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Abstract. A standard system of interval linear equations is defined by Ax = b, where A is
an m x n eoeffieientmatrix with (compact) intervals as entries, and b is an m - dimensional veetor
whose eomponents are eompaet intervals. It is known that for systems of intervallinear equations the
solution set, i. e., the set of all veetors x for whieh Ax = b for some A E A and bEb, is a polyhedron.

In some eases, it makes sense to eonsider not all possible A E A and bEb, but only those A and b
that satisfy eertain linear eonditions deseribing dependeneies between the eoefficients. For example,

if we allow only symmetrie matrices A (aij = aji)' then the corresponding solution set beeomes (in
general) pieeewise - quadratie.

In this paper, we show that for general dependeneies, we ean have arbitrary (semi)algebraie sets as

projeetions of solution sets.

1. Informal Introduction

Many real-life problems require solution of the systems of linear equations Ax =b,
or

n

L aij x j = bi,
j=l

where the coefficients aij and bi'are known, and the values Xi have to be determined.
In applications, the values of the physical quantities that are denoted by these co-

efficients aij and bi come from measurement and are, therefore, only approximately
known. For each of these quantities c, the only information that we usually have after
the measurement is that the difference ßc = c-c between the actual (unknown) value
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c and the measured value c cannot exceed the bound L1(c) guaranteed by the man-
ufacturer of the corresponding measuring instrument. In other words, we know that
the actual value c belongs to the interval c = [c- L1(c),c + L1(c)]. In such situations,
we arrive at the following problem:

We know: the intervals aij and bi for the coefficients.

We want to find: the solution set, i. e., the set of all the vectors x = (Xl,"" Xn) for ..

whieh L j aij x j = bi for some aij E aij and bi E bi.

In many applications, we are interested only in some of the variables (Xl"'" Xn).
In this case, in mathematical terms, we are interested in the projection of the solution
set on a subspace formed by the desired variables.

This problem is usually described as the problem of solving the system of interval

linear equations l:j aijXj = bi, or Ax = b, where A and bare a matrix and a veetor
with interval components aij and bi, respectively. For examples of applieations of
these systems, see, e. g., [K, KK].

It is known that the solution set for this system is a polyhedron [OP, Be, H, R, N,
AM, AKM96], and therefore, its projeetion is also a polyhedron.

The abovedescription of a solution set makessense if the measurement errors in all .

coefficients are independent; in other words, if the values of aij and bi are not apriori
related. In real life, sometimes, they are related. For example, in some physically

meaningful situations, we know that the matrix aij is symmetrie (aij = aji [JD. In
this ease, it makes sense to look only for such vectors X for which l: aijXj = bi for.
some bi E bi and for a symmetrie matrix aij E aij. It turns out [AKM96], that the
shape of such symmetrie solution set is not necessarily a polyhedron (i. e., a set with
a piecewise-linear border): in general, it is a set with a piecewise- quadratic border.

A similar shape can be proven for the case when we know that the matrix aij is
skew- symmetrie [J, AKM95]. .

In some applications [J] (especially in control [Ba]), we ean have even more eompli-
cated dependencies between the coefficients. How can we describe these dependencies
in precise mathematical terms? The main reason for this dependency is that the errors
in several different coefficients may be caused by the same factor. Let us denote all the
fadors that influence the coefficients by h,..., Ip. Then, the coefficients aij and bi
depend on these factors: aij = aij (h , . . . , Ip) and bi = bi (h , . . . , Ip). For eachof these
independent factors 10., we know the interval Caof possibIevalues. These factors are
usually small, so, we can negIect quadratic terms in the dependency of the eoefficients
on 10., and thus restrict ourselves to the case when the dependency is linear, i. e., when

aij = a~J)+ l:a aijala and bi = b~O)+ La biala.In this case, we can define a solution
set to be the set of alI possiblevectors X for whichfor some 10.E Ca, L ~j Xj =bi for
the corresponding aij and bi.

As an example, we can consider the following dependency of the coefficients aij,
1 :S i,j :S 2, on the factors 10.:

A =
(

5 2+h

)

.
h+h 7 ,.

..
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where h E [-1,1] and h E [0,1]. This dependency can be described by

2

A = A(O) + LA(O:)fo:,
0:=1

where

A(O) = (a~J»)= (
5 2

)07' A(l) = (<1;jl)= G ~),

A(2) = (a;j2) = (~ ~).

Standard systems of intervallinear equations Ax = b can be viewed as a particular
case of this definition: namely, we can take p = m . n + m, so that each of m x n

coeffieients aij and each of m coeflieients bi are equal to the corresponding f 0:, with
Ja equal to aij or, eorrespondingly,to bio .

Similarly, symmetrie systems of intervallinear equations ean be thus represented, if
we take factors f 0: that correspond to bi and faetors fa that correspond to unordered

pairs (i,j); in this case, p = n(n + 1)/2 + n, and aij and aji are equal to one and the
same factor fa. For example, a general symmetrie interval 2 x 2 matrix

A =
(

all

a21

a12

)a22

with a12 = a21 ean be represented as

A = A(0)+A(1)!I+A(2)h+A(1)h,

where

A (0) = 0, A(l) = (
1 0

)00'
A(2) =

(
0 1

)1 ° '
A(3) = (

0 0

)0 1 '

h E an , h E a12 = a21, h E a22 .

What shapes can the correspondent solution sets and their projections have?

(a) For no dependeneies, we get piecewise -linear shapes.

(b) For the simplest possibledependencies (i.e., for symmetrieor skew- symmetrie
matrices), we get piecewise-quadratic shapes.

(e) It is natural to assume that in the general case of dependencies, we will get
algebraic dependencies of arbitrary order.

In this paper, we prove that this assumption is eorrect. Thus, we get a complete
description of all possible shapes.
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2. Definitions and the main result

Definition 2.1. (i) Let m, n, and p be integers. Ey a system of intervallinear
equations with dependent coefficients,.we mean a tuple

({ a~J) }, { aijo }, { b~O)}, { biO}' { fo } ) ,
l:Si:Sm, l:Sj:Sm, 1 :Sa :Sp,

(0) (0) .
where aij , aijo, bi , and bio are real numbers, and fo are mtervals.

(ii) We say that a vector x = (Xl,".' Xn) is a solution of the system of interval
linear equations with dependent coefficients if for some f 0 E fa, we have

(2.1)

n

L aijXj = bi for all z,
j=l

where

(2.2)

p
- (0) "

aij - aij + ~ aijafo
a=l

and

(2.3)

P

bi = b~O)+ L biofo'
a=l

The set of all solutions of a given system is called its solution set.
(iii) Let I = {iI,..., iq} C {I,..., n}. Ey a projection of the solution set on I, we

mean the setof all vectors (XiI'.'.' Xiq) E JRq that can be extended to a solution
(Xl, . . . ,Xn) of a system.

To describe projections of solution sets in the general case, we need the following
definition (see, e. g., [A]):

Definition 2.2. A set S ~ JRqis called semialgebmic if it is a finite union of subsets,
each of which is defined by a finite system of polynomial equations Pr (Xl, . . . , Xq) = 0
and inequalities of the types Ps(XI,...,Xq) > 0 and Pt(Xl)...,Xq) ~ 0 (for some.
polynomials Pi).

Theorem 2.3. (i) Each projection of the solution set of a system of intervallinear
equations with dependent coefficients is semialgebraic. . .

(ii) Every semialgebmic set can be represented as a projection of the solution set 0/
some system of intervallinear equations with dependent coefficients.

3. Proof

Remark 3.1. To make this proof easier to read, we will emphasize certain important
parts of the prüof. We will use three different types of emphasis:
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(a) The important mini- goals that we are going to achievein the courseof proving
the theorem will be underlined by a single line.

(b) The important methods that we use to achieve these mini- goals will be under-
lined by a double line. .

(c) Finally, the formulations of the important intermediate mini - results (lemmas)
that are proved in the course of proving the theorem, and important displayed formu-
las, will be framed.

Pro 0 f of the first part. The first part of this theorem follows directly from the fa-
mous Tarski-Seidenberg theorem [T, S] (see also [A]), according to which, crudely
speaking, every relation that is obtained from a semialgebraic relation by adding
quantifiers Vx, 3 x (that run over all real numbers x), is still semialgebraic. In
other words, if the set S C JRv of all tuples (Zl"'" zv) that satisfy a certain rela-
tion P(ZI,. . ., zv) is semialgebraic, then the set of all tuples that satisfy the relation
(QlZl)(Q2Z2)... P(Zl," .), where each Qi is a quantifier (Vor 3), is also semialgebraic.

For our problem, a vector (Xil' . . . ,Xiq)E JRq belongs to the projection 7r(S) of the
solution set S iffthere exist real numbers xl,...,xn,fI,...,Jp,{aiJ, and {bi} that
satisfy the algebraic equalities (2.1) - (2.3) and inequalities J;; :SJa :SJ;;, where J;;
denote the bounds of the interval fa (fa = [J;;,J;;]). Formally,

7r(S) = {(Xip""Xiq)EJRq\3xl...3xn3fI ...3Jp:(2.1)-(2.3)hold,

and J;; :S Ja :S J;;} .

Conditions (2.1) - (2.3) are polynomial equalities, and p conditions J;; :S Ja :S J;;,
1 :S a :S p, are polynomial inequalities. Therefore, the set of all tuples

(Xl, . . . ,Xn, fI,. . ., Jp)

that satisfy (2.1) - (2.3) and these inequalities for Ja is a semialgebraic set. Hence,
by Tarski - Seidenberg's theorem, the projection 7r(S) is also a semialgebraic set.

Pro 0 f of the second part. Let us now prove the second part of the theorem, that
every semialgebraic set S ~ JRqcan be represented as a projection of an appropriate
solution set. We will construct the corresponding system of intervallinear equations
with dependent coefficients step - by - step. Initially, we start with the variables Xl,

..., Xq. On each step, we will add new variables, new parameters Ja, and new equa-
tions.

Remark 3.2. Some constructions used in this proof were originally proposed (for
a different purpose) in [KLN].

1. First, we will add the following new variables:
(a) variables x[Ps] that correspond to all the polynomials Ps from the definition of

the semialgebraic set S;
(b) variables x[Ms] that correspond to all non-constant monomials Ms that form

these polynomials;
(c) variables x[m] that correspond to all the monomials that are obtained from

monomials Ms by decreasing the degrees of some (or all) of the variables, and that
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are different from the variables themselves (for monomials m that coincide with one
of the variables Xi, we will take this very variable as correspondingto m, i. e., we will
take X[Xi]= Xi).

For example, for a polynomial P = 2xr + xix~ + 5, we add:
(d) a variable x[P] that corresponds to this polynomial;
(e) variables x[MI] and x[M2] that correspond to the two monomials MI = xf and

M2 = xix~ that form this polynomial, and
(f) variables x[m] that correspond to the monomials xi, XIX~, XiX2' XIX2, and x~.

2. We will form the system of equations in such a way that if the variables x[m]
(including Xi = x[xiD are taken from the solution set of this system, then for each
monomial m, the value of x[m] is equal to the value m(xI" .., Xq) of the monomial m,
and the value of x[P] is equal to the value P(XI"'" Xq) of the polynomial P for the
given Xl, . . . ,Xq. The first equations from the desired interval system are as follows:
for every polynomial Ps = Co+ ClMI + -.. + czMz, we form an equation

(3.1) X[Ps]- clx[MI] - ... - czx[Mz] = Co.

These equations do not depend on any factors Ja at all; they guarantee that if x[Mi] =
Mi(XI,... ,Xq) for all i = 1,... ,z, then x[Ps] = Ps(XI,'" ,Xq).

3. In order to guarantee the proper relationship between the variables that corre-
spond to different monomials (e. g., monomials Xl, X2, and XlX2), we must be sure
that if a m" =m .m', then x[m"] - x[m].x[m']. To be sure in that, we must describe
this relationship in terms of a system of interval linear equations.

Actually, since with every variable x[m], we have variables that correspond to all
monomials of smaller degree, it is sufficient to consider the case when m' = m . Xi.

Indeed, if we can guarantee that for all monomials m, x[m.xiJ = x[m] .x[xd = x[m] 'Xi,
then, starting with the variables themselves, and adding one variable at a time to the
product representing the monomial, we will be able to prove that x[m] = m(xI' . . . ,Xq)
for each monomial m.

lndeed, e. g., for m = xix~, we will be able to prove this property by consequently
considering:

X[XI] = Xl,

x[xn = X[XI' Xl] = x[xd' Xl = xi,

x[xix2] = x[xi. X2] = x[xiJ. X2 = XiX2,

= X[XiX2'X2] = X[XiX2]'X2 = (XIX2)' X2 =x[xi x~]
2 2

XIX2-

4. So, for OUf purpose, it is sufficient to be able, for every pair (m, Xi) con-
sisting of a monomial m and a variable Xi, to describe the relationship x[m . xiJ =-
x[m] . Xi in terms of an appropriate system of intervallinear equations.

To do that, for each such pair, we add two new auxiliary variables Xl[m, xd and

x2[m,xiJ, and two new auxiliary factors h[m,xiJ and h[m,xi] with

fI[m, Xi] = f2[m, Xi] = [-1,1]-

These auxiliary factors and variables will only be used in the following equations that
describe this relationship:
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(3.2) I h [m,Xi] .x[m . Xi] + h[m, Xi] .x[m] = 0, I

(3.3) I h [m,Xi] . Xi = - h[m, Xi], I

(3.4) Ih[m,xi]-xdm,xi]+h[m,xi].x2[m,xi] = 1.1

Let us show that for every three variables Xi, x[m], and x[m . Xi], Ithe equality I
~ I

x[m .Xi] = x[m] .Xi holds iff the system (3.2) - (3.4) has a solution for some

X1[m,Xi], x2[m,xd, h[m,xd E f1[m,Xi], and h[m,Xi] E f2[m,Xi]..

. 4.1. Let us first assurne that x[. . .] and 1[. . .] E f[. ..] satisfy the equations (3.2) -
(3.4), and show that in this case, x[m . Xi] = x[m] . Xi-

Let us first show that h[m,xi] # O. Indeed, if h[m,xi] = 0, then, from (3.3), we
will conclude that h[m, Xi] is also equal to O. Therefore, the left-hand side of (3.4)
is equal to 0, and it cannot be equal to 1. The contradiction shows that h [m,Xi]f o.

Since h[m, Xi]# 0, from equation (3.2), we conclude that

(3.5) h[m, Xi] x[m] ,
x[m . Xi] = - h [m,Xi]

and from (3.3), we conclude that

h[m, Xi]
Xi = - .

h [m,Xi]

Substituting (3.6) into (3.5), we conclude that x[m . Xi] = x[m] . Xi.

4.2. Let us now show that if x[m. xiJ = x[m] . Xi, then there exist values x[ - -.] and
1[. . .] E f[.. .] that satisfy (3.2) ~ (3.4).

To prove this statement, we will consider two possible cases:
(a) If lXii::; 1, we take h[m,xd = 1, h[m,xi] = -Xi, xdm,xi] = 1, and x2[m,xi] =

O. It is easy to see that J[...] E f[...] = [-1,1],and that equations (3.2) - (3.4) are
satisfied.

(b) If lXii> 1, we take h[m,xi] = -I/Xi, h[m,xi] = 1, x1[m,xi] = 0, and
x2[m, Xi] = 1.

5 - 11. Let us now describe how to represent equalities and inequalities that are
used in the definition of a semialgebraic set.

By definition, a semialgebraic set S is a finite union S =S1 u... USu of the sets Sk
that are described by these equalities and inequalities.

5 - 7. The case of u = 1.

(3.6)

5. Let us first consider the simplest case, when this union consists of only one such
set (i. e., when u = 1). In this case, an equality Pr = 0 can be described by adding the
equation x[Pr] = 0 to our system. Let us now show how to represent the inequalities
x[?] ~ 0 and x[P] > O.
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6. To represent the iIlequality xlP] .2: 0, we add an auxiliary factor f(P], and an equa-
tion

(3.7)
I jlP] .xlP] = 1 - j[P] , I

where f[P] = [0,1].Let us showthat I x[P] 2: 0 Hfthis equatio~ !las a solution. I

Indeed, if x[P] 2:0, then we can take j[P] = 1j(1 + x[P]). This value is in [0,1], and
the direct substitution confirmsthat it satisfies the equation.

Viceversa, if the equation is satisfied,and j[P] E [0,1],then j[P] 2:0 and 1- f(P] 2:
o. Let us showthat j[P] > o. Indeed, if j[P] = 0, then from the equation, we would
conclude that 1 - f(P) = 0, i. e., that f(P] = 1 i= O. The contradiction shows that
f(P] > O.Hence,from the equation, we concludethat x[P]= (1 - f(PDj j[P] 2: O.

7. We will represent strict inequality x[P] > 0 as a system consistingof the above-
described representation of an inequality x[P] 2: 0, and another system that represents

x[P] f: O.
To represent the relation x[P] i 0, we will introduce two auxiliary variables Xl [P]

and X2[P] and two factors !I[P] and h[P] with rdP] = r2[p] = [-1,1], and add three

new equations:

(3.8)
I !I[P], x[P] = h[P],I

(3.9) 1!I[P].xdP] = 1,1

(3.10)
I h[P] . X2[P] = 1.1

Let us show that x[P] f: 0 iff this system has a solution.

7.1. Let us assurne that x[P] f: O. To show that a solution exists, we will consider
two possible cases:

(a) If Ix[P]! S 1, x[P] i=0, then we can take !I[P] = 1, h[P] = x[P],Xl[P]= 1,
X2[P]= 1j(x[P]).

(b) If Ix[P]1> 1, then we can take !I[P] = 1j(x[P]), h[P] = 1, Xl[P]= x[P], and
X2[P]= 1.

7.2. Let us now assurne that the system (3.8) - (3.10) has a solution. Then, frorn.
(3.9), we conclude that !I[P] i= 0; from (3.10), that h[P] f: 0; and therefore, frorn
(3.8),that x[P]= - h[P]j !I[P] f: O.

Conclusion for u = 1. Since we are now able to represent equalities and inequalities iu
tenns of linear interval equations with dependent coefficients, we have thus concluded
the proof of the second part of the theorem for the case when the semialgebraic set
consists of only one component.
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8 - 11. The case u ~ 2.
8. Let us now consider the case when the given semialgebraic set S is a union of

finitelymany sets S =SI U.. ,uSu, u ~ 2, andeach of the sets SI,. .., Su is described
by a system of polynomial equalities and inequalities- In this case, a vector x =
(Xl' -' - ,Xq) E JRq belongs to S iff for one of these sets, it satisfies the corresponding
equalities and inequalities.

To describe the condition x E S in terms of intervallinear systems, we will do the
following:

(a) First, we will introduce u new variables SI, .. -, Su, and add interval linear
equations that will guarantee that the values of each of these variables will be 0 or 1
(Sk = 1 will mean that thesolution vector x belongs to Sk, and Sk = 0 willmean that
it does not).

(b) Second, we will add intervallinear equations whose solvability is equivalent to
the fact that at least one of these variables SI, . - . , Su be equal to 1 (this means that it
is X belongs to one of the sets SI, . - . ,Su, and thus, that it belongs to their union S).

(c) Third, for each of the sets Sk, for every of the conditions Pr(XI, .. ., Xq) = 0,
Ps(XI ,. . - ,Xq) ~ 0, Pt(Xl" .., Xq) > 0 that define this set Sk, we will add new interval
linear equations that represent the corresponding conditional statements:

(d) "if Sk = 1, then Pr = 0";
(e) "if Sk = 1, then Ps ~ 0";

(f) "if Sk = 1,then Pr > 0".
Then, if x is a solution of the resulting system of equations, we will have one of the
variables Sk equal to 1, and for this variable Sk, all equalities and inequalities that
define Sk will be satisfied. Thus, we will have x E Sk and therefore, x E S = Uk Sk-

Vice versa, if X E S, then x E Sk for some k, so, for Sk = 1, we will have a solution
of the combined intervallinear equation system.

9. Let us first describe how to ensure that a variable Sk only takes the values 0 or 1
(i.e., in computer terms, that it is a Boolean variable).

To ensure that, for €ach k = 1,..., u, we will introduce two new factors: h[Sk] and

!2[Sk] with fI[Sk] = f2[Sk] = [-1,1],and add two new equations:

(3.11) 12h[Sk] . Sk = 1 + h[Sk] , I

12sk = 1 + h[Sk] .1(3.12)

Let us show that Sk E {O,I} iff this system has a solution.

9.1. If Sk = 0, then we can take h[Sk] = h[Sk] - -1. If Sk = 1, then we can take
fI[Sk]= h[Sk]= 1.

9.2. Vice versa, if equations (3.11) - (3.12) are satisfied, then for z = 2sk - 1,
from (3.12), we conclude that Izl = Ih[SkJl ::; 1, and from (3.11), we conclude that
z. h [Sk] = 1, and therefore, Izl ~ l/lh[Sk]1 ~ 1. Hence, Izl ::; 1 and Izl ~ 1, so,
Izl = 1, and z = :f::l. From 2sk - 1 = :f::l,we conclude that Sk = 0 or Sk = 1.

10. Let us now express the fact that at least one of the given u Boolean variables
SI, . . . , Su must take the value 1.
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To express it, we need u new factors h[sk], 1 ~ k ~ u, with f3[Sk]==[-1,1], and a

new equation

(3.13) h[sl] . SI + ." + h[su] . Su = 1.

Let us show that for Boolean variables Sk, this equation issatisfiable Hf one, of the
Boolean variables is different from 0.

fudeed, if this equation is satisfied, then all variables Sk cannot be equal to 0, because
then, the left - hand side of this equation would be also equal to 0, and not to 1. Vice
versa, if, e. g., Sk = 1, we can satisfy the equation by taking h[Sk] == 1 and h[sd =0
for 1 =1= k.

11. Let us now describe how conditional statements "if Sk = 1, then ..." described
in Part 8 of the proof can be represented in terms of intervalliIiear equations.

11.1. The conditional statement "if Sk = 1, then P = 0" will be represented as
Sk . P == o.

fudeed, if Sk = 0, then this equality is always true, and if Sk = 1, then it is exactly
P=O. .

The expression Sk . P is a polynomial in terms of the variables Sk and Xi, and
we already know how to represent (unconditional) polynomial equations in terms of
systems of intervallinear equations.

For example, we can follow the construction from Part 4 of this proof: Namely, we
introduce the new variable X[Sk. P] with the property that X[Sk,P] = Sk . x[P], and
add the equation X[Sk . P] = o.

For that purpose, we add two auxiliary variables Xl [P, Sk] and X2[P, skI, two auxiliary
variables fl[P, skI E [-1,1] and h[P, skI E [-1,1], and four new equations (these
equations are similar to (3.2) - (3.4)):

(3.14) h[P,Sk]'X[Sk,P]+h[P,Sk].Sk = 0,

(3.15)

(3.16)

(3.17)

h[P,Sk] .x[P] == -h[P,Sk],

h[P, Sk]' XI[P, Sk]+ h[P, Sk]. X2[P,Sk] = 1,

X[P,Sk] = 0.

11.2. The conditional statement "if Sk = 1, then P 2: 0" will be represented as
Sk . P 2: 0.

lndeed, if Sk ==0, then Sk . P = ° 2: 0, so, this inequality is always true; if Sk == 1,
then this inequality is exactly P 2: 0.

We already know (see Part 6) how to represent inequalities of the type X[Sk . P] 20
in terms of systems of intervallinear equations.

11.3. Similarly to Part 7 of the proof, we will represent the conditional strict inequal-
ity "if Sk = 1 then P> 0" as a combination of a conditional non-strict inequality "if
Sk = 1 then P 2: 0", and an auxiliary conditional inequality "if Sk = 1 then P =1=0." .

To represent an auxiliary conditional inequality in terms of an system of interval
linear equations, we will first reformulate as an equivalent unconditional inequality:
namely, an inequality 1- Sk+ p2 =1=0.
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Indeed, if Sk = 1, then this inequality turns into P ::f o. If Sk = 0, then 1- Sk+ p2 =
1 + p2 ::f 0 for all values of P, so this condition does not impose any restrictions on
the value of P.

The left - hand side of this equivalent inequality is a polynomial in Sk and Xi1so, we
know how to describe a variable x[. . . J that is equal to the value of this polynomial.
Another possibility is as folIows:

(a) first, we describe a new variable x[p2] for p2, by using a construction similar
to the one used in Part 4;

(b) second, we describe a new variable x [1 - Sk + p2) by using a construction from
Part 2; and

(c) third, we describe the condition x [1- Sk + P2) ::f 0 as in Part 7.
In other words, first, we add three new auxiliary variables X[p2], Xl[P, P], and
X2[P,P], and two new auxiliary factors h[P, P] and h[P,P] with fl[P,P] = f2[P,P] =
[-1,1]. These auxiliary factors and variables will only be used in the following equa-
tions that describe this relationship (these equations are similar to (3.2) - (3.-4»:

(3.18) h[P,P] .X[p2) + h[P,P] .x[P] = 0,

(3.19) h[P,P] .x[P] = - h[P,P],

(3.20) h[P,P], xdP,P] + h[P,P]' X2[P,P] = 1.

Second, we add a new variable x[l- Sk + p2] anda new equation (this equation is
similar to (2.2)):

(3.21) x[l- Sk + p2] + Sk - X [p2] = 1.

Third, we introduce two auxiliary variables Xl [1- Sk + p2] and X2[1- Sk+ p2] and
two fadors h [1-sk+P2] and h [1-Sk +p2] with fl [1-sk+P2] =f2[1-sk+P2) =
[-1,1],and add three new equations (these equations are similar to (3.8) - (3.10)):

(3.22) h[I-Sk+P2),x[1-Sk+p2) = h[l-sk+P2J,

(3.23) h[l-sk+P2] .xI(l-sk+P2) = 1,

(3.24) h[l-sk+P2] ,x2[1-sk+P2] = 1.

We have shown how to describe all conditions in terms of systems of interval linear
equations. By combining all these systems of intervallinear equations, we get a large
system that is solvable iff xE S, i. e., for which S is a projection of the solution set. 0

Remark 3.3. To make this complicated construction more understandable, in
the next section, we will illustrate it on the example of a simple (two-component)
semialgebraic set.
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4. Example

Let us illustrate the above construction on the example of a semialgebraic set S ==

81 U 82, where 81 is the interior of the unit circle, and 82 is the exterior of the open
drele of radius 2 with a center in 0.

S2@S2

Here, q = 2, 81 is described by an inequality PI > 0, where PI (Xl, X2) = 1- xi - x~,
and 82 is described by an inequality P2(XI,X2) ~ 0, whereP2(XI,X2)= xi + x~ - 4.
We will followthe algorithm described in the proof step - by- step.

1 - 2. On Steps 1 - 2, we introduce the new variables x[Pd, x[P2], x[xiJ, and
x[x~], and the equations that follow the sampie (3.1). These equations guarantee the
proper relationship between the variables x[Pd that represent the polynomials and the
variables that represent monomials.

3 - 4. On Steps 3 - 4, we add the following:
(a) For the monomial xi, we introduce the new variables Xl[Xl,xd and X2[Xl,Xl],

the new fadors h[Xl,xd and 12[Xl,Xl] (with fI[Xl,xd = f2[Xl,xd = [-1,1]) and add
equations that followthe sampies (3.2) - (3.4).

(b) For the monomial x~, we introduce the new variables XI[X2'X2] and X2[X2,X2],
the new factors h[X2,X2] and 12[x2,x2] (with fI[X2,X2] = f2[X2,X2]= [-1,1]) and add
equations that follow the sampies (3.2) - (3.4). .

These equations guarantee that the values of the variables x[m] that correspond to
monomials is indeed equal to the value of the monomial m(xl,'.., Xq).

Since the given set S has two components (u > 1), we skip steps 5 -7 and go straight
to step 9. .

9 - 10. We have two subsets Sk here, so, we add two new variables SI and S2. For
each of these variables, we do the following:

(a) We introduce two new factors: !1[sd and 12[sl] with fl[SI] = f2[SI] = [-1,1],
and add two new equations that follow the sampies (3.11) -:-(3.12).

(b) We introduce two new factors: h[S2] and 12[s2] with fl[S2] = fds2] = [-1,1],
and add two new equations that follow the sampies (3.11) - (3.12).

These equations guarantee that variables Sk are Boolean, i. e., take values only from
the set {O,I}.

Also, we add two new factors h[SIJ and h[s2), f3[SI) = f2[S2]= [O,lJ, and a new
equation that follows the sampies (3.13). This equation guarantees that at least one
of the variables Sk is equal to 1.

11. We must describe two conditional inequalities: "if SI = 1 then PI > 0" and "if
S2 = 1 then P2 ~ 0."

lla. The second conditional inequality is easier to describe, so, we will start with it.
We introduce three new variables: X[S2. P2], Xl[P2,82], and X2[P2,82J, two auxiliary
variables h[P2,S2] E [-1,1] and 12[P2,s2) E [-1,1], and four new equations that
follow the sampies (3.14) - (3.17).
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To describe the condition S2 . P2 2:: 0, we follow Step 6: add an auxiliary factor
J[S2 . P2] with f[S2 . P2] = [0,1], and add an equation that followsthe sampie (3.7).

llb. The first condition is represented (as iIi 11.3) as a collection of two conditional
inequalities "if SI = 1 then PI 2:: 0" and a conditional inequality "if SI = 1 then
PI =1=0."

The first of these conditional inequalities can be represented in the exact same way
as the inequality "if S2 = 1 then P2 2::0" that we analyzed in Ha: namely, first,
we introduce three new variables: X[Sl . Pd, X1[P1,Sl], and X2[P1,SI], two auxiliary
variables !I[P1,Sl] E [-1,1] and h[P1,Sl] E [-1,1], and four new equations that
followthe sampies (3.14) - (3.17).

To describe the condition SI . PI 2::0, we follow Step 6: add an auxiliary factor
l[sl . Pd with f[Sl . PI] = [0,1], and add an equation that follows the sampie (3.7).

11.3. To describe the condition "if SI = 1 then PI =1=0", we follow step 11.3:

(a) First, we add three new auxiliary variables x[Pl], xdPl,P1], and X2[P1,P1],
and two new auxiliary factors !I[P1,P1] and h[P1,P1] with f1[P1,P1] = f2[Pl,Pd =
[-1,1]. These auxiliary factors and variables will only be used in the equations that
describe this relationship; these equations followthe sampies (3.18) - (3.20).

(b) Second, we add a new variable x [1 - SI + Pl] and a new equation that follows
the sampie (3.21).

(c) Third, we introduce two auxiliary variables Xl [1- SI + Pl] and X2[1- SI+ PlJ and
two factors!I [I-SI +pl] and h [I-SI +pl] with fdI-s1 +pl] =f2[I-SI +pl] =
[-1,1],and add three new equations that followthe sampies (3.22) - (3.24).

Then (as we have shown in the proof of the theorem), the projection 1r(X) of the
solution set X of the resulting system of interval linear equations with dependent
coefficients on m? is the given set S: 7r(X) =S.
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