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Abstract.

In this paper three new methods are introduced which compute lower and upper
bounds of a simple zero of areal function. The lower and upper bounds are converging
to this zero. Compared with the well-known Interval-Newton-Method, which has the
same properties and asymptotic efficiency 1.414. . . our optimal method has asymptotic
efficiency 1.839.. " The new methods have been extensively tested on a large set of
test examples.
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1 Introd uction.

The idea of the Interval-Newton-Method was first discussed in [12]. In [6] a
careful investigation of its properties was presented. For arecent discussion see,
for example, [4].

Given areal differentiable function J, which has for any interval [x] an interval
arithmetic evaluation l' ([x]) of its derivative, the method reads as folIows:

Set [xo] := [x]

Choose Xn E [xn]

{
f(xn)

}[Xn+1]= Xn - f'([xn]) n [xn] } n = 0, 1, 2, . . ..

The method computes a sequence {[xn]} of intervals with the following prop-

erties: Assume that there exists a zero x* of f in [xo]. Provided 0 tf-f' ([xoDthe
method is convergentto x*, all iterates contain x*, and under natural additional

*Received July 1997. Communicated by Kaj Madsen.
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assumptions on f the R-order of convergence is at least two. See [4]. For more
details on interval arithmetic see [1].

If the method is performed on a computer the function value f(xn) has to be
computed by taking into account all rounding errors in order that the inclusion
of the zero is guaranteed. This can be achieved by computing f(xn) in the
interval arithmetic sense. Therefore in practice f(xn) and f'([xn]) together may
be considered as two "function values" each of which needs approximately the
same amount of work.

The effectivity index (or the asymptotic efficiency) of an iterative method in
the sense of Ostrowski is defined as -ifii where q is the order of convergence
and p is the total number of function values per each step. If a fixed absolute
error Eand two iterative methods are given then asymptotically the method with
the mgher effectivity index needs less work to reach the given precision. For a
discussion of the effectivity index see [10].

From the preceding discussion it follows that the Interval-Newton-Method has
the effectivity index at least V2= 1.414. . .. This result is independent of how
Xn E [Xn] is chosen in each step. Usually one chooses Xn to bethe center of [xn].
In t.ms paper we show that by choosing Xn E [xn] appropriately, the Interval-
Newton-Method can be modified in such a manner that the effectivity index is
increased. We introduce three methods which have the same convergence and
inclusion properties. The first method has its asYIDptotic efficiency also equal to
V2. However, the second one has asymptotic efficiency (1 + VS)/2 = 1.618...
and for the third method we get the value 1.839 . . .. Extensive numerical tests
confirm these values. The results of this paper have already been presented
without proofs and with fewer numerical examples in [3].

2 The modification.

Before we describe the new methods we introduce some notations. Let f : D ~
R -+ R be a differentiable mapping and assurne that for the interval [xo] ~ D an
interval arithmetic evaluation of its derivative exists and doesnot contain zero:

0 tf- II = f' ([xoJ).

Let

a = min 1<51,
bEI:!.

ß = max 1<51
bEI:!.

and

(J = sign(ll)

where

si n( ll) =
{

I if () > 0 for all <5E II

g -1 if <5< 0 for all <5E ll.

If [x] = [.:f,xl is a given interval and t E R then we define

{

t if t E [x]

p[x](t):= ~ ~ft < ~
x 1ft> x
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and

d[x] := X - ;f

denotes the diameter of [x].
We set

Pn+1 (t) := P[Xn+l] (t) .

For a given interval [x] = [;f, x] let

mid[x] = ~(;f + x)

and

b. ([]) - { [;f, mid[x]] if a . f(mid[x]) > 0

lsect x - [mid[x], x] if a . f(mid[x]) < 0

Let [xn] denote an infinite sequence of intervals [xn] = [;fn' xn] and assume
mn E [Xn] C D. Then we set fn := f(mn). Instead of d[xn] we also write dn if
it is clear which interval is meant.

In the following 8n will denote either 1'( mn) or some approximations to this
'value. More precisely, in our algorithms 8n will be defined by one of the following
three formulae:

(2.1)

(2.2)

8n = l' (mn),

8n := f[mn, mn-I] := f(mn) - f(mn-I)
mn - mn-I'

and

(2.3)

{

~ ~ a

6n if a6n > "28n = a

a"2 otherwise

where

(2.4) Jn = f[mn, mn-I] + f[mn, mn-2] - f[mn-l, mn-2].

In (2.2) the derivative 1'(mn) is approximated by the usual difference quotient.

The approximation Jn of l' (-mn) was considered in a more general setting in [8].
In (2.3) we consider different cases in order that 8n has the same sign as a which
cannot be guaranteed by (2.4) alone in general. In the algorithm which now
follows 6n denotes one of the expressions in (2.1), (2.2) or (2.3).

ALGORITHM:

Given [xo]
Choose mo E [xo]
Für n = 0, 1, . .. until some stopping criteria is fulfilled do

begin (Al)

[Yn] = (mn - ~) n [Xn]
in

qn = mn - 6n

(A2) If d(Yn]~ ~d[Xn-l]
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then

begin (A2.a)

[Xn+l] = [Yn]
mn+1 = Pn+1(qn)
fn+1 = f(mn+l)

end
else

begin (A2.b)

[Xn+l] = bisect[Yn]
rn = mid[Yn]

in = f(rn)
iin = Pn+1 (qn)
In = f(iin)

{ rn if linl< Ilnl
mn+1= iin if linl> Ilnl
f - { in if linl< Ilnl
n+1- In if linl > Ilnl

end
end

In the cases (2.1) and (2.2) one needs besides the given [xol another interval

[X-I] in order that the algorithm can be started. Similarly,in case (2.4)one

needs two additional intervals [X-I] and [X-2]. Für simplicitywe could choose

[xo] = [X-I] and [XO] = [X-I] = [X-2], respectively. If one of the denominators

in (2.2) or (2.4) becomes zero then the difference quotient should be replaced by

the corresponding derivative.

3 Properties ofthenew methods.

In this seetion we firstprove some general properties of the algorithm which

are independent of the choice of 8n.

THEOREM 3.1. Assume that the real function f : D ~ R --7 R is continuously
differentiable and its derivative has an interval arithmetic evaluation l' ([xoD
with 0 tf. f'([xoD for a given [xo] ~ D. Assume that f(x*) = 0 for some
x* E [xoJ. Then

a)

b)

X* E [Xn+l] ~ [xn],

lim (xn] = x*,n-t=

(3.1) c)
ß-a

d[Xn+l] ~ ') If(mn)l.
0:

PROOF. a) From theMean Value Theorem we have

f(mn) = f(mn) - f(x*) = f'(~n)(mn - x*), ~n E [xn]
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and therefore, since x* E (xn],

x* = 'Tnn ~ Z~':'::E mn - f(,,:,,) <;; {ffin - f(;:) }n [Xn] = [Yn] C [Xn].

The assertion follows by considering cases (A2.a) and (A2.b) of the algorithm.

b) By considering again cases (A2.a) and (A2.b) one proves by mathematical
induction that the diameters of the sequence {(xn]}~=o satisfy the relation

(3.2)
dn~GrdO'

n > o.

Together with x* E [xn] the assertion folIows.
c) From the algorithm it follows immediately that d[Xn+l] ::;d[Yn]' Since

d (~
)

= ß - a < ß - a
..6. aß - a2

and

d (f(~n)) = If(mn)l. d (~) ,
the assertion follows from

d[Yn] < d (ffin - f(~n)) = d (f(~n)) < lf(mn)l. ß ~".

D

RE MARK 3.1. From inequality (3.2) it follows that the algorithm obtains
d(xn] < E in at most as many steps as the bisection method.

In what follows we will show that ifwe choose (Snas in (2.1), (2.2), (2.3), then
for n sufficiently large mn+l is always computed as in (A2.a). As a result of this
the convergence of the algorithm is superlinear (of R-order at least 2, (1 + V5) /2,
and 1.839 . . ., respectively). .

In order to simplify proofs we denote by f an extension of the given function
to the whole realline such that f E C1(R) and I'(x) E ..6.for all x ER.. This
can be achieved by extending f by the tangent lines at the endpoints of [1:0]'

LEMMA 3.2. 1f f' (x) E ..6.,0 ~ ..6.,x E R, x* E [xn] S [xoJ, f(x*) = 0, then

(3.3) If(Pn(x))1 < If(x)/, xER.

PROOF. If x E [xn] = [~,x] then Pn(x) = x and (3.3) holds. Since 0 ~ ..6.,

assume without loss of generality that l' (x) > O. Then f is increasing and we
have f(;f) < f(x*) = 0 < f(x). Hence, if x < ~ it followsthat f(x) < f(~) and
f(Pn(x)) = f(~) > f(x) or

(3.4) If(Pn(X))I:S If(x)l.
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Similarly, if X > X, it follows that

(3.5) 0 < f(Pn(x)) < f(x).

Inequalities (3.4) and (3.5) prove the assertion in the case l' (x) > O. The case
l' (x) < 0 can be treated analogously. 0

LEMMA 3.3. 1f f'(x) E ß, 0 ti L1, x ER, x* E [xo], f(x*) = 0, then

(3.6) Ix-x*1 < If(x)1
a

and

(3.7) If(x)1 < ßlx - x*1

for all x E R.
PROOF. From the Mean Value Theorem it follows that

I

- *
1

=
I

f(x) - f(x*)
1

=
I

f(x)
I

< If(x)1
x x f'(~) f'(~) - a

and

lf(x)1 = If'(~)llx - x*1 ::; ßlx - x*l.

0

THEOREM 3.4. Under the hypothesis of the conditions of Theorem 3.1 assume
that the mapping f is twice continuously differentiable on the interval [xo] and
that r := maxxE[xo] If"(x)l. Assume further that we have extended f as described
before Lemma 3.2. 1f we choose 5n in the algorithm as in (2.1), that is, 5n =
f'(mn)J n = 0,1,2,..., then

(3.8) If(mn+dl ::; ::31f(mn)12

ß(ß-a)r 2
d[Xn+l]::; ~(d[Xn-l]) .2a'

and

(3.9)

PROOF. We have
f(mn)

qn = mn - f'(mn)

and therefore, using Taylor's Theorem,

Iqn - x*1 = I 1',/ ) (f(mn) - f(x*) - f'(mn)(mn - x*))mn

~ . ~If"(~)llx* - m 12
f'(mn) 2 n

< ! J Imn - x* 12.2a
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By considering the definition of mn+l in the algorithm and by applying Lem-
mas 3.2 and 3.3 we get

I!(mn+dl < 1!(qn)1 < ßlqn - x*1< ~ ~'Imn - x*12 S ~ ~; 1!(mn)12,

which proves (3.8).
Similarly, by considering the definition of mn and by using equation (3.7) from

Lemma 3.3, we obtain

1!(mn)1 < If(qn-l)! < ßlqn-l - x*1< ~ ~'Imn-l - x*12.

Together with (3.1) from Theorem 3.1 we get

ß-a 1ß-a *2 1ß-a 2
d[Xn+l] < 2 If(mn)1 < _2 3 ß,lmn-l - x I <- 2 q ß,(d[Xn-l]),

a a a

since mn-I, x* E [Xn-l]. Hence, (3.9) is also proved. 0

COROLLARY 3.5. Let us consider the algorithm with choice (2.1). Then the
following statements hold:

a) There exists an N > 0, such that

[Xn+l] = [Yn], mn+l = Pn+l (qn), n>N.

b) The sequence {f(mn)} is at least Q-quadratically (and hence at least R-
quadratically) convergent.

c) The sequence {d[xn]} is at least R-quadratically convergent.

PROOF. a) Since d[xn] -+ 0 monotonically, there is an N > 0 such that
ß(ß - a)J'd[Xn-l]/(2a3) < 1/8 for all n > N. Hence, by (3.9), the inequality
d[Xn+l] < d[Xn-l]/8 holds for all n > N. Assurne now that d[Yn] > d[Xn-l]/4
for some n > N. Then by (A2.b) d[Xn+l] = d[Yn]/2. However, this contradicts

d[Xn+l] < ~d[Xn-l] < ~4d[Yn] = ~d[Yn]'

Therefore, for n > N we have d[Yn] S d[Xn-l]/4 and hence [XnH] = [Yn] and
mn+l = Pn+l(qn) by (A2.a).

b) follows from (3.8) and the fact that the R-order is not smaller than the
Q-order (see [7, 9.3.2]).

c) follows from the easily proved fact that if {rn} and {sn} are two real zero
sequences such that

0 < Sn+l < c. 'n, n>O- ,

then the R-order of the sequence {Sn} is not smaller than the R-order of the
sequence {rn}. From b) we know that the sequence {f(mn)} has at least R-order
two. By inequality (3.1) from Theorem 3.1 we conclude that the R-order of the
sequence {d[Xn+l]} is at least 2. 0
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REMARK 3.2. Prom part a) of the preceding corollaryit followsthat the

algorithm with choice (2.1)needs asymptotically2 nmction valuesper step since

always (A2.a) is performed. Hence itsasymptotic efficiencyis at leastJ2 -
1.41. . ..

Besides a good asymptotic behaviour our algorithm has also good global con-

vergence properties in the sense of the following corollary.

COROLLARY 3.6. The cost of obtaining d[xn] < E with our algorithm with

choice (2.1) is at most three times larger than the corresponding cost when using
the bisection method.

PROOF. The bisection method needs one function value per step. If (A2.a)

is performed one needs ()n = f'(mn) and f(mn+I)' In the case (A2.b) one

computes (Sn = f'(mn), f(rn) andf(7in). 0
THEOREM 3.7. Assume that the assumptions of Theorem 3.4 hold. 1f we

choose ()n in the algorithm as in (2.2), that is,

fn - fn-I = f[mn, mn-I],() =
n mn - mn-I

n = 0,1,2,...,

then

(3.10) If(mn+I)1 < ß'lf(mn)I'!f(mn-dl20:3

ß(ß - 0:), d[Xn-l] . d[Xn-2]'

and

(3.11) d[Xn+l] <

PROOF. We have

qn = mn - J[mn, mn-I]-I f(mn)

and therefore

Iqn - x*1 = If[mn, mn-I]-I(f(mn) - f(x*) - f[mn, mn-I](mn - x*))1

= lJ[mn, mn-I]-I f[mn, mn-I, x*](mn - x*)(mn-I - x*)1

< 2: Imn - x*llmn-1 - x*l,

where f[mn, mn-I, x*] denotestheseconddivideddifferenceand where we have
used

If[mn, mn-I, x*]1 < ~ maXxE[xo] If"(x)1 = ~J.

Prom Lemma 3.2 it follows that If(mn+dl :S; If(qn)l, and by applyingLemma 3.3
and (3.1) we get (3.10) and (3.11). 0

COROLLARY3.8. Let us consider the algorithm with choice (2.2). Then

a) There is an N > 0 such that

[Xn+l] = [Yn], mn+1 = Pn+l(qn), n>N.

b) The R-order of the sequences {f(mn)} and {d(xn]} are both at least equal
to (1+ ..;5)/2:=1.618..-.
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PROOF. a) This follows from (3.11) as in the corresponding 'statement of
Corollary 3.5.

b) The R-order ofthe sequence {f(mn)} is at least equal to (1+J5)/2 accord-
ing to Sec. 9.2.9 in [7]. The remaining is obtained as in part c) of Corollary 3.5.
0

REMARK 3.3. From part a) of the preceding corollary it follows that the
algorithm with choke (2.2) needs asymptotically one function value per step
since always (A2.a) is performed. Hence its asymptotic efficiency is at least
equal to (1 + J5) /2.

COROLLARY 3.9. The cost of obtaining d[xn] < E with our algorithm with

choice (2.2) is at most two times larger than the corresponding cost when using
the bisection method.

THEOREM 3.10. Under the hypo thesis of Theorem 3.7 assume that f is three
times continuously differentiable andthat

J1= max If"'(x)l.
xE[xo]

If we choose 8n in the algorithm as in (2.3) then

(3.12) Ifn+II < vlfnl.lfn-I/.lfn-21, n = 2,3, . . . ,

and

(3.13) d[Xn+I] < Vd[Xn-I]d[xn-2]d(xn-3], n=3,4,...,

where v, V are constants not depending on n.
PROOF. We have

Jn - f[mn, mn-I] + f[mn, mn-2] - f[mn-I, mn-2)

f[mn, x*] + f[mn, mn-I] - f[mn, x*] + f[mn, mn-2] - f[mn-Imn-2]

= f[mn, x*) + f[mn-I, mn, x*](mn-I - x*)

+ f[mn, mn-2, mn-I](mn - x* + x* - mn-I)

- f[mn, x*] - f[mn, mn-I, mn-2)(X* - mn)

+ f[mn-I, mn, x*](mn-I - x*) - f[mn, mn-Imn-2](mn-I - x*)

- J[mn, x*] - f[mn, mn-I, mn-2](X* - mn)

+ f[mn, mn-I, mn-2, x*](x* - mn-2)(mn-I - x*),

where f[mn, mn-I, mn-2, x*] denotes the third divided difference. Since for
n -+ 00 the second and the third term in the last equation tend to zero, whereas
the first term approaches l' (x*), it follows that there is an NI > 0 such that
eTJn 2: % for all n > NI. Since then 8n = Jn by the definition of 8n (see (2.3)),
it follows that 18;;:-11::; ~ for n > NI. Therefore

<

18~I(f(mn) - f(x*) - 8n(mn - x*))1

~If[mn' x*] - 8nlJmn- x*10:

~Imn - x*1{~Imn - x*1+ ~Imn-I - x*llmn-2 - x*/},

Iqn - x*1

<
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where we have used the preceding representation of Jn = 8n. Using (3.6) we can
further bound the right hand side to get

Iqn - x*1::; ~2lfnl{2:Ifnl + 6~2Ifn-ll1fn-21}.

Using this inequality, Lemma 3.2 and (3.7) we arrive at

* 2ß
{

'"'I P,

}Ifn+ll < If(qn)1< ßlqn -x I < 0:21fnl 20:lfnl + 60:2Ifn-ll1fn-21

(3.14) < '"'Illfnl{lfnl + Ifn-lllfn-21} for n > NI,

where '"'11= 2ßma~{y /20:, p,/(60:2)} /0:2.
Since linl -+ 0, it is clear from the last inequality that there exists an N2 > NI

such that .

Ifn+ll < linl < 1

for n 2:: N2. Using (3.14) once more it follows that

Ifn+ll < 'nlfnllfnl + '"'Illfnllfn-1I1fn-21
< 'nlfnllfn-11 + '"'I1Ifnllfn-11= 2'"'11Ifnllfn-ll

for n > N2 + 2, or

Ifnl < 2'"'11Ifn-lllfn-21 for n > N2 + 3.

Therefore, according to (3.14) we have

lin+11 < '"'Illfnl{2'"'11Ifn-11Ifn-21 + Ifn-lllfn-21} = '"'11(2'"'11+ 1)lfnllfn-ll1fn-21

for all n > N2 + 3. By choosing v > '"'11(2'"'11+ 1) sufficiently large we may now
assume that (3.12) holds for all n = 2,3,. .., From statement c) of Theorem 3.1
and (3.12) it follows that

ß-o: ß-o:
d[Xn+l] < 2 If(mn)1 < ') vlf(mn-dllf(mn-2)IIf(mn-3)10: 0:

for n > 3. Using (3.7) we obtain

If(mn-1)1 < ßlmn-1 - x*1 ::; ßd[Xn-1]'

Similarly we have

If(mn-2)1 ::; ßd[Xn-2],

If(mn-3)1 ::; ßd[Xn-3].

Therefore from the preceding inequality we get

3ß-0:
d[Xn+1] < ß 2 Vd[Xn-1]d[Xn-2]d[xn-3]0:

for n > 3. This is (3.13) with v = ß3(ß - 0:)v/0:2.

COROLLARY3.11. Let us consider the algorithm with choice (2.3). Then

0
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Table 4.1: Examples.

I Ex. [§ction f (x) ! [a,b] I parameter

a) There is an N > 0 such that

[Xn+l] = [Yn], mn = Pn+l(qn), n>N.

b) The R-orders ofthe sequences {f(mn)} and {d[xn]} are both at least equal
to the unique positive root t* of the polynomial

p(t) = t3 - t2 - t - 1.

We have t* ~ 1.839.. ..

PROOF. a) follows from (3.13) as in the proof of the corresponding statement
in Corollary 3.5.

b) The R-order of the sequence {f(mn)} is at least equal to t* according to
[11,4.2.4]. The remaining part is obtained as in part c) of Corollary 3.5. 0

REMARK 3.4. From part a) of the preceding corollary it follows that the
algorithm with choice (2.3) needs asymptotically one function value per step
since always (A2.a) is performed. Hence its asymptotic efficiency is at least
t* ~ 1.839 . . ..

COROLLARY3.12. The cost of obtaining d[xn] < E with our algorithm with
choice (2.3) is at most two times larger than the corresponding cost when using
the bisection method.

4 Numerical examples.

In order to test the global convergence, the methods were tested using the
following examples from Table 4.1.

l ' x
[, 1f]SIn x-?

2 -2 :L2o (2i-5)2 [an, bn] n = 1, 5, 10i=l (x-i2)3
an = n2 + 10-9

bn = (n+ 1)2 -10-9
3 axebx [-9,31] a = -40,b =-1

a = -100 b = -2,
a = -200,b =-3

4 2xe-n - 2e-nx + 1 [0,1] n = 1,5,20,100
5 (1 + (1 - n)2)x - (1 - nx)2 [0,1] n = 5, 10, 20
6 x2-(1-x)n [0,1] n =2,5,10,15,20
7 (1+ (1- n)4)x - (1 - nx)4 [0,1] n = 1,2,4,5,8,

15,20
8 e-nx(x - 1)+ xn [0,1] n = 1,5,10,15,20
9 nx-l

[0.01,1] n = 2,5, 15,20(n-l )x
10 xl/n - n l/n [1,100] n =2,3,4,5,7,10,

15,20,25,30,33



630 G.E.ALEFELD,F.A.POTRA,ANDW.VÖLKER

In Table 4.2 we present for a user given tolerance of tol := 0 the number of
function values used by the Interval-Newton-Method(IVN), case (2.1), case (2.2)
and case (2.3). The precise meaning oftol is carefully described in [13]. See also
[2] and [5]. For every example we have tested the methods with 15 different
starting intervals which were obtained by increasing and decreasing the lower
and upper bound of the interval [a, b], respectively, in such a manner that the
zero is still contained in the new interval. The precise values can be obtained
from the authors on request (in some of the examples from Table 4.1 we could
not start with the given interval [a, b] since 0 E ~).

fex) = 2xe-n - 2e-nx + 1
-1

Figure 4.1: Example 4.

The last column contains the function values necessary for Brent's method

(see [5]). Brent's method is one of the most popular nonlinear equation solvers.
Note, however, that because rounding errors are not taken into account Brent's
method does not guarantee endosure of a zero. Also as shown in [9], there
are examples for which even if exact arithmetic is used the diameters of the
intervals produced by Brent's method do not converge to zero. Nevertheless, as
shown by our numerical examples, Brent's method is very efficient in practice.
Finally we mention that Example 4 (see Figure 4.1) is a very hard one for our
new methods. The initial endosure ~ of the derivative has a lower bound very
dose to zero and the upper bound is slightly bigger than 2n. This endosure
is never improved during the course of computation. As a result of this, it is
very unlikely that the first part of (A2) in the Algorithm (namely (A2.a)) is ever
performed with the given floating point system, and therefore the Algorithm
behaves approximately like the Bisection-Method. This example is the reason
that altogether our optimal method (the Algorithm with 5n defined by (2.3))
needs slightly more function values than the Interval-Newton-Method. (See L*
in the last row of Table 4.2.)

Subsequently we illustrate the contents of Table 4.2 via diagrams. For each
example we have added together the total number of function values necessary to
fulfill the stopping criteria. In the diagrams the heights of the bars are depicting
these values in relation to the Interval-Newton-Method.

From the preceding discussion, especially concerning Example 4, one could try
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Figure 4.2: Total number of function values necessary to fulfill the stopping criteria
for each example for the examples of Table 4.2. The heights of the bars depict these
values in relation to the Interval-Newton-Method.
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Table 4.2: User given tolerance of tal := O.

c:L::J8444 I 14787 I 9528 I 8887 I 6120 1

to improve the practical behavior of OUf new methods by computing improved
values of L\ during the course of computation. For example, one could compute
a new enclosure l' ([Xn)) of l' over [Xn] and use this instead of l' ([xo)). An-
other modification could be to compute the interval arithmetic evaluation of the
derivative only after k steps again, where k > 1 is a fixed integer. The order
of convergence is improved in this way, however, the cost is also increased. We
do not discuss here the dependence of the effectivity index on k, since this is
related only to the asymptotic behaviour of the method. In the following parts
of Tables 4.3-4.5 we report on the corresponding values L:* of Table 4.2 for
tol = 10-5,10-10,10-12,10-14,10-16, O. In each table the integer k specifies the
number of steps after which a new enclosure of the derivative has been com-
puted. (k = (X)means that the initial value of L\ was fixed. This corresponds
to the original version of our new algorithms.) Under each table we have also
listed the number of function values which were needed for the Interval-Newton-

Method and for Brent's method, respectively. These values are independent of
k. It can be seen from the tables that for values of tol between 10-5 and 10-12

our optimalmethod (2.3)fOI k = 00 is superior to the Interval-Newton-Method.
For tol = 10-14, 10-16 and tol = 0 the latter needs less function values than

Ex. IVN (2.1) (2.2) (2.3) Br

1 122 159 120 109 113

21 170 201 149 138 144

22 156 179 133 128 140

23 164 178 135 135 145

31 426 627 144 146 164

32 252 601 166 169 158

33 480 646 179 161 162

41 122 159 118 108 105

42 170 316 230 216 135

43 212 448 498 483 165

44 284 2088 934 1027 201

51 138 227 165 148 125

52 120 186 135 126 101

53 124 176 138 127 109

61 30 45 45 45 46

62 154 346 214 228 127

63 176 380 268 219 142

64 194 456 296 305 149

65 214 504 323 299 146

71 134 179 135 119 137

72 136 196 144 128 137

73 156 229 163 154 112

74 144 182 137 129 100

Ex. IVN (2.1) (2.2) (2.3) Br

75 140 188 139 134 87

76 126 168 122 122 88

77 120 177 128 128 87

81 118 159 117 106 124

82 172 211 154 145 126

83 210 282 223 208 164

84 218 393 297 290 184

85 218 490 320 336 198

91 118 161 124 81 135

92 170 250 191 145 132

93 202 428 302 208 165

94 200 325 303 202 153

101 174 225 167 149 84

102 194 254 188 164 129

103 194 254 206 187 132

104 204 291 220 209 144

105 200 277 211 186 139

106 192 262 194 177 142

107 202 284 206 181 132

lOs 186 261 191 163 132

lOg 198 245 184 172 130

1010 196 247 184 166 125

10u 214 247 188 181 125
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Table 4.3: Updating the derivative after k steps: tol = 10-5,10-10.

Table 4.4: Updating the derivative after k steps: tol = 10-12,10-14.

(2.3) for k = 00.
On the other hand it can be seen that for each given value of tal there is a

k > 1 such that our optimal method (2.3) needs slightly less function values
than the Interval-Newton-Method. Therefore an adaptive technique could be
used to decide for a fixed n whether a new value of f' ([xnD should be computed
or not. We proceed as foIlows: If (A2.b) is performed then we have three dif-
ferent points contained in [Yn] available, namely Tn,7in and mn as weIl as the

tal = 10-0

k (2.1) (2.2) (2.3)
1 8915 6872 6617
2 7041 5813 5546
3 6764 5465 5187
4 6713 5369 5095
5 6697 5314 4944
6 6735 5313 4946
7 6740 5300 4953
8 6759 5299 4937
9 6790 5292 4912
10 6821 5284 4909
00 6983 5280 4913
Interval-Newton: 5028
Brent's Method: 4915

tal= 10-lU

k (2.1) (2.2) (2.3)
1 9662 8216 7823
2 8514 6980 6493
3 8215 6614 6057
4 8037 6399 5893
5 8066 6350 5802
6 8019 6342 5748
7 8041 6275 5702
8 8028 6264 5683
9 8077 6232 5659
10 8131 6222 5670
00 8978 6298 5811
Interval-Newton: 6192
Brent's Method: 5710

tal= 10-12

k (2.1) (2.2) (2.3)
1 10115 8520 8105
2 8899 7285 6753
3 8587 6916 6322
4 8417 6667 6113
5 8461 6614 5994
6 8399 6636 5958
7 8406 6564 5890
8 8403 6537 5860
9 8450 6521 5854
10 8517 6499 5859
00 9753 6799 6258
Interval- Newton: 6578
Brent's Method: 5843

tal = 10-14

k (2.1) (2.2) (2.3)
1 10860 9149 8722
2 9619 7832 7263
3 9266 7431 6768
4 9075 7184 6532
5 9083 7089 6366
6 9062 7091 6380
7 9091 7058 6313
8 9169 7013 6290
9 9224 6994 6320
10 9310 7012 6336
00 11023 7672 7079
Interval-Newton: 7064
Brent's Method: 5947
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Table 4.5: Updating the derivative after k steps: tol = 10-16, O.

Table 4.6: Values für the adaptive technique.

I::J] IVN I 1/2 I 1/3 I 1/4 I (2.3) I

corresponding function values. Using these three points we compute the slopes
f[Tn1 lJn], J[Tn, mn] and f[lJn1mn]. The minimum and maximum of these three
values are called min and max, respectively. If with some constant c > 0 we have

max - min < c. dU' ([Xn])), where f' ([xnD is the enclosure of the derivative over

[xn], then we compute a new enclosure over [Xn+1]. In every case a new enclo-
sure is computed if during the last 5 steps this has not been done. In Table 4.6
we list for different values of tal the total number of function values needed

for the Interval-Newton-Method for c = ~,~,~' and the unmodified method
(2.3). It can be seen that with the exception of tal = 10-16 and tal = 0 only a
small amount of the total number of function values can be saved. However the
adaptive method is always better than the Interval-Newton-Method.

The results have been computed using the programming language PASCAL
XSC on a SUN Workstation. The mantissa length is 16 decimal digits.

tal = 10-16

k (2.1) (2.2) (2.3)
1 11445 9535 9112
2 10001 8167 7518
3 9664 7734 7082
4 9480 7483 6789
5 9450 7375 6656
6 9500 7379 6676
7 9631 7355 6657
8 9868 7363 6705
9 10027 7412 6793
10 10178 7487 6869
00 12496 8746 8134
Interval- Newton: 7362
Brent's Method: 6022

tal = 0
k (2.1) (2.2) (2.3)
1 14108 10184 9818
2 12199 8661 8047
3 11718 8164 7515
4 11467 7872 7217
5 11455 7781 7113
6 11549 7753 7106
7 11660 7765 7155
8 . 11930 7835 7231
9 12105 7908 7342
10 12270 8009 7430
00 14787 9528 8887
Interval- Newton: 8444
Brent's Method: 6120

10-i:> 5028 4838 4837 4844 4913
10-10 6192 5581 5579 5618 5811
10-n 6578 5775 5774 5782 6258
10'14 7064 6224 6231 6242 7079
10-16 7362 6706 6733 6756 8134
0 8444 7321 7338 7350 8887
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