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Abstract

This article gives a short introduction to interval analysis and its possible applications. Furthermore an
overview on existing programming languages for interval arithmetic is given. cg 1998 Elsevier Science Ltd. All rights
reserved.

1. Introduction

In this paper we give abasie introduction to the
principles of interval arithmetic and its applications.
The paper is written for readers who have no prelimi-
nary knowledge of interval arithmetic. Therefore after
introducing some notation in Seetion 2 we introduce
the arithmetic for intervals in Section 3 and discuss its

most important properties. In Section 4 we discuss in
a certain depth the problem of range inclusion of a
real function defined on a set which contains an inter-

val. The next Section 5 repeats one of the most import-
ant applications of interval arithmetic, namely the
inclusion of solutions of real equations. Finally, in
Section 6 an overview of existing programming
languages in which interval arithmetic is realized is
presented.

Meanwhile there exists a whole bunch of interesting
and important applications. Areader who is interested
in more information or details should consult the

corresponding literature. Two references which contain
the state of the art are the following.

Ref. [1].
Ref. [2].
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2. Notation

The set of reals is denoted by IR, its elements by
a, b, c, For closed bounded intervals contained in
IRwe write the notation [al,= [Q;a]= {x EIRIQ~ x ~ a.
The meaning of jUx]) for areal function f is explained
in the next section.

3. Real interval arithmetic and basic properties

In the set IRof real numbers we consider closed and
bounded intervals

[a}=[Q;i1]= (x E 1R1~~%~iji).

The set of all such intervals is denoted by ffl. Real
numbers a can be considered as special elements of ffl
with [al = [a;a].We simply write a in this case.

If "*,, denotes one of the four operations +, -, x, /
for real numbers then the corresponding operations for
two elements [al and [b]from ffl are defined by

[a]*[b] = (a*bla E [al, b E [b]).

In the case of division 0 rf=[b] is assumed. Since the
function f{a,b) = a*b, a E [al, bE [b], * E\{ +, -, x, /}
is continuous, [a]*[b] is contained in ffl. A simple
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Example 1. Letdiscussion gives the foIlowing rules for the four oper-
ations:

[a]+ [b]= [g+ Q;Zi+ b], [a]- [b]= [g - b;a - Q],

[a]x [b]= [min{ab,gb,ZiQ,Zib];max{ab,g,ZiQ,Zib}],

[a]/[b]= [g;Zi]x [~;~l

As for real numbers the multiplication sign " x " is
usually replaced by " . " or even omitted.

The multiplication of two intervals can be reduced
to the multiplication of two real numbers in the case in
which not simultaneously 0 E [a]and 0 E [b].Otherwise
always four real multiplications have to be performed
in the preceding formula for the multiplication.
Recently Heindl [3] has shown, how to reduce this
number to three multiplications.

Besides of these four basic operations we consider
so-caIled unary operations in IIR: Let r be areal con-
tinuous function defined on IR(or a subset of IR).Then
für [a]contained in the domain of r we define

r([a]) = {r(a)[a E [a]} E IIR.

Examples are the elementary functions like sqr, sqrt,
sine, eosine, exp, log, tan, ....

With the help of the four elementary operations
for intervals and the preceding definition of r([a]) we
are in the position to define for a real-valued function
f(a, b, ..., u, v) the so-called interval arithmetic evalu-

ation of fby f([a], [b], ..., [u], [v]).
For interval arithmetic evaluations the following for

applications important rules hold:

(I) If [a]<;;[5], [b]<;;[6], ..., [u]<;;[u], [v]<;;[17]then

f([a],[b],... ,[u],[v]) ~f([a],[b],... ,[ü],[V)).

This property is called inc/usion monotonicity.

(2) If a E [al, bE [b], ..., UE [u], VE [v] then

f(a,b,... ,u,v) Ef([a],[b],... ,[u],[v]).

This property is a special case of the preceding one
and is called inclusion property. It means that the
interval arithmetic evaluation f([a], [b], ..., [u], [v])
always contains the range R(j; [al, [b], ..., [u], [v]) of
the real function f defined on the Cartesian product
[al x [b]x ... x [u]x [v]:

R(f;[a],[b],... ,[u],[v])= {f(a,b,... ,u,v)laE [a],bE [b],

...,U E [u],vE [v]}~f([a],[b],... ,[u],[v]).

This is the property which makes interval arithmetic so
important in applications.

Proofs of (1) and (2) follow immediately from the
definition of the four basic operations and of r([a]).

x
f(x)=I-x' x=l-I

and

[x]= [2;3].

Then

R(f;[x])= [ - 2;- n,

[x] - [2;3] = [-3; - I]
f([x]) = I - [x]- 1-[2;3]

and therefore

R(f;[x]) cf([x])

as predicted by the preceding considerations.
For x =F-0 we can rewrite fex) as

x I
f(x)=-=-, x =1-0.

I-x I/x-l

For the interval arithmetic evaluation over [2; 3] we
obtain

I

j([x]) = 1/[2;3]- I [- 2; - n = R(f;[x]).D

This example shows that the overestimation of the
range of a given function by the interval arithmetic
expression is strongly dependent on the arithmetic
expression which is used for the interval arithmetic
evaluation of the given function. The reason for this
is based on the fact that interval arithmetic does not
follow the same rules as the arithmetic for real num-
bers. We lista couple of exceptions:

(I) For [x], [y], [z]E ffl we have

[x]([y]+ [z))~ [x][y]+ [x][z].

This property is called subdistributivity.
However, for xEIRit always holds

x([y] + [z)) = x[y] +x[z].

(2) For [x]Effl, we have [x]- [x]=F-0 if [x] is a
proper interval.

(3) For [x] E ffl, 0 rt [x], we have [xl/lx] =F-I if [x] is a
proper interval.

The distance of two intervals [x] = ~,x] and

[y] = [~,y] is defined as the real number

q([x],[y))'=max{l~ - ~I,[x - yl).

The absolute value of an interval [x] = ~,x] is defined
as the distance of [x] from 0:

l[x]l'=q([x],O) = max{l~[J\'I).
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Henee

I[x]I = max{lxllx E [x]},

q([x] + [y],[x] +[z]) = q([y],[z]),

q(x[y],x[z]) = Ixlq([y],[z]), x E ~,

q([x][ y],[x][z])::s; l[x]lq([y],[z]),

l[x]:t[Y]I::s;I[x]1+ I[Y]I, l[x][y]1= l[x]lI[y]l.

The diameter (or width) of an interval [x] = ~,x] is
defined as

w([x])= x - df.

The following mies hold:

w([x]:t[y]) = w([x]) + w([y]),

w(x[y])= Ixlw([y]), x E ~,

w([x][ y])::s;w([x])lyl + Ixlw([ y]),

w([x][ y]) 2 max{l[x]lw([ y]),w([xDl[ yJl}.

4. Range incIusion

In Example I we have seen that the overestimation
of the range of a real functi~n by the interval arith-
metie evaluation is dependent on the arithmetie
expression which is used for the interval arithmetic
evaluation. Moore [4] has shown that under reasonable
assumptions the following inequality holds for the
distaneebetweenR(/; [x])and jUx]):

q(R(f;[x]),f([x]))::s;1'w([x]), 1'20,

where [x] is contained in some fixed interval [xf. This
inequality mea~s that the overestimationof R(/; [x])
by jUx]) goes linearly to zero with the diameter
of [x]. (This estimation analogously holds for the
interval arithmetic evaluation of functions of several
variables.)

Example 2. Let

fex) = x - X2, XE [x]O = [0;1]

and

[
I I

]
I

[x] = --r- + r O<r<-
2 '2 ' - -2'

A simple discussion gives

R(f;[x]) =[~-,1. ~]4 '4'

For the interval arithmetic evaluation we obtain

f([x]) = [~-r;i+r] - U-r;~+r][~-r;~+r]

= [~- 2r- ,1;~+2r-,1].

5

q(R( f;[x])J ([x]))

=max{ I ~ - 2r - r2 - ~ + r21 ' I ~ + 2r- r2 - ~ J}

= max{2r,2r-,1} = 2r = 1'w([x]),l' = I,

as predicted by Moores result. 0
The second part of Example I rises the question

whether it is possible to rearrange the variables of the
given function in such a manner that the interval arith-
metie evaluation gives higher than linear eonvergence
to the range of values. The answer is "yes". Before we
state the general result we eonsider again an example.

Example 3. The function fex) = x - X2, XE [0; I]
from Example 2 can be written as

f(X)=X-X2=~- (x-D(x-D, xE[O;I].

Plugging in intervals we get for the interval arithmetic
evaluation

j([X])=~- (U-r;~+r] -D(U-r;~+r]-D

= [~-,1.~+,1]4 '4 .

Therefore we obtain

q(R(f;[x])J([x]))

=max{I~-,1- (~-,1)I,I~- (~+r2)1} =,1
I 2

=4(w([x])) ,

which means that the distance goes quadratically to
zero with w([x]).0

The general result is as folIows:
Theorem 1. (The centeredform)

Let the function f:~--+~ be represented in the so-cal/ed
centeredform

fex) = fez)+ (x - z). hex)

for some z E [x]. ifh(x) has an interval arithmetic evalu-
ation h([x]) then (under weak conditions on the arith-
metic evaluation h([x]))for f([x]) defined by

f([x]),=f(z) + ([x]- z). h([x])

it holds that

(a) R(f;[x]) ~ f ([x])

and

(b) q(R(f;[x]);f([x])) ::s;y(w([x])i.o

The property (b) is called quadratic approximation
property of the centered form. The eentered form was
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Consider now the functionintroduced by Moore in [4] where he conjectured
that the quadratic approximation property holds. The
conjecture was proved by Hansen in [5].

The question whether for a given (rational) function
there exists a representation j such that

q(R(f;[x]),j([x])) ~y(w([x]))m, y~O

with m > 2 is open. Up to now such representations are
only known under special assumptions.

5. Solution inclusion for real systems

We start with a single equation in one unknown.
We assurne that the real function

f:[x] C D c [R~[R

is differentiable in D and that the derivative f'(x) has
an interval arithmetic evaluation f'([x]) which does not
contain zero. Assurne that f has a zero x* in [x]. Then
by the mean value theorem we have for an arbitrary
x E [x]and for some ~ between x and x*

fex) - f(x*) =fex) = f'(~)(x - x*)

and therefore

* - fex) fex)
x - x - f'(~) E x - f'([x])'

Hence

*
{

f (x)

}x E x - f'([x]) n [x].

Defining[x]o,=[x]and denoting by m([x])an arbitrary
point contained in [x] then by repeating the preceding
steps we arrive at the following iteration method for
repeated inclusion of x*:

k+l

{
(

k
)

f(m([4»

}
[ ]

k k 0 1 2[x] = m [x] - k n x, =", . . . .
- f'([x])

This method is called Interval-Newton-Method. If

0 ~f([x]o) this method is weil defined, it holds
that x* E [xt and limk-=[xt,=x*. Furthermore the
sequence {w([xt)h~o is under certain assumptions
quadratically convergent to zero. Proofs and a whole
bunch of other methods for enclosing zeroes of areal
function can be found in [6].

The function

fex)

N([x])'=x - f'([x]) x E [x]E JIR

is called the Interval-Newton-Operator. It possesses a
couple of interesting properties, which we obtain as
special cases from the following discussion.

f:[x] C D ~ [RR~[R.

where [x] is a so-called interval vector. This is a vector
whose components are compact real intervals. Assurne
that the partial derivatives of fexist in D and are
continuous. Let f([x]) denote the interval arithmetic
evaluation of the Jacobi matrix fex). The matrix f([x])
contains intervals as elements and is called an interval
matrix. Then analogously to the case n = I we define
the lnterval-Newton-Operator by

N([x]) = x - IGA(f'([x]),J(x», x E [x].

Here IGA(f'([x]), fix»~ is an interval vector which
is obtained by formally applying the formulas of
the Gaussian algorithm to the interval matrix
f'([x]) and to the right hand side fix). (interval arith-
metic Gaussian algorithm). For more details see
Ref. [7].

The operator N([x]) has the following interesting
properties.

Theorem 2. Let f:D ~ [Rn-> [Rn be a continuously
differentiablefunction.
Let the interval arithmetic evaluation f'([x]) exist for
some [x]~ D. Let x E [x] and assume that IGA(f'([x]),
fex»~exists. Then the following hold:

(1) 1f f has a (necessarily unique) zero x* in [x]
then

x* E N([x]).

(2) 1f

N([x])n [x]=.f2f (empty set)

then f has no zero x* in [x].
(3) 1f

N([x]) ~ [x],

then f has a unique zero in [x].
A proof of Theorem 2 can be found in [7].
The property (2) allows to prove that a given inter-

val vector [x] contains no zero whereas (3) proves the
existence of a zero in [x].

If [x] contains a zero x* in [x] then analogously
to the case n = 1 we consider the Interval-Newton-

Method for repeated inclusion of the zero:

[X]k+!= {m([xt) -lGA(f'([x]k),J(m([x]k»») n [x]k,

k = 0,1,2,....

In contrast to the case n = I this method is in

general not convergent to x* (provided it is weil
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defined at all). However, we always have x* E [xt
under the assumptions of Theorem 2. Conditions for
limk~oo[xt = x* in the case n> I can be found in [7].

6. Languages for interval computation

In the preceding sections we have seen that inclusion
monotonicity of interval arithmetic is of fundamental
importance for interval arithmetic. If some algorithm
- like the Interval-Newton-Method - is performed
on a computer then inclusion monotonicity has to
hold also on the computer. Otherwise it cannot be
guaranteed that the final result on the computer really
includes the unknown solution.

In this section we shortly report on aseries of exist-
ing programming languages and implementations for
performing interval arithmetic.

Interval arithmetic has been implemented in hard-
ware, in firmware and in software on many different
platforms and is supported by powerful programming
languages.

The XSC (extended scientific computation) library
provides powerful tools necessary for achieving high
accuracy and reliability. It provides a large number of
predefined numerical data types and operations to deal
with uncertain data.

6.1. PASCAL-XSC [8,9J

It is a general purpose programming language. It
provides special support for the implementation of
numerical algorithms with mathematically verified
results. ,

Compared with PASCAL, PASCAL-X SC provides
an extended set of mathematical functions that are

available for the types real, complex, interval and
cinterval (complex interval) and delivers a result of
maximum accuracy. Routines for solving numerical
problems have been implemented in PASCAL-XSC.
These routines compute an accurate enclosureof the
solution and prove the existence and the uniqueness of
the solution in the given interval.

PASCAL-XSC systems are available for personal
computers, workstations, mainframes and super-
computers.

7

Example 4. (This can also be found in Ref. [10]).
lnterva/-Newton-Method in PASCAL-XSC.

Functionf{x)=.JX+(x + l)cos x.

programm inewt (input, output);
use

i_ari; {Üri: interval arithmetic}
var

x, iy: interval;
functionf{r: real): interval;
var

x: interval;
begin

x := r; {Converts r to type interval. }
f:= sqrt(x) + (x + l)*cos(x)

end;
function der (x: interval): interval;
begin

der:= If(2*sqrt(x» + cos(x) - (x + l)*sin(x)
end;

{The interval notation for 1/0 in PASCAL-XSC
is [inf, sup]}

{mid(x) is the midpoint of the interval x}
function criter (x: interval): boolean;
begin

criter := (sup(f{inf(x»*f{sup(x») < 0) and not
(0 inder(x»;

,end;
begin

read(y);
whiIe inf(y) < > sup(y) do
begin

if criter(y) then
repeat

x:=y;
writeln(x);
y:= (mid(x)- f{mid(x»/der(x»**x;

until x = y
else

writeln("Criterion is not satisfied!");
writeln;
read(y);

end;
end.

The results with the starting interval [6,9] are:

[ ~E+~ 3M+~
[ 2.0E+ 000, 2.3E+ 000]
[ 2.05E+ 000, 2.07E + 000]
[ 2.05903E+ 000, 2.05906E+ 000]
[ 2.059045253413E+ 000, 2.059045253417E + 000]
[2.059045253415143E + 000, 2.059045253415145E + 000] 0
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6.2. C-XSC [UJ

It is a programming environment for verified scienti-
fic computing and numerical data processing and is a
tool for the development of numerical algorithms deli-
vering accurate and automatically verified results. C-
XSC allows highlevel programming of numerical appli-
cations in C and C + + .

C-XSC provides the basic numerical data types real,
interval, complex and cinterval with the corresponding
arithmetic operators, relational operators and math-
ematical standard functions. Additionally the standard
functions for the types interval and cinterval enclose
the range of values in tight bounds, that means it sup-
ports the programming of algorithms which automati-
cally enclose the solution of a given mathematical
problem in verified bounds.

6.3. ACRITH-XSC [12J

It is an extension of FORTRAN 77. It was devel-
oped in a joint project between IBMjGermany and the
Institute of Applied Mathematics of the University of
Karlsruhe (Professor Kulisch). It can be used unfortu-
nately only on machines with IBBj370-architecture
that operates under the VMCMS operating system.

It is a FORTRAN-like programming library. Its fea-
tures are dynamic arrays, subarrays, interval and vec-
tor arithmetic and problem solving routines for
mathematical problems with verified results.

6.4. FORTRAN-XSC [13J

This language consists of a number of FORTRAN
90 modules providing accurate matrix arithmetic also
with real and complex interval entries.

It is an easy and powerful programming tool for en-
gineering applications. It provides problem-solving
functions and programs that compute an accurate in-
cIusion of the true solution and automatically proves
the existence and uniqueness of a true result, that
means that these pro grams provide solutions with
error bounds and prove mathematical statements.
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