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Abstract.

In this paper three new methods are introduced which compute lower and upper
bounds of a simple zero of a real function. The lower and upper bounds are converging
to this zero. Compared with the well-known Interval-Newton-Method, which has the
same properties and asymptotic efficiency 1.414. .. our optimal method has asymptotic
efficiency 1.839.... The new methods have been extensively tested on a large set of
test examples.
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1 Introduction.

The idea of the Interval-Newton-Method was first discussed in [12]. In [6] a
careful investigation of its properties was presented. For a recent discussion see,
for example, [4].

Given a real differentiable function f, which has for any interval [z] an interval
arithmetic evaluation f’([z]) of its derivative, the method reads as follows:

Set [.’Eg] = [.12]
Choose z,, € [zy)

_ [, f(@) , n=0,12,....
[xth] ; { " f!([mn]) } n[ n] “

The method computes a sequence {[z,]} of intervals with the following prop-

erties: Assume that there exists a zero z* of f in [zo]. Provided 0 ¢ f'([xo]) the
method is convergent to z*, all iterates contain z*, and under natural additional
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assumptions on f the R-order of convergence is at least two. See [4]. For more
details on interval arithmetic see [1].

If the method is performed on a computer the function value f(z,) has to be
computed by taking into account all rounding errors in order that the inclusion
of the zero is guaranteed. This can be achieved by computing f(z,) in the
interval arithmetic sense. Therefore in practice f(z,) and f'([z,]) together may
be considered as two “function values” each of which needs approximately the
same amount of work. _

The effectivity index (or the asymptotic efficiency) of an iterative method in
the sense of Ostrowski is defined as /g where ¢ is the order of convergence
and p is the total number of function values per each step. If a fixed absolute
error € and two iterative methods are given then asymptotically the method with
the higher effectivity index needs less work to reach the given precision. For a
discussion of the effectivity index see [10].

From the preceding discussion it follows that the Interval-Newton-Method has
the effectivity index at least /2 = 1.414 .. .. This result is independent of how
Zn € [Z,] is chosen in each step. Usually one chooses z,, to be the center of [z,,].
In this paper we show that by choosing z, € [z,] appropriately, the Interval-
Newton-Method can be modified in such a manner that the effectivity index is
increased. We introduce three methods which have the same convergence and
inclusion properties. The first method has its asymptotic efficiency also equal to
V2. However, the second one has asymptotic efficiency (1 +/5)/2 = 1.618. ..
and for the third method we get the value 1.839.... Extensive numerical tests
confirm these values. The results of this paper have already been presented
without proofs and with fewer numerical examples in [3].

2 The modification.

Before we describe the new methods we introduce some notations. Let falre
R — R be a differentiable mapping and assume that for the interval [z9] C D an
interval arithmetic evaluation of its derivative exists and does not contain zero:

0¢ A= f'([zo])-

Let
@ =min 16|, B = max 0]
and
o = sign(A)
where
siE(A) — 1 ifd>0foralldeA
SHE/= Y -1 ifd<0foralléeA.
If [z] = [z, 7] is a given interval and ¢ € R then we define
t iftelzx]
P{I}(i) = 2 Hizxsw
| E Wixw
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and
dlz] =Z—z

denotes the diameter of [z].

We set
Pn-f-l(t) = P[TnJrl}(t) i
For a given interval [z] = [z, 7] let
mid[z] = Z(z + )
i . mid(e]] it o f(midfz) >0
s r, mid|T i o- Jmid|z|) >

isecisl al) —{ bidlil | Fos Hwidia]) <0

Let [z,,] denote an infinite sequence of intervals [z,] = [z,,Z,] and assume

my € [z,] € D. Then we set f, := f(m,). Instead of d[z,] we also write d,, if
it is clear which interval is meant.

In the following ¢,, will denote either f’'(m,,) or some approximations to this
walue. More precisely, in our algorithms 4,, will be defined by one of the following
three formulae:

(2.1) On = f'(mn),

2.2 O 1= s M- |0
(2.2) flmn, mp] Ty — My 1
and X i o
0 ifod, > —
(2.3) & = & 2
o— otherwise
2
where
(24) 511 — f[mn) mn-l] -1 f{mna mn—‘Z} - f[mn—lamn—Q]-

In (2.2) the derivative f’(m,) is approximated by the usual difference quotient.
The approximation 4, of f’(mn,,) was considered in a more general setting in [8].
In (2.3) we consider different cases in order that d,, has the same sign as o which
cannot be guaranteed by (2.4) alone in general. In the algorithm which now
follows d,, denotes one of the expressions in (2.1), (2.2) or (2.3).

ALGORITHM:
Given [zo]
Choose mg € [z)

For n=0,1, ... until some stopping criteria is fulfilled do
begin (A1)

[yn] = (mn = %) n [sz
_tn

dn
(A2) If dly,] < Ldfa]

gn = My
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then
begin (A2.a)
[Zn41] = [yn]
Mpy1 = gl (qn)
fn-{-l = f(mn-{-l)
end
else

begin (A2.b)
[zn+1] = bisect[y,)
T, = mid[yn)

fn T f(rn)

‘};n = n+1(qn)

fn = f(q-n) ] R -
- Ty I Ifnl < |fn|

e { @ if |fal > |l

end
end

In the cases (2.1) and (2.2) one needs besides the given [z¢] another interval
[z_1] in order that the algorithm can be started. Similarly, in case (2.4) one
needs two additional intervals [z_4] and [z_»]. For simplicity we could choose
[zo] = [z_-1] and [zo] = [z_1] = [z_2], respectively. If one of the denominators
in (2.2) or (2.4) becomes zero then the difference quotient should be replaced by
the corresponding derivative.

3 Properties of the new methods.

In this section we first prove some general properties of the algorithm which
are independent of the choice of §,,.

THEOREM 3.1. Assume that the real function f : D C R — R is continuously
differentiable and its derivative has an interval arithmetic evaluation f'(|zo))
with 0 € f'([xo]) for a given [xo] C D. Assume that f(z*) = 0 for some
z* € [zo]. Then

2) o€ lonn] Sl
b) nlwi“}rgo[a:n] 25"
(3.1) Q) dleanl < 2% ma)l

PROOF. a) From the Mean Value Theorem we have

f(mn) = f(mﬂ) = f(l'*) = f;(gn)(mn = 37*); gn = [xn]
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and therefore, since z* € [z,,),

) flma) ffm))
R e

The assertion follows by considering cases (A2.a) and (A2.b) of the algorithm.
b) By considering again cases (A2.a) and (A2.b) one proves by mathematical
induction that the diameters of the sequence {[z,]}, satisfy the relation

= [ya] € [2al-

1 T
(3.2) d, < (5) do, n>0.

Together with z* € [z,,] the assertion follows.
c) From the algorithm it follows immediately that d[z,+1] < d[y,]. Since

Ly P=w .. B~
d(z)_ B = @

¢ (L22) = 1t 4 ().

the assertion follows from

and

dbdéd(mw_ﬂmﬁ):d(ﬂmﬂ f-a

z ) < lrtm) - 252

O

REMARK 3.1. From inequality (3.2) it follows that the algorithm obtains
d[z,] < € in at most as many steps as the bisection method.

In what follows we will show that if we choose §,, asin (2.1), (2.2), (2.3), then
for n sufficiently large m,,+1 is always computed as in (A2.a). As a result of this
the convergence of the algorithm is superlinear (of R-order at least 2, (1++/5)/2,
and 1.839 ..., respectively).

In order to simplify proofs we denote by f an extension of the given function
to the whole real line such that f € C'(R) and f'(z) € A for all z € R. This
can be achieved by extending f by the tangent lines at the endpoints of [z].

LEMMA 3.2. If fl(z) € A,0€ A, z € R, z* € [z,] C [x0], f(z*) =0, then
(3.3) |f(Pa(@)) < [f(2)], z€R.

Proor. If z € [z,] = [z,Z] then P,(z) = z and (3.3) holds. Since 0 &€ A,
assume without loss of generality that f'(z) > 0. Then f is increasing and we
have f(z) < f(z*) =0 < f(T). Hence, if z < g it follows that f(z) < f(z) and
f(Pn(z)) = f(z) = f(x) or

(3-4) |F(Pa(2))] < |£(2)].
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Similarly, if x > T, it follows that

(35) 0 < f(Pu(z)) < f(2)-

Inequalities (3.4) and (3.5) prove the assertion in the case f’(z) > 0. The case

f(z) < 0 can be treated analogously. a
LEMMA 3.3. If f'(z) € A, 04 A, z € R, z* € [xg], f(z*) =0, then

: " /()]
2 — =

(3.6) e —z*| < -

and

(3.7) lf(z)] < Blz—z7

forallz € R.
PROOF. From the Mean Value Theorem it follows that

5C*f = lf(:c) -
f'(€)

|f(=)|

&

|-l

and
|f@) = 1F Ollx — z*| < Blz —z*|.
g

THEOREM 3.4. Under the hypothesis of the conditions of Theorem 3.1 assume
that the mapping f is twice continuously differentiable on the interval [xy] and
that vy := max, e, | [ (x)|. Assume further that we have extended f as described
before Lemma 3.2. If we choose 0, in the algorithm as in (2.1), that is, 6, =
Pl ), 8 =8, 1 2y 00

(38) Fma)l < 2L pma)p
and
(3.9 sy & 9(%;—39-)—7 (dzn ).

ProOOF. We have

i flma)
qn = My f!(mn)

and therefore, using Taylor’s Theorem,

=" = bﬁ%;umm) 2) — F(m)(mm — 2%))
= || 31l —mal
1
< §g|mn — 33*}2.
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By considering the definition of m,4; in the algorithm and by applying Lem-
mas 3.2 and 3.3 we get '

£(mns)] < (@] < Blaw — =1 < 55 ma — " < 227 (o),

which proves (3.8).
Similarly, by considering the definition of m,, and by using equation (3.7) from
Lemma 3.3, we obtain

sp 1 O ’
!f(mn)I i |f(q??,—1)[ < ﬁ’%“z—l = | = —2*-&*|mn_.1 e |2.
Together with (3.1) from Theorem 3.1 we get

;3 a ;3 1,6*05

2 053 ﬁﬂ?’(d[mnml])za

5[ f(ma)] <

d[mn+1}

since m,_1, * € [z,—1].- Hence, (3.9) is also proved. 0

COROLLARY 3.5. Let us consider the algorithm with choice (2.1). Then the
following statements hold:

a) There exists an N > 0, such that
[:Cn+1] - {ynla M1 = Pnya (qﬂ)a n> N.

b) The sequence {f(my)} is at least Q-quadratically (and hence at least R-
quadratically) convergent.

c) The sequence {d[z,]} is at least R-quadratically convergent.

PROOF. a) Since d[z,] — 0 monotonically, there is an N > 0 such that
B(B — a)vyd[z,_1]/(2a%) < 1/8 for all n > N. Hence, by (3.9), the inequality
d[zn+41] < d|z,-1]/8 holds for all n > N. Assume now that d[y,] > d[z,_1]/4
for some n > N. Then by (A2.b) d[z,+1] = d[y.]/2. However, this contradicts

d[$7a+1] - d[xn 1] = 4d[yn] =i5 [yn]

Therefore, for n > N we have d{y,] < d[z,-1]/4 and hence [z,+1] = [y,] and
Mnt1 = Pryi(gn) by (A2.2).
b) follows from (3.8) and the fact that the R-order is not smaller than the
Q-order (see [7, 9.3.2]).
c) follows from the easily proved fact that if {r,} and {s,} are two real zero
sequences such that
08T W2

then the R-order of the sequence {s,} is not smaller than the R-order of the
sequence {r, }. From b) we know that the sequence {f(m.,,)} has at least R-order
two. By inequality (3.1) from Theorem 3.1 we conclude that the R-order of the
sequence {d[z,;1]} is at least 2. O
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REMARK 3.2. From part a) of the preceding corollary it follows that the
algorithm with choice (2.1) needs asymptotically 2 function values per step since
always (A2.a) is performed. Hence its asymptotic efficiency is at least V2 =
1:4L o

Besides a good asymptotic behaviour our algorithm has also good global con-
vergence properties in the sense of the following corollary.

COROLLARY 3.6. The cost of obtaining d[z,] < € with our algorithm with
choice (2.1) is at most three times larger than the corresponding cost when using
the bisection method.

PRrROOF. The bisection method needs one function value per step. If (A2.a)
is performed one needs &, = f'(mn) and f(mp41). In the case (A2.b) one
computes &, = f'(my), f(rn) and f(g,)- O

THEOREM 3.7. Assume that the assumptions of Theorem 3.4 hold. If we
choose 9, in the algorithm as in (2.2), that is,

I —fﬂ- = flma. sl 8=0,12: 5
My, — Mpy—1
then
(3.10) Fme)] € D21 ma] - )
and
(3.11) dpael £ POy e did]

2c

Proor. We have

gn = Mn — f[mna My - 1] ﬁlf(rrnn)

and therefore

lgn —z*| = |fmn, mna] 7 (f(mn) = f(2%) = flmn, ma1](ma — 27))|
= [flmn, Mmpa] 7" fMa; Ma—1,2"](Mn — &) (M1 — *)]

i
< %]mn —z*||mn-1 — 27|,

where f[m,,m,_1,2*] denotes the second divided difference and where we have
used

s M1, 71| < § maieegeo) | (@) = 3.

From Lemma 3.2 it follows that | f(mn41)] < |f(¢»)|, and by applying Lemma 3.3
and (3.1) we get (3.10) and (3.11). O

COROLLARY 3.8. Let us consider the algorithm with choice (2.2). Then
a) There is an N > 0 such that

[:Cn'}-l] — [yn]; Mp41 = n-{—l(Qﬂ.)a n > N.

b) The R-order of the sequences {f(mn)} and {d[z,]} are both at least equal
to (14+4/5)/2=1618....



MODIFICATIONS OF THE INTERVAL-NEWTON-METHOD 627

PrOOF. a) This follows from (3.11) as in the corresponding -statement of
Corollary 3.5.

b) The R-order of the sequence {f(m,,)} is at least equal to (14-+/5)/2 accord-
ing to Sec. 9.2.9 in [7]. The remaining is obtained as in part c¢) of Corollary 3.5.
a

REMARK 3.3. From part a) of the preceding corollary it follows that the
algorithm with choice (2.2) needs asymptotically one function value per step
since always (A2.a) is performed. Hence its asymptotic efficiency is at least
equal to (1 ++/5)/2.

COROLLARY 3.9. The cost of obtaining d[z,] < € with our algorithm with
choice (2.2) is at most two times larger than the corresponding cost when using
the bisection method.

THEOREM 3.10. Under the hypothesis of Theorem 3.7 assume that f is three
times continuously differentiable and that

p = max |f"(z)].
z€[zo]

If we choose &, in the algorithm as in (2.3) then

(312) Ifn‘f*l[ SVEfnl'{fn—l['lfn—Qla n:2>31'*':
and
(3.13) d[z4i4] S odfeg-qldla,-aldlr,- 5]  #= 3l

where v, U are constants not depending on n.
PROOF. We have

On = flmn,mp_1]+ flmp, mp_o] — flma—1,mn_2]
= flmn,z*] + flmn, mp_1] — flmy, "] + flmp, mu_2] — flma_1m,_2]
= flmn, x|+ flmp—1, My, 2*](mp—1 — z%)
+ flmp, mp—2, mp_1](Mmyp, —2* + 25 — my_1)
= flmn,z*] — flmn, mp—1, mn_2](z* — my)
+ flmp—1,mp, 2 |(Mp—1 — %) — flmu, mp_1mp_2)(mp_1 — x*)
= flmp,2%] — flm,, mp_1, m,_o](z* — my,)
+ flmn,mp—1, Mp—2,2"}(x* — my_2)(my,_1 — %),
where f[m,,m,_1,m,—2,2*] denotes the third divided difference. Since for
n — oo the second and the third term in the last equation tend to zero, whereas
the first term approaches f’(z*), it follows that there is an Ny > 0 such that

06n > 2 for all n > Nj. Since then 8, = §, by the definition of §, (see (28));
it followq that |61 < 2 for n > N;. Therefore

lgn — 2" = |6, (f(mn) — f(z*) — 6n(my — *))|
-
< a!f[mm-m*]“énllmn_g:*l

2 s [ o M " *
= almn_:ﬂ ]{ilmn_m |+g|mn-1‘*$ Ilmn—2'_m |}a
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where we have used the preceding representation of 6, = d,. Using (3.6) we can
further bound the right hand side to get

40~ 21 < SSlfal { L Ufal + Ghglfacallfaal}.

Using this inequality, Lemma 3.2 and (3.7) we arrive at

fatt] S 1£@)] < Blgn — "1 < glfal {Lfal + gl facall sl
(3.14) = ’Yllfnl{lfnl+|fn—1”fn—-2|} for n > Ny,

where y; = 28max{y/2a, u/(6c2)}/a>.
Since |fn| — 0, it is clear from the last inequality that there exists an N2 > Ny

such that
|f'n+l| = !fnl =1

for n > N,. Using (3.14) once more it follows that

fagrl = 'Yllfn”fnl +'Yl|fn1|fn—1“fn—2|
g 'Yllfn”fn—ll = 'Yllfn[lfn—” = 2’)’1|fn||fn—ll

forn > N2 + 2, or
|ful < 2m|fn-1llfa—2] forn > Ny +3.
Therefore, according to (3.14) we have
| Frtal S mlfal{2nlfa-tllfa—2l + [fa-1llfa—zl} = mCn + Dl fall foall fa—l
for all n > Ny + 3. By choosing v > v1(2v; + 1) sufficiently large we may now

assume that (3.12) holds for all »n = 2,3, .. .. From statement c) of Theorem 3.1
and (3.12) it follows that
8- —«

% tma)l < 22201 o )11 )

d[xn—i—ll S (kz

for n > 3. Using (3.7) we obtain
!f(TrL?'L—l)l § .Blmn—l == JZ*[ i ﬁd[mn—l]-

Similarly we have

|f(mn=2)] < Bdlzn-2],
|f(mn_3)] < Pdlz, 3]
Therefore from the preceding inequality we get
B -«

d[Zns1] < B° o vd(zn_1)d[Tn_2)d[Tn_3]

for n > 3. This is (3.13) with & = 83(8 — a)v/a?. O
COROLLARY 3.11. Let us consider the algorithm with choice (2.3). Then
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Table 4.1: Examples.

| Ex. | function f(z) | [a,b] parameter ]
L | shgp=p . [Z, 7]
2 —2 Zf—_ozl Eit__zgga [an; bn] n = 1, 5, 10

an =n%+10"2?

bn =(n+1)2%—-107°
3 | axe’® [-9, 31] a=-40,b= -1
a=-100,b= -2
a=-200,6=-—3

4| 2ze ™ —2e7"* +1 0,1] n = 1,5,20,100
5| A+@0-n)?)z—-(1—nz)? | [0,1] n =5,10,20
6| 22— (1—a) [0,1] %= 2,5,10,15, 20
71 0+Q-n)Yz -1 —-nz)t | [0,1] n=—19245R8
15,20

8 | e (z—1)+2m [0,1] n = 1,5,10,15,20
= [0.01,1] w= 2,5,15,20

10 | z1/® —nl/n [1,100] n=2345,7,10,

15,20, 25,30, 33

a) There is an N > 0 such that
[mn—I—l] = [yn]a My = nt1 (Qn): 2N

b) The R-orders of the sequences {f(my,)} and {d[z,]} are both at least equal
to the unique positive root t* of the polynomial

pt)=t3 —t2 —t—1.
We have t* =~ 1.839....

PROOF. a) follows from (3.13) as in the proof of the corresponding statement
in Corollary 3.5. :

b) The R-order of the sequence {f(m,)} is at least equal to t* according to
[11, 4.2.4]. The remaining part is obtained as in part c¢) of Corollary 3.5. O

REMARK 3.4. From part a) of the preceding corollary it follows that the
algorithm with choice (2.3) needs asymptotically one function value per step
since always (A2.a) is performed. Hence its asymptotic efficiency is at least
t*m2 1.839. .ux

COROLLARY 3.12. The cost of obtaining d[z,] < € with our algorithm with

choice (2.3) is at most two times larger than the corresponding cost when using
the bisection method.

4 Numerical examples.

In order to test the global convergence, the methods were tested using the
following examples from Table 4.1.
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In Table 4.2 we present for a user given tolerance of tol := 0 the number of
function values used by the Interval-Newton-Method(IVN), case (2.1), case (2.2)
and case (2.3). The precise meaning of tol is carefully described in [13]. See also
[2] and [5]. For every example we have tested the methods with 15 different
starting intervals which were obtained by increasing and decreasing the lower
and upper bound of the interval [a, D], respectively, in such a manner that the
zero is still contained in the new interval. The precise values can be obtained
from the authors on request (in some of the examples from Table 4.1 we could
not start with the given interval [a, b] since 0 € A).

s
/ ) = 2me =g F o]

Figure 4.1: Example 4.

The last column contains the function values necessary for Brent’s method
(see [5]). Brent’s method is one of the most popular nonlinear equation solvers.
Note, however, that because rounding errors are not taken into account Brent’s
method does not guarantee enclosure of a zero. Also as shown in [9], there
are examples for which even if exact arithmetic is used the diameters of the
intervals produced by Brent’s method do not converge to zero. Nevertheless, as
shown by our numerical examples, Brent’s method is very efficient in practice.
Finally we mention that Example 4 (see Figure 4.1) is a very hard one for our
new methods. The initial enclosure A of the derivative has a lower bound very
close to zero and the upper bound is slightly bigger than 2n. This enclosure
is never improved during the course of computation. As a result of this, it is
very unlikely that the first part of (A2) in the Algorithm (namely (A2.a)) is ever
performed with the given floating point system, and therefore the Algorithm
behaves approximately like the Bisection-Method. This example is the reason
that altogether our optimal method (the Algorithm with 6,, defined by (2.3))
needs slightly more function values than the Interval-Newton-Method. (See >=°
in the last row of Table 4.2.)

Subsequently we illustrate the contents of Table 4.2 via diagrams. For each
example we have added together the total number of function values necessary to
fulfill the stopping criteria. In the diagrams the heights of the bars are depicting
these values in relation to the Interval-Newton-Method.

From the preceding discussion, especially concerning Example 4, one could try
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B 3

Ex. 6 s k. i Ex. 8 Ex. 9 Ex. 10
Interval-Newton  Case (2.1) Case (2.2) Case (2.3) Brent

Figure 4.2: Total number of function values necessary to fulfill the stopping criteria
for each example for the examples of Table 4.2. The heights of the bars depict these
values in relation to the Interval-Newton-Method.
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Table 4.2: User given tolerance of tol := 0.

Ex. || IVN | (21) | (22) | (23) | Br Ex. || IVN | (21) | (22) | (23) | Br
1| 122 | 159 | 120 | 109 | 113 7s || 140 | 188 | 139 | 134 | 87
2, || 170 | 201 | 149 | 138 | 144 Te || 126 168 | 122 | 122 | 88
2, || 156 | 179 | 133 | 128 | 140 77 || 120 177 | 128 | 128 | 87
25 || 164 | 178 | 135 | 135 | 145 8 || 118 159 | 117 | 106 | 124
3, || 426 | 627 | 144 | 146 | 164 8 || 172 | 211 | 154 | 145 126
35 || 252 | 601 | 166 | 169 | 158 8s || 210 | 282 | 223 | 208 | 164
35 || 480 | 646 | 179 | 161 | 162 8: || 218 | 393 | 297 | 290 | 184
4; || 122 | 159 | 118 | 108 | 105 8 || 218 | 490 | 320 | 336 | 198
4, || 170 | 316 | 230 | 216 | 135 | | 91 || 118 161 | 124 81 | 135
43 || 212 | 448 | 498 | 483 | 165 9, || 170 | 250 | 191 | 145 | 132
4, || 284 | 2088 | 934 | 1027 | 201 9 || 202 | 428 | 302 | 208 | 165
5. || 138 | 227 | 165 | 148 | 125 9, || 200 | 325 303 | 202| 153
5, || 120 | 186 | 135 | 126 | 101 10, || 174 | 225 | 167 | 149 | 84
53 || 124 | 176 | 138 | 127 | 109 10 || 194 | 254 | 188 | 164 | 129
61 30 45 45 45 | 46 105 || 194 | 254 | 206 | 187 | 132
6> || 154 | 346 | 214 | 228 | 127 104 || 204 | 201 | 220 | 209 | 144
63 || 176 | 380 | 268 | 219 | 142 105 || 200 | 277 | 211 | 186 | 139
61 || 194 | 456 | 296 | 305 | 149 106 || 192 | 262 | 194 | 177 | 142
65 || 214 | 504 | 323 | 299 | 146 107 || 202 | 284 | 206 | 181 | 132
7, || 134 | 179 | 135 | 119 | 137 10s || 186 | 261 | 191 | 163 | 132
7o || 136 | 196 | 144 | 128 | 137 10 || 198 | 245 | 184 | 172 | 130
7s || 156 | 229 | 163 | 154 | 112 | [1050 || 196 | 247 | 184 | 166 | 125
7. || 144 | 182 | 137 | 129 | 100 | |10y, || 214 | 247 | 188 | 181 | 125

S

| 8444 | 14787 | 9528 | 8887 | 6120

to improve the practical behavior of our new methods by computing improved
values of A during the course of computation. For example, one could compute
a new enclosure f'([z,]) of f’ over [z,] and use this instead of f'([zo]). An-
other modification could be to compute the interval arithmetic evaluation of the
derivative only after k steps again, where k£ > 1 is a fixed integer. The order
of convergence is improved in this way, however, the cost is also increased. We
do not discuss here the dependence of the effectivity index on k, since this is
related only to the asymptotic behaviour of the method. In the following parts
of Tables 4.3-4.5 we report on the corresponding values Y." of Table 4.2 for
tol = 107°,10719,10712,1071,1071%,0. In each table the integer k specifies the
number of steps after which a new enclosure of the derivative has been com-
puted. (kK = oo means that the initial value of A was fixed. This corresponds
to the original version of our new algorithms.) Under each table we have also
listed the number of function values which were needed for the Interval-Newton-
Method and for Brent’s method, respectively. These values are independent of
k. It can be seen from the tables that for values of tol between 10~° and 10712
our optimal method (2.3) for K = oo is superior to the Interval-Newton-Method.
For tol = 10714, 10716 and tol = 0 the latter needs less function values than
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Table 4.3: Updating the derivative after k steps: tol = 107°,1071°.

tol = 1

1) ] 22) ] (2:3)

tal =510

2D 2 [ 23

RE 0o o ok w R

8915 | 6872 | 6617
7041 | 5813 | 5546
6764 | 5465 | 5187
6713 | 5369 | 5095
6697 | 5314 | 4944
6735 | 5313 | 4946
6740 | 5300 | 4953
6759 | 5299 | 4937
6790 | 5292 | 4912
6821 | 5284 | 4909
6983 | 5280 | 4913

9662 | 8216 | 7823
8514 | 6980 | 6493
8215 | 6614 | 6057
8037 | 6399 | 5893
8066 | 6350 | 5802
8019 | 6342 | 5748
8041 | 6275 | 5702
8028 | 6264 | 5683
8077 | 6232 | 5659
8131 | 6222 | 5670
8978 | 6298 | 5811

BB w0 ok wo

Interval-Newton: 5028
Brent’s Method: 4915

Interval-Newton: 6192
Brent’s Method: 5710

Table 4.4: Updating the derivative after k steps: tol = 107742 454,

tol = 1012

CD 22 ] 23)

tol = 10714

1) [ (22) [ (23)

O 00 ~1 O Ul 0B | o

et
o

co

10115 | 8520 | 8105
8899 | 7285 | 6753
8587 | 6916 | 6322
8417 | 6667 | 6113
8461 | 6614 | 5994
8399 | 6636 | 5958
8406 | 6564 | 5890
8403 | 6537 | 5860
8450 | 6521 | 5854
8517 | 6499 | 5859
9753 | 6799 | 6258

10860 | 9149 | 8722
9619 | 7832 | 7263
9266 | 7431 | 6768
9075 | 7184 | 6532
9083 | 7089 | 6366
9062 | 7091 | 6380
9091 | 7058 | 6313
9169 | 7013 | 6290
9224 | 6994 | 6320
9310 | 7012 | 6336
11023 | 7672 | 7079

EE©ow-ouo h w b

Interval-Newton: 6578
Brent’s Method: 5843

Interval-Newton: 7064
Brent’s Method: 5947

(2:3) T8 k=506,

On the other hand it can be seen that for each given value of tol there is a
k > 1 such that our optimal method (2.3) needs slightly less function values
than the Interval-Newton-Method. Therefore an adaptive technique could be
used to decide for a fixed n whether a new value of f’([z,]) should be computed
or not. We proceed as follows: If (A2.b) is performed then we have three dif-
ferent points contained in [y,] available, namely r,,q,, and m, as well as the

633
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Table 4.5: Updating the derivative after k steps: tol = 107¢, 0.

tol = 10~16 tol =1
k (2:1) | (2:2) | {2.3) o (21) | (2.2) | (2.3)
1 | 11445 | 9535 | 9112 1 | 14108 | 10184 | 9818
2 | 10001 | 8167 | 7518 2 | 12199 | 8661 | 8047
3 9664 | 7734 | 7082 3 | 11718 | 8164:] 7515
4 9480 | 7483 | 6789 4 | 11467 | 7872 | 7217
5 9450 | 7375 | 6656 5 | Y1455 | ‘7781 | 713
6 9500 | 7379 | 6676 6 | 11549 | 7753 | 7106
g 9631 | 7355 | 6657 T f 11660 | {765 | 71565
8 | 9868 | 7363 | 6705 8 |.11930 | 7835 | 7231
9 | 10027 | 7412 | 6793 9 | 12105 | 7908 | 7342
10 | 10178 | 7487 | 6869 10 | 12270 | 8009 | 7430
oo | 12496 | 8746 | 8134 oo | 14787 | 9528 | 8887
Interval-Newton: 7362 Interval-Newton: 8444
Brent’s Method: 6022 Brent’s Method: 6120

Table 4.6: Values for the adaptive technique.

| ST[IVN]1/2 ] 1/3 ] 1/4 [ (2.3) |
107> | 5028 | 4838 | 4837 | 4844 | 4913
10710 || 6192 | 5581 | 5579 | 5618 | 5811
10~'2 | 6578 | 5775 | 5774 | 5782 | 6258
10~ || 7064 | 6224 | 6231 | 6242 | 7079
10~ || 7362 | 6706 | 6733 | 6756 | 8134

0 8444 | 7321 | 7338 | 7350 | 8887

corresponding function values. Using these three points we compute the slopes
flrn,@,), flrn, ms] and £[g,, m,]. The minimum and maximum of these three
values are called min and max, respectively. If with some constant ¢ > 0 we have
max —min < ¢-d(f'([z,])), where f'([z,]) is the enclosure of the derivative over
[z,], then we compute a new enclosure over [z,,1]. In every case a new enclo-
sure is computed if during the last 5 steps this has not been done. In Table 4.6
we list for different values of fol the total number of function values needed
for the Interval-Newton-Method for ¢ = %, %, i-, and the unmodified method
(2.3). It can be seen that with the exception of tol = 107!¢ and tol = 0 only a
‘small amount of the total number of function values can be saved. However the

adaptive method is always better than the Interval-Newton-Method.

The results have been computed using the programming language PASCAL
XSC on a SUN Workstation. The mantissa length is 16 decimal digits.
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