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Summary. We present new theoretical results on two dasses of multisplitting
methods for solving linear systems iteratively. These dasses are based on over-
lapping blocks of the underlying coefficient matrix A which is assumed to be
a band matrix. We show that under suitable conditions the spectral radius p(H)
of the iteration matrix H does not depend on the weights of the method even
if these weights are allowed to be negative. For a certain dass of splittings we
prove an optimality result for p(H) with respect to the weights provided that Ais
an M-matrix. This result is based on the fact that the multisplitting method can
be represented by a single splittingA =M - N which in our situation surprisingly
turns out to be a regular splitting. Furthermore we show by numerical examples
that weighting factors a f/:[0,1] may considerably improve the convergence.

Mathematics Subject Classification (1991): 65FlO

1. Introduction

To solve quadratic linear systems of equations

(1) Ax =b, A non-singular,

iteratively, one often starts with a splitting

(2) A=M -N , M non-singular.

One replaces A in (1) by (2) and ends up with the fixed point equation

(3) x =M-1Nx +M-1b .

This equation forms the base for the iterative process

Correspondence to: Any of the authors
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(4) Xk+l =M-1Nxk +M-1b , k=O,l,... .

Among many well-known methods like the Jacobi method, the Gauß-Seidel
method, the relaxation methods JOR, SOR, SSOR, AOR, one also finds the
block Jacobi method for which M has the form

All 0

A22
M=

0 App

with the quadratic diagonal blocks Au being chosen from the same block parti-
tioning

(5)
-

(
A.ll '." A.IP

)
A- . . .. '.

A 1 ... AP pp

of A. Assuming Au E :[Rnixne,€ = 1,... ,p, to be nonsingular, M-1 exists, N
is determinedby N :=M - A, and (4) can be realizedin practiceby solvingin
each step of iteration the p smaller subsystems

Auh(xk+l) =h(Nxk + b) , €= 1,... ,p,

withJf : :[Rn-t :[Rni denoting the projection hex) := (Xqi+l,... ,Xqi+ni)T E :[Rni
f-l

with X = (Xi) E :[Rnand with qf := L ni . Choosing the lower triangular part
i=l

of Au for M yields a method which was called Gauß-Seidel like method or
block Gauß-Seidel type method (cf. [18]). Both dasses of methods show a nat-
ural parallelism since each of the occuring smaller subsystems can be solved
independently from each other. These methods can also be viewed as particular
multisplitting methods, a dass of methods for solving (1) iterativelyon a parallel
computer. Multisplitting methods were introduced by O'Leary and White in [27]
in the following way. (Cf. also [4], [6], [8]-[22], [24]-[26], [29]-[33], [35]-[39],
and, in particular, [8], [9], [13], [35], [36] for systems of nonlinear equations.)

Definition 1. Let A =Mf - Nf E :[Rnxn, € = 1,... ,p, be splittingsof A, and let
P

Ef E :[RnXn , the so-called weights, satisfy I:Ef =I, where I denotes the n X n
f=l

identity matrix. Then the iterative process

(6)

{

Mfyk,f = ~xk +b ,

xk+l = L Ef yk,f
f=l

€= 1,...,p

k =0, 1,...,

is called a multisplitting method.
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p

Note that I:Ef = I ensures that in case of convergence the fixed point of
f=1

the multisplitting method is the solution of (1).
We set

(7)
(

D(f) 0 0

)
Mf = ~ Au 0 ,

0 0 D(f)2 (

000

)
Ef = 0 If 0

000

with Au E ~nexne from (5), with If being the nf x nf identity matrix, and with
D?), DY) being any non-singular matrices of the appropriate dimension. In
theoretical investigations we usually choose diagonal matrices for D~f) and Dif).
One recognizes at once that one gets the iterates of the block Jacobi method, and
it is a trivial task to verify that the iterates of the Gauß-Seidellike method can
be obtained as a particular multisplitting method, too. (It is c1earthat (7) has to
be modified appropriately in the cases R= 1 and R=p.) Of course, (6) is much
more general. For example, one can expand Au for each Mf, allowing the nf x nf

diagonal blocks Au of A now to overlap with Af-l,f-l and with Af+l,f+l. The
weights Ef are then assumed to have the form

(8) Ef =Ef(a) :=

0 0 0

0 (1 - a)Il(f) 0
0 0 l(f)2
0 0 0
0 0 0

0 0

0 0

0 0

al(f) 03
0 0

aE~,

where Ir), j = 1,2,3, are identity matrices corresponding to the upper over-
lapping part, the non-overlapping part and the lower overlapping part of Au,
respectively, with the usual modifications for R E {1,p}. In the sequel we will
refer to this method (i. e., Mf from (7), Ef from (8) ) as the overlapping block
Jacobi method. Analogously one can define the overlapping Gauß-Seidellike
method.

For these two c1asses of methods and for band matrices A we address the

following questions.

a) How does the choice of the parameter a in (8) influence the speed of con-
vergence of (6) ?

b) How does (6) behave if the overlapping part of Au increases?
c) Up to now only a E [0,1] was considered in the literature. In this case Ef 2: 0

holds. How does (6) behave if one chooses a outside [0,1] in (8)?

For particular situations we will answer some of these questions theoretically,
and we will add a part of our numerical experiments to show what may happen.
Only for this reason the discussed examples are chosen as simple as possible. As
a consequence they are (perhaps with the exception of the last one) not of great
practical relevance. (This was also pointed out by one ofthe referees.) For the
overlapping block Jacobi method we will prove that the choice of the weighting
parameter a does not influence the iteration matrix H if the bandwidth ß, the
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block size m of the non-overlapping method and the size ovl of the overlap-
ping part are related in a certain manner. This holds also for 0: tf-[0,1]. For the
same relation between the bandwidth ß, the blocksize m of the non-overlapping
method and the size ovl of the overlapping part, and for the overlapping Gauß-
Seidellike method we will find that for M -matrices A the multisplitting method
(6) can be represented as a single so-called regular splitting (cf. SecL2). This is
a surprising result since even for M -matrices generally a multisplitting method
cannot be described by a single regular splitting. Now, due to a result of EIsner
[6], comparisons are possible which show that for fixed ovl the spectral radius
p(H(o:)) of the iteration matrix H =H(o:) decreases with increasing 0: E [0,1].

Numerical examples indicate that p(H (0:)) can apparently become smaller if 0:
quits the range [0, 1]. (The situation is similar to that of the well-known suc-
cessive overrelaxation method (SOR-method): It is fairly easy to show by using

nonnegative matrix theory that the spectral radius of the SOR-matrix is decreas-

ing if the relaxation parameter VJ is chosen from the interval [0,1]. However,
beyond VJ= 1 this theory is not applicable, and it is well-known that the optimal
VJis in most cases greater than one. At the moment we do not have ideas how to
investigate the case 0: tf-[0, 1] in the case of the Gauß-Seidellike multisplitting
method or for other multi splitting methods. It is one of the main purposes of this
paper to show - by numerical examples - that 0: tf-[0,1] can improve the speed
of convergence considerably.)

We have arranged our paper as folIows. In SecL 2 we recall several known
results on multi splittings, in SecL 3 we consider the overlapping block Jacobi
method, and in SecL 4 we deal with the Gauß-Seidellike method. Our numerical

experiments are incorporated in both of these sections.

We stress the fact that promising results with respect to the practical relevance
of multi splitting methods have been shown in different contexts. For example,

one can use multi splitting methods as smoothers in multigrid methods or as
preconditioners for conjugate gradient methods. Earlier results can be found in
[1], [29], [38]. For a very recent result in which the importance of multi splitting
methods as preconditioners has been shown see [3]. Moreover, multi splitting
methods play an important role in connection with the so-called multisplitting
waveJorm relaxation algorithm. This is an algorithm for solving the linear initial

value problem
X' (t) + Ax(t) =J(t), x(o) =xo,

where A E JE.nxn is very large. The function J is assumed to be continuous,
t E [0, T], x E C 1([0, T]; JE.n),Xo E JE.n.The given system is decomposed in a
finite number of subsystems and these are discretized by appropriate methods on
the interval [0, T]. For details see [18], [20], [23], [30], [31] and [34]. In this

way one gets the multisplitting waveform relaxation method for solving ordinary
differential equations on parallel computers. In order to compare this method
with algorithms for solving ordinary differential equations on aserial computer,
it is essential to solve the arising subsystems by an efficient serial ODE solver.
See [5] for an implementation of the method and for time comparisons with a
fast serial ODE solver.
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OUf theoretical results are independent of a particular parallel computer. It is
dear, however, that the architecture of the computer and therefore the implemen-
tation of multisplitting methods both influence the practical behaviour of these

methods. It is not the purpose of this paper to discuss this important practical
problem.

2. Preliminaries

We first list some notations which we will use throughout the paper without
further reference.

If not otherwise stated we denote the entries of a vector x E JP$.nby Xi, those
of a matrix A E JP$.nXn by aij. We always reserve the letter A for areal n x n
matrix. If all entries of x or A are non-negative, we write x ~ 0 and A ~ 0,
respectively, calling x and A non-negative; A ~ B is defined by B - A ~ O.We
term A an M -matrix if aij ~ 0 für i =f j and if A-I exists and is non-negative.

By the non-negative integer ß we abbreviatethe (half-) bandwidthof A,i.e.,
ß := max{li- j 11 aij =fO}. By p(A) we mean the spectral radius of A, by IS I we
denote the number of elements contained in a finite set S.

Definition 2. a) The representation A =M - N, M non-singular, is called a
splitting of A.

b) The splitting A = M - N is called a weak regular one if M -I ~ 0 and
M -I N ~ O.It is called a regular splitting if M -I ~ 0 and N ~ O.

It is obvious that a regular splitting is a weak regular one. We now list several
auxiliary results starting with a well-known theorem on M-matrices.

Theorem 1. ([2], [7], [28]) a) lf aij ~ 0 for i =f j, then A is an M -matrix if and
only if there exists a vector x > 0 such that Ax > 0 holds.

b) Let A be an M-matrix and let A ~ B with bij ~ 0 for i =f j. ThenB is an
M -matrix, too.

Some of our results in SecL4 are based on the following comparison theorem
due to EIsner [6].

Theorem 2. Let A be non-singular with A-I ~ 0, and let A =M - N =M - N
be two weak regular splittings of which at least one is a regular splitting.

a) lf M-1 ~ M-1 then p(M-IN) ~ p(M-1N) < 1.
b) lf M ~ M, or, equivalently, N ~ N, then M-1 ~ M-1, hence p(M-1N) ~

p(M-IN) < 1.

In view of comparison theorems it is an interesting question whether the
multi splitting method (6) can be represented by means of a single splitting A =
M - N. If this is possible, M must have the form

(9) M =
(tElMl-I

)
-1 ,

l=l
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and N := M - A. This is seen from (6) and (4) when eliminating ykl- in (6) in

order to get

(10) Xk+1 =

(tE,~,-IN}k + (tE~M'-}
=M-1N =M-1

with the iteration matrix

(11)

p

H =M-1N = LEgMg-INg.
g=1

Tbe representation (10) is, of course, only suited for theoretical considerations.
It is a standard result in numerics that (10) converges for all starting vectors xO
to the solution of (1) if and only if p(H) < 1.

The following theorem gathers results of [6] and [27], cf. also [18].

Theorem 3. Let A =Mg - Ng, f = 1,... ,p, be weak regularsplittingsand let
p -1 P-I

H := L:EgMg Ng,G := L:EgMg , Eg 2:: 0, f = 1,... ,p.
g=1 g=1

a) If A -1 is non-negative then p(H) < 1. .

b) If p(H) < 1 thenG is non-singular,A-1 2:: 0, and the splitting A =M - N
with M := G-I, N := M - A is a weak regular one. In particular, H =
M-1N 2:: O.

Proof a) is proved in [27]; cf. also [18].
b) With the exception of A -I 2::0 the assertions are also proved in [18]. We will
shortly repeat the steps.
Since Ng = Mg - A we get H = I - GA, hence p(H) < 1 implies G to be
non-singular. Thus the splitting A =M - N exists, and (9), (11) together with
the hypotheses of the theorem show M -1 2::0, H =M -I N 2:: 0 which proves
the splitting to be weak regular. Tbe non-negativity of A -I follows from A -I =
(I - H)-1M-1 when representing (I - H)-I as a Neumann series. 0

Unfortunately, regular splittings A = Mg - Ng, f = 1,. .. ,p, do not imply a
regular splitting A =M - N for the representation of A in Theorem 3. Tbis was
alreadyshownin [6] by a counterexample.

For multisplitting methods there exist, among others, the following compar-
ison theorems.

Theorem 4. ([6])Let A-1 2:: 0, Eg 2:: 0 for f = 1,... ,p, H as in (11),and let
A = Mg - Ng, f = 1,. .. ,p, be weak regular splittings.

a) If A =M - N is a regular splitting satisfying M ::; Mg, f = 1,... ,p, then
p(M-1/D ::; p(H) < 1.
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b) If A = M - N is a regular splitting satisfying Me ::; M, R = 1,... ,p, then
--1-

p(H) ::;p(M N) < 1.

Corollary 1. ([6], [17],[26])Let Ee ~ 0for R= 1,. . . ,p, and letA = D - L - U
be an M-matrix for which D, L, U denote the diagonalpart, the lower triangular
part and the upper triangular part, respectively. If A = Me - Ne, R = 1,... ,p,
are splittings of A satisfying D - L ::;Me ::;D, R = 1,. . . ,p, then the splittings
A =Me - Ne are regular, and

p(HGs) ::; p(H) ::; p(HJ) < 1

holds, where HGs := (D - L) -1 U, HJ := D -1 (L + U) are the iteration matrices of
the standard Gauß-Seidel method and the standard Jacobi method, respectively.

Theorem 5. ([ 18]) Let A be an M -matrix and let H, il be the iteration matrices

of the non-overlapping and the corresponding overlapping block Jacobi multi-
splitting method, using in both cases the same weighting matrices Ee from (7),
i.e., the weights ofthe non-overlapping block Jacobi multisplitting method. Then

(12) peil) ::;p(H) .

By (12) one can expect a faster convergence für the overlapping method as

compared with the non-Dverlapping one. This justifies overlapping blocks. But
note the particular form of Ee ! Theorem 5 says nothing on the behaviour of peil)
when the overlapping parts increase.

Theorem 6. ([18]) The assertions of Theorem 5 hold if the block Jacobi multi-
splitting method is replaced by the Gauß-Seidellike multisplitting method.

3. The overlapping block J acobi multisplitting method

In this seetion we prove a result on the overlapping block Jacobi multisplitting
method which we already described in Sect. 1 and for which we now want to
repeat a more precise definition.

Definition 3. ([11]) 3 Let {SI, . . . ,Sp} be a partition of {I, . . . , n}, i.e., the Se
p

are pairwise disjoint non--emptysubsets of {I,..., n} so that U Se = {I,..., n}.
e=l

Assume that the condition

(13) i E Se, j E Se' , i <j ::::} R::;t

holds. In addition, let Se ~ TR-~ {I, . . . , n} for R= 1, . . . ,p, with TR-satisfying

(14) i E TR-, j E Te , i <j ::::} R::;t

and

(15)

Let Ta := Tp+l:= 0.

Te n TR-'= 0 if IR- tl > 1 .
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a) Define Mt = ((Mt)ij),Nt, Et = ((Et)ij) for R= 1,...,p by

{

aij if i, j E Sf;
(Mt)ij:= aü if i = j tf-Sf;

0 otherwise

Nf; := Mf; - A ,

{

I if i =j E St
(Ef;)ij:= 0 otherwise

If the matrices Me all are non-singular, then the corresponding multisplitting
method (6) is called a (non-overlapping) blockJacobimultisplittingmethod.

b) Define Me = ((Me)ij), Ne, Ee = ((Ef;)ij) for R= 1,...,p by

{

aij

(Mf;)ij:= a~i

if i ,j E Tf;
if i =j tf-Te
otherwise

Ne := Mf;- A ,

(Ee)ij '-

I

0
1

a.

1 _lai

if i =I-j or if i =j tf-Tf;
if i =j E Te\(Tt-l U Tf;+l)
if i =j E Tf; n Tf;+l

if i =j E Te-l n Tf;

where ai E m .

If the matrices Mf; all are non-singular then the corresponding multisplitting
method (6) is called an overlapping block Jacobi multisplitting method.

Note that (13), (14) mean in particular that the sets Sf; and Tt, respectively,

contain only successive integers from {I,..., n}. Condition (15) means that
only two successive blocks may overlap. In this respect oUf definition differs
slightly from that in [18], although in practice (15) is fulfilled. The matrices Ee
in Definition Ib), are defined a little bit more general than Ee(a) in (8). We will
return to (8) in OUfexamples.

Theorem 7. Let A be a band matrix with bandwidth ß and let Sf;,Tf;,Mf;,Ne, Et
be defined as in Definition 3b), and H as in (11). Assume

thenfor the overlapping block Jacobi method the spectral radius p(H) does not
depend on the values of the ai .

If all the sets Sf; have the same number of elements and if the overlapping

parts have the same size then Theorem 7 implies at once the subsequent corollary.

(16) min St = min Te, R= 1,... ,p.

If
(17) ß::; ISel-ISe n Tf;-I!, R=I,...,p,
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Corollary 2. With the notations of Theorem 7 let thefollowing conditions hold.

minSg =minTg
}

f = 1
ISg!=m =constant ,... ,p,

ISgn Tg-d = ovl = constant, f = 2,. . . ,p.

lf
ß ::;m - ovl

then p(H) does not depend on the values O:jof Eg.

EtMt1 =

0 St
Tt

0 0 St+1 n Tt

0 0 0 0

/
~

St St+l n Tt-'
fr

Fig. 1.

Proof ofTheorem 7. By the Definition 3b) the matrix EgMg-l has the block form

in Fig. 1, where here and in the subsequent figures the dashed area indicates
entries which are (in general) non-zero. The matrix Ng has the block form in

Fig. 2, where the parts of Ng outside the horizontal strip with row indices from
Tg are irrelevant in view of the multiplication with EgMg-l. The dashed areas
result from (17) which implies .

(18) ß ::;ISg-ll - ISg-l n Tg-21

and

(19) ß::; ISg+ll - ISg+l n Tgl .

The inequalities (17) prevent the band of Ng from running into the area Tg x
(Sg-l nTg-2) and Tg x (Sg+2nTg+1),respectively, where 'x' denotes the cartesian

product. It is easy to see that the product EgMg-INg has the block form in
Fig. 3, where only the double dashed areas may contain numbers which are
multiplied by the weighting parameters O:jand 1 - O:j, respectively. Due to this

p
fact H = L EgMg-INg has the block form in Fig. 4. The integers f indicate,

g=l
from which splitting A =Mg - Ng the dashed and double dashed regions come.
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St-l () 1i-2 St ()1i-1 St+1 () Tt

, A-, r'-, ~

Sf+2 () 1i+l

, A-,

I

Nt=

Q__n_+_Q.j - 9tn_Qm-i-_JL- n__h m__+___tnh_-

._~-___nJ.-~-l h- ~1- .._~n nl--~.n. _n-_- -.00 --.l- --_~__n_..

0 : 0 i 0: 0 : 0 : :
:: :: i :

}St () 1i-1

Tt

} St+l () Tt
'---,--'

ß

~

' v " S t+ IS Stt-I
" v---"'

Tt

Fig.2.

p-l
Evaluating det(AI - H) along the columns with indices from U(Sf+l n Tf)

f==l

shows that det(AI - H) does not depend on the elements of the double dashed
areas, which proves the assertion. 0

Theorem 7 normally becomes false if (17) does no Ionger hold. This can be
seen by the numerical results of the following example which we will also use
in SecL4.

We obtained our numerical multisplitting results on the Parsytec parallel com-
puters of the University of Paderbom. The spectral radii were computed on the
IBM 3090 serial computer of the University of Karlsruhe using the NAG library.

Example 1. This example was already published in [15] and was used in a modi-
fied form in [18]. It is based on a linear system with a banded symmetric Toeplitz
matrix. For such particular matrices there are, of course, more favorable solution
methods available. (This was also pointed out by one of the referees.) However,
this system is also used in Example 3 in order to show that the spectral radius
of a Gauß-Seidel like multisplitting method can be dramatically decreased for
values of a outside the interval [0,1].

Let A E }W.nxn be a band matrix which is defined by

(20)

aij := { -2~i-jl

ifi=j
if 0 < li - j I 50ß .
otherwise

The matrix A is a Stieltjes matrix, i.e., a symmetric M -matrix. Let b E }W.nbe
defined by
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, i 0 i 0
-~-- -- -u--r--u ~-------

I ,

io[o
u ~u--L------

, ::
10:0
: :

}StnTr-l

Et M~INt =

0 i 0 i
~ ~;-~4-

0 i 0 j:, ", ,r
u " ", ,, ,r

0 i 0:, ", ,

Tt

} Sf+l n T(

0 0 0 10i 0
0 0 OiO

~

'---v ' St +1S Stt-I

Fig.3.

1 1
-+-
2ß 2i-l'

l$.i$.ß

1

2ß-l

1 1
-+-
2ß 2n-i'

Then the solution x of (1) is x =e := (1, 1,..., I)T E mn.
If I denotes the iteration matrix of the standard Jacobi method associated

with A (i.e., in particular, ISj;1= 1, g = 1,. . . , n) we have

(21) b '-
i .- ß<i$.n-ß

n-ß<i$.n

p(l) $. 11111==1 - 2-ß

with the row sum norm 11 . 11=.Note that 11111=can be made arbitrarily dose to
the critical value 1 if the bandwidth ß is chosen large enough. Because of Theo-
rem 2, p(J) and therefore 11111=certainlyrepresentupperboundsfor p(H) where
H denotes the iteration matrix of the non-overlapping block Jacobi method.

Let ai = a for all ai in Ej;, i. e., let Ej; =Ej;(a) as in (8). In order to illustrate

the influence of a on the iteration matrix H = H(a) of the overlapping block
Jacobi multisplitting method we chose

(22) n = 16384,ß = 5,p = 128, ISj;1= 128, Tj;as in Corollary 2, g = 1,...,p.

Then all Jacobi blocks have the same block size m, and Corollary 2 applies with
m = ISj;1 = 128. As long as the number ovl of the overlapping rows fuHills

ovl $. m - ß = 123 ,

the spectral radius p(H(a)) is independent of a by Theorem 7. If one increases
ovl beyond 123, the weighting parameter a influences p(H(a)). This is indicated

St-l n Tr-2 SN) Tr-l St+l n Tt Sf+2 n Tr+l

r-'-,

0 i 0: 0 lol 0 i 0 I 0 :OiO
. :,
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H=

53 n T2 54 n T3
~

55 n Tt
, A-.,

:0

0 0 0

51 52 53
~

T2

54

Fig.4.

by the following Fig. 5 for which we chose b as in (21), xO := 0, and ovl =
40, 125, 127,and 128,respectively.Westoppedthe iterationwhen Ilxk-elloo ::;

10-5 was fulfilled and plotted the corresponding number of iterates versus the
weighting parameter a E [-2,3]. Figure 5 shows a symmetry with respect to

1
a=-

2'
We now consider an analogous situation for n = 256, ß =5 and p = 16. Here

m = ISgl =16, hence p(R(a)) is independent of a if ovl ::; 11, but it depends on
ovl. How it depends on a for ovl = 14, ovl = 15, and ovl = 16, respectively,is
shown in Fig. 6.

Since Theorem 7 implies p(R (a)) =p(R (0)) for a E Iffi.and 0 ::; ovl ::; 11, it
can be seen from Fig. 7 of the subsequent example that the straight line dirninishes
its height if ovl increases from ovl =0 to ovl =11.

Example 2. With the same matrix A and the same vector b as in Example 1, and
with the parameters from (22) we illustrate first the content of Theorem 5 . To this
end we set ü =ai =0 and we vary the number ovl of the overlapping rows (and
columns, respectively). As in Example 1 we started the iterations with xO = 0,

and we stopped it when Ilxk -elloo ::; 10-5 was fulfilled. We want to compare the
number of iterates for ovl -f0 withthatfor ovl=0 . Theresultsin Table1 confirm
p(H) ::; peR) if R, H denote the iteration matrices of the non-overlapping
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Block Jacobi multisplittings far ovI = 40(.), 125(*), 127(+),128(0)
70

60

+ 0 +

+ +

+ +

+ +

+
+

+
+

+ +
+ +

+++ 0 0 +++

~ 0 0 ~
+ 0 0 +

++++ 0 0 ++++
+ ++ 0 00 00 0 ++ +

+ 0 +
++ 00 000 000 00 ++

""''' +++000+++++++++++000+++ ""'"+ ++ ++ + ............... .. . . . . . . .. . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .
0
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

weighting parameter alpha

Fig. 5. Influence of the weighting parameter Oe = Oe; on the maximal number of iterations for
the overlapping block Jacobi multi splitting method with n = 16384, ß = 5, p = m = 128,and
ovl E {4°, 125, 127, 128}

and the corresponding overlapping block Jacobi multisplitting method with the
weights Ef = Ef(O) in both cases. These results also indicate a monotonous
behaviour of peR) with respect to ovl just as in one of the examples in [18].
It was A. Frommer who asked whether this monotonicity holds in general. We
answer this question negatively by Table 2 in which we changed ß from 5 to 11.
(One of the referees c1aimedthat the non-monotonicity may be caused by effects
due to rounding errors in this examp1e.We could neither prove nor disprove this
conjecture.) The number of iterations shows a non-monotonous behaviour with
respect to ovl. The same phenomenon can also be seen from Fig. 7 in which we
plotted the spectral radius p(H) versus ovl for n = 256, p =m = 16, ß =5 and
0: = O:i =0 . .

4. The overlapping Gauß-Seidellike multisplitting method

Analogously to the previous section we start with apreeise definition of the
method whieh we want to eonsider.

Definition 4. Let {SI, . . . ,Sp}, {To,. . . , Tp+I}be defined as in Definition 3.

a) Let Mf = ((Mf)ij), Nf, Ef = ((Ef)ij)be givenby

{

aij

(Mf)ij:= a~i

if i,j E Sf and

if i =j rtSf

otherwise

i ? j

50
'"
>:0

';::J'" 40....
.
'+-<0
...." 30.c
S::>
>:

20

10
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1
Block Jacobi multisplittings fer ovl = 8(.), 11(x), 14(*), 15(+), 16(0)

, ,., .
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0.9
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0.7......

'2"
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~ 0.6
~
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+ +

+ 0 +

+ +

0.5~ + 0 0000000 0 +
0 0
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03 1 . .,' *,. *
.r '.* *

0.2
-1.5 -1 -05 0 0.5 15 2 2.5

weighting parameter alpha

Fig. 6. Influence of the weighting parameter 0: =O:jon the spectral radius p(H (0:» for the overlapping
block Jacobi multi splitting method with n = 256, ß = 5, p = m = 16, and ovl E {8, ll, 14, 15, 16}

Np := Mp -A,

{
1 if i =j E Sp

(Ep)ij:= 0 otherwise

for.e = 1,. . . ,po If the matrices Mp all are non-singular, then the correspond-
ing multisplitting method (6) is called a (non-overlapping) Gauß-Seidellike
multisplitting method.

b) Let Mp =«Mp)ij), Np, Ep =«EP)ij) be given by

{

a..I]

(Mp)ij:= a;

if i ,j E Tp and
if i = j tf-Tp
'otherwise

i ? j

Np := Mp - A ,

(Ep)ij .-

I

0
1

O:j

1 - O:j

if
if
if
if

i :/= j or if i =j tf. Tp

i =j E Tp\(Tp-I U Tp+I)
i = j E Tp n Tp+1

i =j E Tp-l n Tp

O:j E ]PI. ,

where .e= 1,. . . ,po

U all the matrices Mp are non-singular then the corresponding multisplitting
method (6) is called an overlapping Gauß-Seidellike multisplitting method.

It is obvious that the remarks following Definition 3 also hold for Definition 4.
We gather the parameters O:j in Definition 4b) in a vector 0: E ]PI.qwhere q =



Fig. 7. Influence of the overlapping parameter ovl on the spectral radius p(H (a)) for the overlapping

block Jacobi multisplitting method with n = 256, ß = 5, p = m = 16, a = aj = 0

p p

IU(SinTi-dl. The indices ofthe cornponents aj are taken frorn the set U(Sin
i=2 i=2

p

Ti-d =U(Ti n Ti-d.
i=2

Theorem 8. Let A be an M -matrix and a band matrix with bandwidth ß. Let Si,
Ti, Mi, Ni, Ei be defined as in Definition 4b) and H =H (a) as in (11). Assume

(23)

If
(24)

min Si =min Ti , € = 1,...,p .

ß :SISil-ISi n Ti-li, € = 1,...,p ,

then with
p

q := IU(Si n Ti-d
i=2

the following assertions hold for the overlapping Gauß-Seidellike multisplitting
method.

a) The splittings A= Mi - Ni, € = 1,. . . ,p, are regular.
b) For any a = (ai) E ~q with aj E [0,1] for each i, the Gauß-Seidellike

multisplitting method can be based on a single splitting

(25) A =M(a) -N(a).

. This splitting is regular.
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Block Jacobi multi splittings for alpha =0
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c) For any a = (ai), & = (&i) E ~q with ai, &i E [0,1] for each i and with
a :::;& we get

p(H(&)) :::;p(H(a))

for the iteration matrices H =H (a) and H =H (&). In particular, the Gauß-

Seidellike mTrlltisplittingmethods are optimal (with respect to ai E [0,1]) if
ai =1 holdsfor eachi.

Proof a) By Theorem 1a) there is a positive vector x such thatAx > 0, whence
Mgx > O. By the same theorem, Mg is an M-matrix, hence Mg-I 2 O. By
the sign patternof A, the matrixNg is non-negative,thereforeA =Mg - Ng
is a regular splitting.

b) By Theorem 3a) we have p(H) < 1. Therefore the matrix Gof Theorem 3 is
non-singular by part b) of this theorem. Hence (25) exists with M (a) := G-1
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Table 1. Influence of the overlappingparameter ovl on the maximal number of iterations for the
overlapping block Jacobi multi splitting method with n = 16384,ß = 5, p = m = 128, a = ai = 0

ovl iterations time % iterations % time

0 36 52.85s 100.00 100.00
1 27 40.21s 75.00 76.08
2 22 34.19s 61.11 64.69
3 18 28.62s 50.00 54.15
4 16 25.03s 44.44 47.36
5 14 22.38s 38.89 42.35
7 12 19.67s 33.33 37.22
9 10 18.54s 27.78 35.08
12 8 15.79s 22.22 29.88
15 7 12.96s 19.44 24.52
20 6 12.85s 16.67 24.31
30 4 9.65s 11.11 18.26
70 3 10.02s 8.33 18.96
100 2 8.92s 5.56 16.88
120 2 10.13s 5.56 19.17
125 2 10.51s 5.56 19.89
128 2 10.63s 5.56 20.11

*
0

*

Mt = I
Le

*

0 *
'->--'

Te

Fig.8.



and N(a) := M(a) - A. By Definition 4, Mi has the block fonn in Fig. 8

with a lower triangular matri~ Li which we devide into blocks according to
Fig. 9. The stars in Fig. 8 indicate the corresponding diagonal elements of
A.

Note that LI starts with M22 and Lp ends with M2p,2p since To = Tp+l = 0
by definition. It is obvious that Mu, i = 2,3,..., 2p, are quadratic lower
triangular matrices. One shows as in a) that Li and Mii are M -matrices. In
particular, they are invertible, and (24) implies

(26) M2l+1,2i-l =0 , R= 2, . . . ,p - I .

The special structure of Mi yields for M (a) -1 the block form in Fig. 10.

We wrote brackets in MJ-l), i f- j, in order to indicate that this block is

apart of some inverse L-;l, while Mi-;l (without such brackets) denotes an
inverse in the usual sense.
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Table 2. Influence of the overIappingparameter ovl on the maximal number of iterations for the
overIapping block Jacobi multisplitting method with n = 16384,ß = 11, p = m = 128, a = ai = 0

ovl iterations time % iterations % time

0 306 699.47s 100.00 100.00
1 238 551.20s 77.78 78.80
2 195 457.38s 63.73 65.39
3 166 395.13s 54.25 56.49
4 145 348.84s 47.39 49.87
5 129 314.36s 42.16 44.94
7 106 264.90s 34.64 37.87
9 90 231.19s 29.41 33.05
12 74 197.37s 24.18 28.22
15 63 174.23s 20.59 24.91
18 55 157.41s 17.97 22.50
21 49 145.21s 16.01 20.76
25 43 133.57s 14.05 19.10
30 37 121.46s 12.09 17.36
40 30 110.79s 9.80 15.84
50 25 101.18s 8.17 14.47
60 22 98.22s 7.19 14.04
70 19 93.15s 6.21 13.32
80 17 92.60s 5.56 13.24
90 16 93.40s 5.23 13.35
100 15 95.17s 4.90 13.59
110 14 95.64s 4.58 13.67
115 13 92.54s 4.25 13.23
119 13 95.29s 4.25 13.62
124 13 98.75s 4.25 14.12
125 14 106.71s 4.58 15.26
126 14 107.50s 4.58 15.37
127 16 123.60s 5.23 17.67
128 18 139.80s 5.88 19.99
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Let e := (1,1,..., I)T E IP?q, M-1 := M-1(e), and D(a)
p-l p-l

diag (h, alh, al/4, alaz/s, alaz/6,. . ., TI ai .hp-l, TI orhp) with li being
i=l i=l

the identity matrix ofthe same size as Mji. Then M(a)-l = D(a)M-ID(a)-l,
hence M(a) = D(a)M D(a)-l, i.e., the parameters ai occur in M(a) at the
same places as in M(a)-l, and possibly at those blocks of M which corre-
spond to zero blocks of M -1. We now show that M has the block form in
Fig. 11 with

(28) GU,U-Z =MU,U-l MZf~l Zf-l MU-l,Zf-Z 2: 0 .,

Dividing A into the same blocks as M, the non-negativity of GU,U-2 fol-
lows from MZf,U-l = AU,Zf-l ::; 0, MU-l,U-Z = AZf-l,U-Z ::; 0 and

M:U~l,U-l 2: 0, since A and MU-l,U-l are M -matrices. We will now show
that

(29) M-1M =1 .

Because of the relation between Lf and the framed blocks of M(a)-l (with

a = e), and because of the zero structure of M -1 and M, it only remains to

prove that the elements '(M-IM)u,u-z, f = 2,... ,p, and (M-1Mhf+l,U-Z,
f = 2,. . . ,p - 1, are zero where the indices are block indices which corre-

spond to those of M and M -1. (In particular, this means that M -1 M begins
with (M-1Mhz in the left uppermost corner, and (M-IM)4Z is the block
scalar product of the third (!) block row of M-1 and the first (!) block col-

umn of M.) With (27) and with the known relations (MM-1)u,Zf-l = 0,
(M-1Mhf+l U-l =0 we obtain,

(M -1 M hf,U-Z =M2~~iL 1MU-l,Zf-Z +MZf,~f GZf,U-2

= MZf,~f (Mu,u Mii,iLl + MU,2f-l M2f~1,U-l) MU-l,2f-2

=MZf,~f(MM-1hf,Zf-l MU-l,U-Z = 0 ,

1

M2I-l,2/-1 0 0 \ J SlrI 1(-1

LI= I M21, 2/-1 M2 21 0
I } SI \ 1(-1

M2/+1.2/-1 M2I+l, 2/ M2/+1.2I+1

J} S,., n T,
'----v-----" "-v-----" "-v-----"

S, rI T'-1 SI \ 1(-1 S'+1 rI T,

Fig.9.
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(27)

-1

M22 0 0 0 _--mm "" 0

(-l)1 -1
Clj M32 1 M33 0

0
(-I) -1

M2P,2p-l M2P,2P0 ..m..mm m m--...-------._....--
0

Fig. 10.

and

(M
-1

M) M (-l) M M (-l) G
2l+1,21-2 = 2R+l,2R-l 2R-l,U-2 + 2R+l,U U,U-2

(M
(-l) M M (-l) M )M -1 M= U+l,U-l 2R-l,U-l + 2R+l,U 2R,U-l 2R-l,U-l U-l,U-2

= (M-l MhR+l,2R-l M2g~1 2R-l M2R-l,U-2 =0 .,

Thus M has the block fonn above. Since GU,U-2 ~ 0, the same holds for
the block N2R2R-2 of N := M - A which reads,

N2RU-2 =G2R 2R-2 -A2R 2R-2 .
, , ~

::;0

Hence N ~ 0, and N(o.) := M(o.) - A =D(o.)M D(o.)-l - M + N ~ 0 if
o.j E [0,1] for each i.

c) Sinee (27) shows that 0 ::; 0. ::; & ::; e implies 0 ::; M (0.)-1 ::; M (&)-1, the
assertion follows from b) and Theorem 2a). 0

Analogously to Corollary 2 we get at onee oUf next result.

Corollary 3. With the notations of Theorem 8 let thefollowing conditions hold.

min SR = min TR

}ISR! =m =eonstant f = 1,. . .,p ,

ISRn TR-I! = ovl = constant , f=2,...,p.

0 M(-I) M41 0 0
43

M(Cl)-I =1

0 ClM(-I) M(-l): M-I LQ253 54; 550

0 0 0 M (-I) M -165 66
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0
0 M2P-l.2P-2: M2P-l;2P-11 0

--m,,"m.---.

0 ", "---,,,,,-,,,, ,, ,,-'''-'''''''''m_m.. 0 G2P;2p-2 IM2p;2P-l M2p;2p

Fig. 11.

lf

ß S m - ovl

then the assertions of Theorem 8 hold.

We will illustrate Corollary 3 by an example using the matrix of Example 1
and choosing ai =a for all ai in ER.. Although the results in this corollary and in
Theorem 8 refer to values a E [0,1] we will perform p(H(a)) for a E [-1,7].
We will see that p(H(a)) has a relative minimum in [-1,7]\[0,1].

Example 3. Let A and b be defined as in (20), (21) with n = 256, ß = 5,p =16,
m = 16, ai = a. We started the Gauß-Seidel like multi splitting method with

xO = 0 and stopped it when IIXk- eil00 S 10-5 was fulfilled. Under these
conditions we varied the weighting parameter a from -1 to 7 for ovl =4 and
ovl = 12. In Fig. 12 we plotted p(H(a)) versus a. The figure shows that the
speed of convergence can be improved by choosing a outside from the interval
[0,1] .

OUf next example shows that for the overlapping block Jacobi multisplitting

method we cannot expect that the splitting A = M - N from Theorem 3 is
necessarily regular even if the conditions (16) and (17) of Theorem 7 hold -

in contrast to the overlapping block Gauß-Seidel like multisplitting method.
Therefore, Theorem 2 seems not to be applicable here.

0 0 0 0 ---...................----..---- 0

0 0

G42 M43 M44 O 0 0

M= I

0 0 M54 i...... 0

0 0 G64 M65 M

0 0 0 0 M76 Mn 0 0
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Gauss-Seidellike multisplittingsfor ovl =4(*),12(0)
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Fig. 12. Influence of the weighting parameter a =ai on the spectral radius p(H(a)) for the over-
lapping Gau~eidellike multisplitting method with n = 256,ß = 5, p = m = 16, ovl E { 4, 12}

Example 4. Let
I
I

(

2 -1 0 0

)
A = -1 2 -1 0

0 -1 2-1
0 0 -1 2

hence ß = 1. Choose SI := {1,2}, S2 := {3,4}, Tl := {I, 2, 3}, T2 := S2,
To := T3 := 0. Define Mg,Ng as -in Definition 3b), and letEI:= diag (1, 1,0,0),
E2:= diag(O,O, 1, 1). Then (16) and (17) hold, and

(30) M-I =

3 1 1
4 2 4 0
1 1

2 1 - 02

0 0 ~ 1
3 3

0 0 ! 2
3 3

with M-I being obtained as in (10). Since (30) implies

0

0

0

.
0

.
.
.
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we get
0 0 0 0

1 1
0 -- 0 -

2 2
0 1 0 0

0 0 0 0 F

Therefore, A =M - N is only a weak regular splitting, and not a regular one.
Nevertheless, one finds the same monotonous behaviour as in Example 2. Choos-

ing T;l) = {1,2}, T?) = {1,2,3} and T?) = {1,2,3,4}, respectively, yields
2 1

p(H(I») = - =0.666. . ., p(H(2») = fL =0.408 . . . and p(H(3») =0, respectively.3 v6
This can be seen from a simple computation with the matrices Ee and with the
remaining index sets as above.

N=

In our final examples we present further experimental results on the optimality
of p(H(a)) with varying parameter a E JR.

Example 5. Let

B -]
-] B -]

0

(31) A= E mn2xn2

0

-] B -]

-] B

4 -1

-1 4 -1

0

with B := E JRnxn , and with ] denoting the n x n

-1 4 -1

0 -1 4

identity matrix. As is well-known A is the matrix resulting from the five-point
discretization of the Laplace equation

(32) du=O

on the unit square fl = (0, 1) x (0, 1) where the values of u are prescribed at

the boundary afl and where an equidistant grid of mesh size h = ~ is used.n+1
We chose n = 64 whence A has n 2 =4096 rows and columns, respectively. The

boundary condition for (32) was adjusted such that the righthand side b of the
resulting linear system Ax =b has the solution x = e.

2 -1 0 0

3 1

M = I -1
- -1 -
2 2

0 0 2-1

0 0 -1 2



We tested the Gauß-Seidellike multi splitting method for p =32 and ovl = 64.

To this end we started it with xO =0 and stopped it when Ilxk - eil::; 10-5 was
fulfilled, varying a from 0 to 7.375 . The results in Table 3 show that the smallest
number of iterates is attained for a = aopt =6.84375. For a =0 we needed 3644
iterations. The number of iterations must be the same for a =0 and any value
of ovl since the components in Tg\Sg which are computed by the i-th processor
are not needed for xk+l because o~the particular form of E(O). Since for ovl =0
and a =0 no superfluous component is computed we needed here only 637.39
seconds. This is an essentially smaller time as in the case ovl =64, a = O.We
used this smaller time as basis for the time percentage in the last column of
Table 3 .

We conc1udeour paper with another example in which we modified the partial
differential equation to be discretized.

Example 6. We consider the boundary value problem

(33)
{

xuxx +YUyy = j, (x,y) E n:= (0, 1) x (0,1)
u = 9, (x,y) E an

Discretizing (33) as in Example 5 yields a linear system
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Table 3. Influenceof the weighting parameter Q:=Q:ion the maximal number of iterations for the
overlappingGauß-Seidellike multisplittingmethod appliedto the discretizedLaplace equation with
A E JR4096X4096 , ß = 64, p = 32, m = 128, ovl= 64

Q: iterations time % iterations % time

0.0 3644 839.05s 100.00 131.64
0.5 3345 766.74s 91.79 120.29
1.0 3108 715.65s 85.29 112.27
2.0 2747 632.59s 75.38 99.25
3.0 2349 540.95s 64.46 84.87
4.0 1913 440.54s 52.50 69.12
5.0 1437 330.92s 39.43 51.92
6.0 906 208.63s 24.86 32.73
6.5 599 137.92s 16.44 21.64
6.625 511 117.03s 14.02 18.36
6.75 408 93.46s 11.20 14.66
6.78125 376 86.82s 10.32 13.62
6.8125 335 76.73s 9.19 12.04
6.828125 310 71.72s 8.51 11.25
6.84375 291 66.64s 7.99 10.46
6.860275 324 74.21s 8.89 11.64
6.875 331 75.81s 9.08 11.89
6.9375 344 78.80s 9.44 12.36
7.0 374 85.66s 10.26 13.44
7.125 473 108.37s 12.98 17.00
7.25 698 160.72s 19.15 25.22
7.375 1146 264.77s 31.45 41.54
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(34) Ax =b

in which the matrix A has the same zero pattern as in (31). We chose f and
9 such that x =e solves (34). For n, p, ovl, and xO as in Example 5 and for
a E [0, 4.05] we found again an optimal a outside [0, 1]. For ovl = 0 the same
remark holds as in the foregoing example. We needed 984.71 seconds für the
5639 iterations of the case a = 0, ovl = 0 and used this time again as basis for
the last column of Table 4 .

Table 4. Inftuenceof the weighting parameter 0:= 0:; on the maximal number of iterations for the
overlapping Gauß-Seidel like multisplitting method applied to the discretized PDE xuxx + YUyy=f
on the unit square with A E JR4096X4096, ß = 64, p = 32, m = 128, ovl = 64
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