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Abstract. We present a characterization of the solution set S, the symmetric solution set Ssym,
the persymmetric solution set Sper, and the skew-symmetric solution set Sy, of real linear systems
Az = b with the n X n coefficient matrix A varying between a lower bound A and an upper bound
A, and with b similarly varying between b, b. We show that in each orthant the sets Ssym, Sper,
and Sgkeyw are, respectively, the intersection of S with sets, the boundaries of which are quadrics.
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1. Introduction. Let [A] be an n x n matrix with compact intervals as entries,
let [b] be a vector with n interval components, and let E be the n x n permutation ma-
trix with ones in the northeast-southwest diagonal and zeros elsewhere. The purpose
of this paper is to characterize the solution sets

(1.1) ={r € R"| Az=0b, Ac[A], be[b]},

(1.2) Ssym:={zx e R"| Az =b, A= AT € [A]=[A], be [b]},

(1.3)  Sper:={z € R"| Az =b, EA= (EA)” € E[A] = (E[4))", be [b]},

(14) Sskew:={z € R"| Az =b, A= —AT € [A] = ([a];;) = —[4]%,
[a)ii=0fori=1,...,n, be b}

by means of inequalities which show that in each fixed orthant O the solution set S is
the intersection of finitely many half spaces, while Ssym N O, Sper N O, and Sggew, N O
are the intersection of SN O with finitely many sets, the boundaries of which are conic
sections in R™. The characterization of S N O was already given in [4], [5], [7], [11],
[12], and others while the characterization of Ssym N O in the two-dimensional case
was derived in [4]. The technique there could not be transferred onto the general case
in an obvious way. It was changed in [2], [3]. We will use here a different technique
known as Fourier-Motzkin elimination, which is described, e.g., in [14].
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Note that we require

no additional condition on [A] in the case of S,

[4] = [A]* in the case of Ssym,

E[A] = (E[A])T in the case of Sper,

[A] = ([CL]I'J') = —[A]T with [a]ﬁ = 0, = ]_, aveig b in the case of Sskew-

(1.5)

The restrictions in (1.5) are not severe. If [A] # [A]T in the case of Ssym, €.g., and
if [B] denotes the largest interval matrix in [A] such that [B] = [B]” holds, then the
matrices in [A]\[B] do not influence Sy,. Therefore, instead of [A] the matrix [B]
would play the crucial role in characterizing Ssym.

We emphasize that [A] is allowed to contain singular real matrices. The restriction
[a];i =0, i=1,...,n in the case of Sk, stems from the fact that a skew-symmetric
matrix A = (a;;) € R™*" is defined by A = —AT which implies a; = 0 for i =
1,...,n. We also recall that this matrix is singular if n is odd. This can be seen from
det A = det(—AT) = det(—A) = (—1)"det A. The condition EA = (EA)T for Spe,
characterizes a persymmetric matrix which is defined to be symmetric with respect
to the northeast-southwest diagonal; cf. [6], e.g.

The sets in (1.1)-(1.4) occur when dealing with linear systems of equations, the
input data of which are afflicted with tolerances (cf. [1], [10], or [13], e.g.). This is the
case when data A, b are perturbed by errors caused, e.g., by measurements or by a
conversion from decimal to binary digits on a computer. Assume that these errors are
known to be bounded by some quantities AA € R"*™ and Ab € R" with nonnegative
entries. Then it seems reasonable to accept a vector Z as the “correct” solution of

Az = b if it is in fact the solution of a perturbed system Az = b with
Ac[Al:=[A-AA A+ AA], belb]:=][b— Abb+ Ab].

The characterization of all such Z led Oettli and Prager [11] to their famous equiva-
lence

(1.6) zeS < |b—Azx| < AAlz| + Ab,

where |v| := (Jv;]) € R™ for v = (v;) € R". It relates the midpoint residual to
the tolerances and to |z| and was reformulated in [7] similarly as in the subsequent
Theorem 3.4. Often A belongs to a particular class of matrices with dependencies in
their entries. Such a class is formed by symmetric matrices, persymmetric matrices,
skew-symmetric matrices, and others. Therefore, it is reasonable to consider subsets
of S for which the elements z are solutions of linear systems Az = b with special
matrices A only. This leads to the problem discussed in this paper. Our results are
formulated in terms of inequalities involving the bounds of [A], [b]. They can easily
be reformulated using the midpoints A, b and the tolerances AA, Ab, although a
compact form such as (1.6) is still missing.

We also mention that the sets Sym and Sskew were already considered in [8] and
[9]. There, bounds for the projections of these sets onto the coordinate axes were
derived but no characterization of these sets were given.

We have arranged our paper as follows. In section 2 we list the notation which
we will use throughout the paper; in section 3 we present the results. We close our
paper with some examples in section 4 which illustrate the technique and the theory.
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2. Preliminaries. By R", R"*", IR, IR", and IR™*" we denote the set
of real vectors with n components, the set of real n X n matrices, the set of in-
tervals, the set of interval vectors with n components, and the set of n X n inter-
val matrices, respectively. By “interval” we always mean a real compact interval.
Interval vectors and interval matrices are vectors and matrices, respectively, with
interval entries. We write intervals in brackets with the exception of degenerate
intervals (so-called point intervals), which we identify with the element being con-
tained, and we proceed similarly with interval vectors and interval matrices. We
write [A] = [4, 4] = ([a];j) = (la;;,8:;]) € IR™" simultaneously, without further
reference, and we use an analogous notation for intervals and interval vectors. By [A]T

we mean the transposed matrix of [A]. We mention that [A] = [A]7 is equivalent to
A=ATand A= A" and that [A] = —[A]” is equivalent to A = A" and A= -AT.
Therefore, if an interval matrix [A] fulfills the condition [A] = —[A]%, its midpoint
matrix A ;= %(A + A) satisfies A = —AT; i.e., A is skew-symmetric. We call an n x n

interval matrix singular if it contains at least one singular real matrix; otherwise, we
call it regular. For computations with interval quantities we refer to [1] or [10].

By O we denote any closed orthant of R™. To distinguish among the sets
S, Ssym; Sper, and Ssgey we call Sgyp, the symmetric solution set, Sper the persym-
metric solution set, and Ssie, the skew-symmetric solution set.

3. Results. We start this section with a topological result which for S and S,ym
is already known (see [4]).

THEOREM 3.1. Let [A] € IR™™"™ be regular and satisfy (1.5).

(a) Each Of the sets Ssym: Sper: Sskew: SOO, Ssym n O, Sper no: and Sskew no
1s compact.
(b) Each of the sets S, Ssym; Spers Sskew, and SNO is connected; SNO 1is conver.

Proof. First, we prove the assertions for Sgxey. Let A = —AT € [A] and interpret
z = A~'b as a function f of the f‘—@;—l) variables a;;, 1 < i < j < n and the n
variables b;, 1 < ¢ < n. This function is continuous. Since [a};;, [b]; are connected

and compact the same holds for the range Ssiey of f.

The compactness of the intersection Ssxeq, N O follows from S,i.,, being compact
and from O being closed.

In the cases of S, Ssym, and Sp., one proves the assertions by similar arguments.

The convexity of S N O results from the fact that this set can be expressed as
the intersection of finitely many half spaces (cf. [11] or the subsequent Theorem 3.4,
e.g.). O

Remark. If [A] is singular but contains no singular symmetric matrix the proof
of Theorem 3.1 shows that S, remains compact and connected and that Ssym N O
remains compact. An analogous statement holds for Sper, Sskew, Sper N O, and
Sskew N O. For singular [A] the solution set S, however, is empty or unbounded since
the kernel of each singular matrix A € [A] is unbounded. Due to singularity, the
function f with f(A,b) := A~'b is certainly not defined on [A] x [b]. This already
indicates that the assertions of Theorem 3.1 may be wrong in the singular case. As
an illustration we consider the example

A=y 57) w=(0):
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Any real matrix A € [A] can be represented by

a=(5 )

with «, 8 € [-1,1]. Hence A is regular with

. ({0 gt
Alﬁ(a_l 0)

provided that a8 # 0. We obtain

S={(7,8)T|7€R, —c0<§<—-lorl<§<oo},
Ssym: skew:{(oga)T! '—00<65“-‘101’1S6<OO}1

which shows that neither S nor Sy, nor Ssiew is compact or connected in this
case. d . .

Our next theorem characterizes Sgie,, by a set of inequalities. Its proof starts
with

(3.1) T € Sehew <> b< Az <b, A=—-AT € [4],

transforms the inequalities in a suitable way by introducing new variables z;;, and
continues by applying the Fourier-Motzkin elimination (see [14], e.g.) to replace the
entries of A by their bounds a,; and @;;, respectively.

THEOREM 3.2. Let [A] = —[A]T € IR™" with [a];; =0, i = 1,...,n, and let
[b] € IR". Then for any orthant O C R"™ the set Sskew N O can be represented as
an intersection of finitely many closed sets, the boundaries of which are quadrics or
hyperplanes. The inequalities characterizing these hyperplanes and quadrics can be
derived from b < Az < b, A= —AT € [A], z € O by means of the Fourier-Motzkin
elimination.

Proof. Step 1. Let (3.1) hold, fix an orthant O, and define

= Qi if zix; > 0, + a;; i zizy = 0,
Q.. .= _ . s = 5
L aij if ;T < 0, t Q;; if z;T; < 0,
(3.2 -
b= = b, ifz; >0, bt = b; ifz; >0,
¢ - b; iz < 0, 5 " Qi if z; < 0.

Note that the values of az a;;-, b, b;r are constant as long as z remains in the same

orthant and that they satisfy a;; = —a;; and aj; = aj; = 0. We first will see that
(3.1) is equivalent to

z€S A dzj; € R such that

= + . - - -
(3.3) a;TiT; < zi; < a;5%i%5, 1,7 =1,...,m, 1 <j,
Zij = —Zji, L,j=1...,n,
e, T + 5
bixggzjzlz,:jgbéxi, 1:1,...,‘{3.

Setting z;; := a;;z;x; immediately shows that “(3.1) = (3.3).” To prove the converse
we will construct A € R™" such that A = —AT ¢ [A] and Az € [b] Consider a fixed

index pair i, jo and define a;,;, according to the following procedure.
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Case 1: z;, = 0. Since z € S by (3.3), there are real numbers a;-’oj for'y =l
such that
(3.4) G;04 % Q:Oj < @ipj
and
n —
(3.5) Qiu < Zai*ojmj < by,
j=1

If zj, # 0 then aiyj, := a ; = —ajoio; if Zj, = 0 then aiyj, := @ipj, With ai,j, being
the corresponding entry of the skew-symmetric midpoint matrix A € [A].

Case 2: z;, # 0. If =, # O then a;,j, = ;";Z’ ; if z;, = 0 then aj,j, is already
defined by the preceding case when the roles of oig and Jjo are exchanged.

If one lets ip run from 1 to n and if for each fixed ip the second index in z;,;,
runs from 1 to n then by the procedure above a skew-symmetric matrix A € [4] is
constructed which satisfies (3.1). Note that in Case 1 of our procedure there may occur
several choices for the entries a] ; such that (3.4) and (3.5) are valid. It is obvious
that in this case for a fixed iy the entries of one and the same double inequality (3.5)
must be chosen for those jo = 1,...,n for which z;, # 0. Together with the last
double inequality in (3.3), this guarantees b, < 23;1 a;;z; < b;.

The condition “z € §” in (3.3) is necessary, as the example A := 0 € R'™™,
b:=1 € R shows. Here, x = 0 € R is clearly not in S O Sgkew, but the remaining
conditions of (3.3) are fulfilled for z;; = 0.

Step 2. By z; = —z; we obtain z; = 0. Therefore, we omit z; in (3.3). We
now apply the Fourier-Motzkin elimination to (3.3). We illustrate this process by
eliminating z;2. To this end we replace z;; by —zj; for all ¢ > j in the inequalities of
(3.3). We rewrite these inequalities and change their order by forming three groups:
the inequalities of the first group have the form --- < 2,5 with z1o-free left-hand side,
the inequalities of the second group read zj2 < --- with z1o-free right-hand side, and
the inequalities of the third group do not contain z;5. Since the maximum over all left-
hand sides of the inequalities of the first group is less than or equal to the minimum
over all right-hand sides of the inequalities of the second group, these inequalities are
equivalent to requiring that each left-hand side of the first group be less than or equal
to each right-hand side of the second group while keeping all inequalities of the third
group. Omitting trivial inequalities, (3.3) is equivalent to

(€S A 3z € Rsuch that

4

appZ1%2 < bz — 2?23 21,

al_2$]I2 < —bz_l‘g + E;-l=3 224,

(3.6) < bl_$1 — E?::i le S a];a:l:cz,

q bl_:L’l - E?:s zlj S —b;xz -+ E_?:S Zgj,
s ;J‘Jz + E?zs sz S ai*_2$1$2,

—b;l@ + E?:B Zgj S b;_.?ﬁ e E?zs Z}j,
4 | remaining (in)equalities of (3.3),

where z13 and z2; no longer occur. This process of eliminating z;; can be continued
until we end up with a set of final inequalities which (together with z € SN O) is
equivalent to £ € Sk, N O and which contains no variable z;;. This proves the
theorem. 0
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At the end of the elimination process, there are two special inequalities for each
i € {1,...,n} which can be divided by z; # 0 such that no fractions occur. For
example, if the first inequality of (3.6) is combined successively with the inequalities
ay;z17; < z1; one obtains the final inequality > im0 a;21Z; < by ;. Since aj; =
afl = 0 it can be supplemented to E_?=1 a;71%; < bf‘xl, which reduces to

L mn
(3.7) S aje;<bh ifz1>0 and Y apz;2b, if21<0.
j=l1 j=1

From the third inequality of (3.6) one similarly obtains

T L
(3.8) > afzi>b, #fz1>0 and Y af;e; <b ifz <O
j=1 i=1
With
s a;; if T; >0, sy L a;; if z; = 0,
(3.9) ;5 = { ay; ifz,; <0, Ui = a; ifz;<0,

the four inequalities in (3.7) and (3.8) can be summarized to
T T
Y agz; <b and Y afiz; > by,
j=1 7j=1
provided that x; # 0. Repeating the arguments, one finally gets
Yoy bz < b,
i=1

j=1 "1
(3.10) .
Ej:l a;‘%’ 2 b,

if no component of z equals 0. These inequalities are just those which characterize
S and which are known as the Oettli-Prager theorem (cf. [11]), which we restate as
Theorem 3.4. They can either be omitted in the list of inequalities if “z € S” remains
there as in (3.6), or “z € S” can be cancelled when (3.10) is used instead. This last
remark also holds if some of the components of z are zero.

We also note that the number ny of final inequalities for Sskew, M O seems to be

7 1

r+1
double exponential. Thus we could show that ny is roughly bounded by 8 - (%)2

with k := w Since the arguments are a little bit clumsy and the proof is lengthy
we will skip it.

The same technique for S;x.,, can also be applied to construct a set of inequalities
which characterize Sy, provided that [4] = [A]T. To get the equivalence to “z €
Ssym” one must replace the equality in (3.1) by A = AT and one uses Zij = Zji
in (3.3) instead of z;; = —zj;. Analogously to Theorem 3.2, we get the following
theorem.

THEOREM 3.3. Let [A] = [A]T € IR™ ™ and let [b] € IR". Then for any orthant
O C R" the set Ssym N O can be represented as an intersection of finitely many
closed sets, the boundaries of which are quadrics or hyperplanes. The inequalities
characterizing these hyperplanes and quadrics can be derived from the elimination
process described above or they are of the form x; = 0. O

Theorem 3.3 can analogously be formulated for Sy, since Az = b <= EAz = Eb,
whence Sper for A equals Ssym for EA = (EA)T.
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The solution set for other classes of special matrices such as Hankel or Toeplitz
matrices shows particularities which essentially differ from those which we have pre-
sented up to now. Thus, the inequalities need no longer remain the same in a fixed
orthant and they cannot be treated by means of the particular variables z;;. Work in
this respect is in progress.

Inequalities (3.10) can also be obtained with the technique above if one starts
with

(3.11) zeSs
instead of £ € Sskew. The conditions corresponding to (3.3) then read

dox; <z <atz;, 4,j=1,...,n
ns g% ] — <t —= MigtD ’ g $ie
(3.12) Jz;; € R such that { b SZ?:] 2i; <b;, i=1,...,n

a; from (3.9). To prove the implication “(3.12) = (3.11)" set a;; = %4 jf

with a;; L
2

27?
z; # 0. If z; = 0 then any element from [a];; can be used to construct a matrix A
such that Az € [b] holds. It is easy to see that one ends up with inequalities (3.10) if
one performs the elimination process as above, starting with (3.12).

For completeness we state the result in a separate theorem.

THEOREM 3.4 (Oettli-Prager theorem [11]). Let [A] € IR™" and let [b] € IR".
Then for any orthant O C R"™ the set SN O can be represented as the intersection of
closed half spaces. These half spaces are given by

E?:l a;;Zj < b, ;
(3.13) S dte, > b i=1,...,n
j=1"13"3 = =
or
(3.14) ;<0 or x;>0,

where the inequalities in (3.14) are used to characterize the orthant O and where

Q50 &;; are defined in (3.9). o

4. Examples. In this section we present several examples to illustrate the results
of section 3. In particular, we construct the inequalities for characterizing S, Ssym,
Sper-,n and Sskew-

In our first example we consider 2 X 2 interval matrices.

Ezample 4.1.

(a) Let [A] € IR®*2, [b] € IR?. Then S is characterized according to (3.13) by
the inequalities

-~ ~— T A+ ~d
(4.1) { a1 %1 + a5p%2 < by, 01171 +a15%2 2 by,
a5 %1 + G2 < bo, (5,%1 + G > by

with the coefficients according to (3.9).
(b) Let [A] = [A]T hold. The symmetric solution set Ssym is described by the
four inequalities in (4.1) supplemented by the two inequalities

(4.2) bi:cl = bzf-l'?, - ailmz + a?}:r% = Al
—bI 1+ by To+ a1 27 — 3,73 <0
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with the coefficients from (3.2). These inequalities show that the boundary of Ssym
can already be curvilinear in the 2 x 2 case.

(c) Let E[A] = (E[A])T hold. The persymmetric solution set Spe, is described
by the four inequalities in (4.1) supplemented by the two inequalities in (4.2) if one
redefines a.f;'-, b;t appropriately.

(d) Let [A] = —[A]” hold with [a];; = 0 for i = 1, 2. The skew-symmetric solution
set Ssrew 18 given by the four inequalities in (4.1) with a;; = a;; = 0 in addition to
the two inequalities

(43) 61_1121 < —b;xz, —b;_ﬂ?g < 51{'31'1,

which follow directly from (3.6) taking into account z3; = 222 = 0. The skew-
symmetric solution set in R? is apparently bounded by a polygon; i.e., its boundary
is formed by straight lines. Taking into account @;; = &;; = 0, one sees immedi-
ately from (4.1) that the solution set S is an interval vector. This is not always the
case for Sgrew. For example, choose [b] := (1,1)7 and [a];2 := [0.25,1]. Then any
skew-symmetric element A of [A] can be written in the form

Aza( _2 é)=—0:2A_1 with 025 < a < 1.

Hence Sskew = {B8(=1,1)T| 1 < B < 4}; i.e., Sskew is the straight line in the plane
between the points (—1,1) and (—4,4). The corresponding solution set S, however,
is given by

SI{(_IB:'T)Ti 1<6,v<4} :([_4!_113[1=4DT' a

In our second example we consider 3 x 3 tridiagonal interval matrices.

Ezample 4.2.

(a) Let [A] € IR®**® with [a];3 = [a]s; := 0, and let )] € R®. Then S is
characterized by the inequalities

o — e 1 A A~
”— ~— A — T a4 A a4
G35T2 + G3373 < ba, 43572 + a3373 > b,

where the coeflicients are again given by (3.9).
(b) For tridiagonal 3 x 3 matrices [A] = [A]” the symmetric solution set Ssym is
characterized by the six inequalities in (4.4) and by the four additional inequalities

= + F o2 4 a2 o

- + - +,2 =2 o+ 2

(4.5) ;"51 zy — by I2++ 523 a8 + G227 ~ 03373 <0,
+by 21 — (+b5 —by)T2 — 07127 — az@1 22 — (Fa5; — ag)r; <0,

+b; x2 — b z3 — athx120 — ez + a2 <0

together with their four counterparts, which one gets by replacing each minus sign
by a plus sign, and vice versa (also in the superscripts). The coefficients of (4.5) are
defined in (3.2). Note that the information of the third inequality in (4.5) is contained
in that of the first row of (4.4) if [b]2 and [a]22 are point intervals.

Without proof we mention that the number of inequalities for S,,,, increases to
44 for a dense 3 x 3 system.
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(c) The skew-symmetric solution set Ssgey is characterized by (4.4) with a; =
a;; =0 for i = 1, 2, 3 and by the inequalities

—bf:z:l — b;—fﬂz + ay3T273 < 0,

—H);xl + b;xg + ngg < 0,

+by 1 — (-H}; — by )zp — a;}xlxg <0,
“bgﬂfz = b;—.’rg o a_ﬁ.’ﬂliﬂg S 0

(4.6)

together with their four counterparts, which are defined analogously as for Ssym. The
inequalities in (4.6) look similar to those in (4.5) when taking into account [a]; = 0
for i = 1, 2, 3. Again, the third inequality in (4.6) equals the first one in (4.4) if [bg]
is a point interval. Note also that according to section 1 each skew-symmetric matrix
from R3**3 is singular! 0

In our third example we describe S and Siew in two different ways, a direct way
(feasible since there is only one nontrivial pair of intervals) and a second way where
we will apply the results of Example 4.2.

Ezample 4.3. Let

0 1 0 [0, 2]
[4] = | -1 0 [0.5,1] |, [b] := 0
0 [-1,-05] O =]
Then [A] = —[A]T with [a];; = 0,4 =1, 2, 3. Each A € [A], b € [b] can be represented
as
0 1 0 ~
A=| -1 0 «a |, b= 0
0 -8 0 ]

with a, 8 € [0.5,1], v € [0,2]. The linear system Az = b then reads

(47) T2 =,
(4.8) —z1 + az3 =0,
(49) -—ﬁxz =-1.

(a) We first want to describe the solution set S. Equations (4.7) and (4.8) show
that z2 > 0 and sign(z,23) > 0. This means that only the first orthant O; and the
sixth orthant Og can contain elements of S, where O, is characterized by z; > 0, i =
1, 2, 3, and where Og is given by 7 < 0, z3 > 0, z3 < 0. By the first and the third
equation the system (4.7)-(4.9) is solvable if and only if v = 1. This is possible for
any 3 € [0.5,1] since v = 7! € [1,2] C [0,2]. The solution can be rewritten as

(4.10) Ty =ax3, z2=0"", z3€R

For each fixed a, 8 € [0.5, 1] these equations represent, of course, a straight line which
lies in the plane z; = 87! € [1,2] and which crosses the z,-axis at (0,571,0). For
each fixed 8 € [0.5,1] one thus gets a (double) sector in O; U Og which is bounded
by the straight lines z; = 0.5z3 and z; = z3 while o = 1. Varying § results in
two wedges, the cutting edges of which have length 1 and meet at the xs-axis from
(0,1,0) to (0,2,0).

(b) To characterize Sgkew let @ = 8. From (4.10) we then obtain zizy = z3
with 9 € [1,2], i.e., Sskew I8 the intersection of S with the hyperbolical paraboloid
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" pa = @132 Which transforms to ¥3 = yi—yiviaz1 =Y 4y, Ty = Y1~ Y2, T3 = Y3 In
particular, the boundary of Saiay 18 curvilinear. Figure 1 shows SNO1 and SskewNO1-
The intersections SN0 and Sskew N Og are obtained by rotating the two sets around
the zo-axis by an amount of 180° degrees.

1.75

Fic. 4.1. The shape of the solution sets S, ;=S N0O1, So = Sskew N 0, in Ezample 4.3.

(c) We now want to describe S and Sgkew IR 2 second way, namely, by the in-
equalities resulting from (4.4) and (4.6). For simplicity we use S C 01 U Oe, which
+

yields az3 = 0.5 = —Gap; Gg3 = 1= —ag3- Inequalities (4.4) can then be written in
the form

(4.11) 0<z2 <2,

(412) 0.51173 _<_ T _<_ I3,

(4.13) 1< 2y <2

if ($1,$2,$3) € 0;. In Op inequality (4.12) must be replaced by T3 < z; < 0.573.
Since (4.13) is more restrictive than (4.11) we can omit (4.11). Thus S'is characterized
by (4.12) and (4.13).

Inequalities (4.6) and their counterparts yield to

(4.14) byz1 < T2%3 < 2bT 1,
(4.15) byz1 <73 < by z1,
(4.16) bya S 0% S by %1,

(4.17) T3 = T1T2
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in Oq; in Og inequality (4.14) must be exchanged by 2b; z1 < zax3 < b} z1. Dividing
(4.16) by z; implies (4.11). Hence (4.16) can be omitted. Since (4.15) is identical
with (4.16) if (4.17) is used, we can skip (4.15) too. Replacing z3 in (4.14) by (4.17)
and dividing by z; yields to 0 = b; < z2 < 2b; < 4, which again is fulfilled if (4.11)
holds. Therefore, the inequalities for Sgkeq reduce in O; to
1<z, <2,
z1 < z3 < 271,
I3 = I1T2,
which is equivalent to (4.10) when taking into account & = 8 € {0.5,1]. The same
holds in Og if the second double inequality is replaced by 2z; < 23 < z7. 0
In our last example we consider a 2 x 2 interval matrix [A] which satisfies [A] =
AT
Ezample 4.4. Let

) 1 0,1 _{ 10,2]
A=y ) W= ()
Then [A] = [A]T with

_(1 « -1 _ 1 - ;
4=(5 %) = =555(5 5)

with a, 8 € [0,1], v € [1,4]. Since b > 0 the first component of A~'b is nonnegative
for all b € [b]. Therefore, S is completely contained in the union O; U Oy of the first
and the fourth quadrants.

We first consider S N O;. According to (4.1) we get the inequalities

(4.18) 21 £2;, =05 T2Z —mi,  T1L =T

This means that SN O; is the triangle with the corners (0,0), (2,0), and (2, 2).
The corresponding inequalities for S N O4 are given by

(4.19) 2,20, 29>-2, T2<2-1x1, z2<0.25z;.

They describe a quadrangle with the corners (0, 0), (0, —2), (4, —2), and (2,0).
To describe Ssym N O; we need inequalities (4.18) and the two inequalities from
(4.2), which can be transform to

(4.20) 422+ (dz2+1)2 21, (z;1-1)2%+z3<1

The first inequality of (4.20) describes an ellipse and its exterior. Since the ellipse lies
completely in the lower half plane the first inequality of (4.20) is no restriction for
Ssym N O;. The second inequality describes a closed disc D; with center (1,0) and
radius 1. The boundary of the intersection with SN O, is formed by the straight line
from (0,0) to (1,1), the part of the circle D, from (1,1) to (2,0), and the part of
the z;-axis from (2, 0) back to (0,0).

The inequalities in (4.19) together with the two inequalities

(4.21) 22 44r2>0, (-1 4 (z2+1)2<2

characterize S;ym N O4. The first inequality in (4.21) is always true. The second
inequality describes a disc D, with center (1,—1) and radius v/2. The boundary of
its intersection with SN Oy is formed by the straight lines from (0,0) to (0, —2), from
(0,-2) to (2,—2), and from (2,0) to (0,0), and by the part of the circle dD5 from
(2,-2) to (2,0). The situation is illustrated by Figure 2. a
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X2 r
I
S
1 4+
-1 2 3 4
} / 1 —= X1
/ Seym - |

_1 -
—2

F1G. 4.2. The shape of the solution sets S, Ssym in Ezample 4.4.
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