[K] KreNnovicH, V. (Ed.), Applications of Interval Computations, Extended Abstracts of
APIC’95: International Workshop on Applications of Interval Computations, El Paso,
TX, Febr. 23-25, 1995, A Supplement to the Int’l Journal Reliable Computing, 1995

[KLN] KREINOVICH, V., LAKEYEV, A. V., and Noskov, S.1.: Optimal Solution of Interval Linear
Systems Is Intractable (NP -Hard), Interval Computations No. 1 (1993)

[N] NEUMAIER, A.: Interval Methods for Systems of Equations, Cambridge University Press,
Cambridge, 1990

[OP] OEetTLI, W., and PRAGER, W.: Compatibility of Approximate Solution of Linear Equations
with Given Error Bounds for Coefficients and Right - Hand Sides, Numer. Math. 6 (1964)

[R] RoOHN, J.: Interval Linear Systems, Freiburger Intervall - Berichte 84 /7 (1984)

[S] SEIDENBERG, A.: A New Decision Method for Elementary Algebra, Annals of Math. 60
(1954)

[T] TARSKI, A.: A Decision Method for Elementary Algebra and Geometry, 2nd ed., Berkeley
and Los Angeles, 1951

Institut fiir Angewandte Mathematik Department of Computer Science

Universitat Karlsruhe The University of Tezas at El Paso

D-76128 Kearlsruhe El Paso, TX 79968

Germany USA

e—-mail: e-mail:

goetz.alefeld@mathematik.uni — karlsruhe.de

Fachbereich Mathematik

Universitat Rostock,

D —-18051 Rostock

Germany

e—mail:

guenter.mayer@mathematik.uni - rostock.de

vladik@cs.utep.edu



