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ABSTRACT

We give a. new deduction of the set of inequaJities whieh ehara.cterize the solution set

S of rea.llinear systems Ax = b with the n X n eoefficient matrix A varying between

a. lower bound A and an upper bound A, and with b similarly varying between !!.and
b. The idea. ofthis deduction ean also be used to eonstruct a. set of inequaJities which

deseribe the so--ca.lled symmetrie solution set Ssym, i.e., the solution set ofAx = b

with A = AT varying between the bounds A = AT and A = AT. This is the ma.in
result of our pa.per. We show that in eaeh orthant Ssym is the intersection of S with
sets of whieh the bounda.ries are quadrics.

1 INTRODUCTION

In [2], [3], [4], [5], [6], [7], and others, the intersection sn 0 of the solution set

s:= {x E Rnl Ax = b, A E [A], bE [b]} (3.1)

with an orthant 0 is characterized by a set of inequalities which describe half-
spaces. Here, [A] denotes an n x n matrix with real compact intervals as entries,
[b]is a given vector with n real compact intervals as components,and [A] is
assumed to be regular, i.e., it contains only regular matrices as elements. In
[2] it is also shown that for regular symmetrie interval matrices [A]= [AV the

61

R. B. Kearfott and V. Krtinovich (tds.), Applications of Interval ComputanoTl.5,61-79.
@ 1996 Kluwer Academic Publishers. Printed in the Netherlands.



62 CHAPTER 3

symmetrie solution set

Ssym := {x E Rnl Ax = b, A = AT E [A], bE [b]}~ S (3.2)

is eompact and eonneeted. For 2 x 2 interval matrices, the intersection Ssymno
was characterized as an intersection of Swith sets of which the boundaries are

quadrics. The proof could, however, not be generalized to the n x n ease, n > 2.
In the present paper, we handle this general problem by another technique
based on results of Tarski [9] and Seidenberg [8]. In addition, we dispense with
the regularity of [A] in the definition of Sand Ssym. It is obvious that these
sets then no longer need to be bounded. First, we apply the new teehnique
to obtain the description of S n 0 by the above-mentioned set of inequalities.
Then we show that the same technique can be used to characterize Ssymn 0
as intersection of S with sets of whieh the boundaries are quadries. This is
the generalization of the results from [2] to the case n > 2. The proof is
constructive, i.e., all the inequalities can be explicitly derived. However, their
number n# increases tremendously with the number n of rows and columns of
[A]. Therefore, we restriet ourselves to describing the way in whieh to derive
them. An optimal bound for n# is given in the particular case of symmetrie
tri diagonal n x n matrices [A], which can also be viewed as generalizations of
2 x 2 matrices.

We eonclude aur paper with several examples which illustrate the theory.

2 NOTATION

By Rn, Rnxn, IR, IRn, IRnxn we denote the set of real vectors with n eom-
ponents, the set of real n x !t matriees, the set of intervals, the set of interval
vectors with n components and the set of n x n interval matriees, respectively.
By 'interval' we always mean areal compact interval. Interval vectors and
interval matrices are vectors and matrices, respectively, with interval entries.
We write intervals in braekets with the exception of degenerate intervals (so-
called point intervals) which we identify with the element being contained, and
we proceed similarly with interval vectors and interval matrices. As usual, we
denote the lower and upper bound of an interval [a]by f! and a, respeetively.
Similarly, we use A and A for the bounds of interval matriees [A] E IRnxn .

We write [A] = [A,Al = ([aij]) = ([f!ij' aij]) E IRnxn simultaneously, without
further referenee. By [AV we mean the transposed matrix of [A]. We mention

that [A]= [A]Tis equivalentto A = AT and A = AT.
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For computations with interval quantities we refer to [1].

We denote any orthant of Rn by 0, and the first orthant by 01.

3 RESULTS

3.1 A Fundamental Lemma

We start this section with the following lemma, which goes back to results
of Tarski [9] and Seidenberg [8]. This lemma is basic for all our subsequent
considerations. In particular, it contains the constructive procedure which leads
to the inequalities mentioned in Section 1.

Lem.m.a 1. Let Li = Li (Zl, . . . , zn), i = 1, . . . , m, be m given linearfunctions
of n real variables ZI, . . . , Zn:

n

Li (Z1, . . . , zn) = Ci+ L hj Zj ,
j=1

iE{l,...,m}.

Without loss of generality, let

lil = 0 if i E MO := {1,..., md,

hl < 0 if i E M- := {mI + 1, . . . , m2},

In > 0 if i E M+ := {m2 + 1,..., m},

where at least one of the sets MO, M-, M+ is not empty. 1f MO = 0 we set
ml := 0, if M- = 0 we set m2 := ml, if M+ = 0 we set m2 := m.

Let m := ml + (m2 - mI)(m - m2)' 1f m > 0 then construct linear functions
Li := Li(z2, . . ., zn), i = 1, . . ., m, in the following way:

i) 1f MO =F 0 then let
Li:=Li, i=l,...,ml'

ii) 1f M- f:- 0 and M+ f:- 0 then for p E M-, q E M+ and i = p +
(q - m2 - 1)(m2- mI) {i.e.,p = ml + 1,. .., m2, q = m2+ 1,. . ., m,
and therefore i = ml + 1,. . ., m2+ (m - m2 - 1)(m2 - mI) = m) let

Li := !i - 2.. + t (
lqj - lpj

) Zj.
Iq1 Ip1 j=2 lql Ip1



64 CHAPTER 3

ND Li is constructed if m =o.

Let the real numbers Z2,... Zn be given. Then the following two assertions are
equivalent.

a) There exists areal number ZI such that

Li(ZI,...,Zn) ~ 0, i =l,...,m.

b) The inequalities

Lä(Z2, .. ., zn) ~ 0, i= l,...,m, (3.3)

hold, where we define (3.3) to be true in the case m = 0, i.e., if no condition
Li(z2, . .., zn) ~ 0 exists.

Remark. The procedure of constructing the functions Li starting from the
functions Li is called an elimination of ZI.

Proof of Lemma J.
a) =? b) : Let Li(ZI,...,Zn) ~ 0 hold for i = l,...,m. Then
Li(z2,...,Zn) = Li(ZI"",Zn) ~ 0 for i = 1,...,ml' If M- = 0 and M+ = 0,
respectively, then m2 = ml and m = m2, respectively; hence m = ml, and b)
follows.

Assume now M- f- 0 "and M+ f- 0. Let p E M-. Then Ipl < 0; hence
Lp(ZI". ., zn) ~ 0 is equivalent to

n I. -
cp - "" .ll.z. < ZI .-- L..JI J-lpI '- 2 pI. J-

(3.4)

Analogously,
n

- Cg "" Igj-
ZI< -- - L..J-z.

- 19I j=2 19l J

Combining (3.4) with (3.5) results in

for q E M+. (3.5)

- 5:. - t Ipjz. < - 5- - t Ig;z.
Ipl j=2 Ipl J - 19I ;=2 19I J

which is equivalent to

for p E M-, q E M+, (3.6)

Li (Z2,.. . , zn) ~ 0 for i = p + (q - m2 - 1)(m2 - md.



The Shape 0/ the Symmetrie Solution Set 65

This shows b).

b) =>a) : Let Li(z2, . . ., zn) ::; 0 hold for i = 1, ...,m.Then, by definition,
Li(ZI"'" zn) ::; 0 far i = 1,.. .ml and for any ZI ER.
If M- = 0 choose any ZI such that

{

n

}

- . Cq lqj -
ZI::; mm -- - L -Zj .

qEM+ Iql j=2 Iql

Then Lq(ZI"'" zn) ::; 0 for each q E M+.
If M+ =0 choose any ZI such that

{

C n 1

}

max: - L - pj - -
pEM- Ipl ~ jZj ::; ZI.J=2 pI

which is equivalent to Lp(ZI, . . . , Zn) ::; 0 for each p E M- .
If M- f::.0 and M+ f::. 0 then Li(z2' . . ., zn) ::;0 for i = ml + 1, . . ., m. By the
construction of Li this means

n n 1cp '" Ipj Cq '" qj +
- - - ~ - Zj ::; - - - ~ - Zj for each p E M-, q E M .

Ipl j=2 Ipl lql j=2 lql

This implies

{

n

} {

n

}

'- cp Ipj - .-' Cq lqj -Cmax.- max: --
I - L _I Zj ::; Cmin .- mm -- I - L _1 Zj .

pEM- pI j=2 pI qEM+ ql j=2 ql

Choose ZI E [cmax,Cmin];then Li(ZI," .Zn) ::; 0 for i = ml + 1, ..., m. This
proves b). 0

3.2 Characterization of the Solution Set S by
Inequalities

Using Lemma 1, we will characterize the solution set S by inequalities. To this
end let [A] E IRnxn, [b]E IRn and Ax = b with A E [A) and b E [b]. Without
loss of generality, let x E 01. Then

gijXj ::; aijXj ::; UijXj ,n

t ::; L aijXj ::;bi ,
j=1

i, j = 1,. . .n,

i = 1,.. .n. (3.7)
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With
Zij := aijXj , i,j=l,...n,

the n2 + n double inequalities (3.7) are equivalent to the 2(n2 + n) inequalities

S!ijXj - Zij

-aijXj + Zij
n

b.- "z..-, L..J 'J
j=l

n

-bi + ~Zij
j=l

~ O

}< 0
j = 1,...,n

< 0 i = 1,.. .,n. (3.8)

< 0

It is obvious that (3.8) is in the form preseribed by Lemma 1a) (not yet
ordered in the way deseribed there) with Zij instead of Zk. Therefore,
if Zn, Z12,Z13,. . ., znn satisfy (3.8) then Z12,Z13,.. ., znn satisfy a system
Li(z12, Z13,. . ., znn) ~ 0 with Li from Lemma 1. Note that for fixed i and
j the term Zij oeeurs exaetly onee in eaeh line of (3.8), i.e., four times for eaeh
i. In the notation ofLemma 1, the values ofthe eoeffieients lij are only -1,0, or
1, and M- :f. 0, M+ :f. 0. Elimination of Zn means replaeing the inequalities
in (3.8)

!!n Xl - Zn

-anX1 + Zn

< 0

< 0
n

h - ~ Zlj
j=l

n

-bI + ~Zlj
j=l

< 0

< 0

by
!!n Xl < anXl

- n

< bl - ~ Zlj
j=2

!!11 Xl

n

Q1 - ~Zlj
j=2

n

QI - ~Zlj
j=2

< anX1 (3.9)

n

< /)1- ~ Zlj {:=::> Q1 ~ /)1
j=2

while keeping the remaining ones. (Cf. the proeess of getting (3.6) from (3.4)
and (3.5) in the proof of (3.3) in Lemma 1.) The first and the fourth inequality
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of (3.9) always hold; therefore we delete them. Then (3.9) is equivalent to
n

Ql - au XI - L Zlj
j=2

~ 0,

n

-bI + guxl + L Zlj
j=2

< O.

Together with the inequalities of (3.8) which do not contain Zu yields a
system of inequalities for which the arguments above can be repeated far
Z12,ZI3,.. .znn. After a total of n2 elimination steps we end at the following
n# = 2n relations.

n

b. < ~aijXj~ -L-
j=1 i = 1,. ..,n. (3.10)n

~ a..x' < -b'

L- =4) ) - s
j=1

Repeated application of Lemma 1 shows that the statements 'x E S' and 'x
satisfies (3.10)' are equivalent for x E 01. Note that (3.10) is just the well-
known characterization of S which can be found, e.g., in [2].

We assumed x E 01. If X f/:.01 then the bounds in the first group of inequalities
in (3.7) are changed for those j for which Xj < O. For Xj < 0, they are
aijXj ::; aijXj ~ !!ijXj . The elimination process for the Zij proceeds now in an
analogous manner. The final result is summarized in the following theorem (cf.
[2]). Equivalent formulations can be found in [3], [4], [5], [6] and [7].

Theorem 1. Let [A] E IRnxn and.let [b]E IRn. Then x E S if and only if x
satisfies

n

L äijXj ::; bi
j=1

{
aij

with äij:= !!ij

if xj < 0
if x j ~ 0

if Xj < 0
if xj ~ 0

(3.11)n

b. < ~ aijXj~ -L-
j=1

{

a..
=4)

with aij:= aij

for i = 1,..., n.
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3.3 Charaeterization of the Symmetrie
Solution Set Ssym by Inequalities

Let the symmetrie interval matrix [A] = [A]T be given. Of course, the solution
set S of [A] is characterized by Theorem 1 also in this particular ease. We are
now going to describe the symmetrie solution set Ssym.

We want to apply Lemma 1 to show that the symmetrie solution set Ssym can
be eharaeterized as an intersection of closed half-spaees and closed sets of which
the boundary is formed by quadrics. This result generalizes that in [2] whieh
was only valid for 2 x 2 matriees.

Due to the equality of aij and aji the numbers Zij := aijXj and Zji := ajiXi are
no longer independent if Xi and Xj are given. Therefore, the procedure for char-
acterizing S must be modified in order to get a set of inequalities which describe

Ssym. Instead of eonsidering aijXj we will now use the n(n2+ 1) numbers

Zij := aijXiXj, i,j=l,...n, i 5: j.

They can be introduced by multiplying (3.7) by Xi taking into account the sign
of Xi. For simplicity we restriet ourselves (without loss of generality) to the
first orthant. We then get the inequalities

!kjXiXj 5: aijXiXj = Zij 5: aijXjXj,
n n

Q;Xi5: LaijXiXj = LZij 5: bixi,
j=1 j=1

i, j = 1, .. .n, i 5: j

i = 1,.. .n,

whieh are equivalent to

with Zij := Zji in the case j < i
(3.12)

!!ijXiXj - Zij

-aij XiXj + Zij
n

b.x. - '"' z..
=-J S L i I}

j=1
n

-bixi + L Zij
j=1

i = 1,.. .,n. (3.13)

with Zij =Zji. Lemma 1 can now be applied as it was in the proof ofTheorem
1. Thus, if Zn, Z22,. . ., znn are eliminated first, the number of non-trivial

<

n< J =,.. .,n

< 0

< 0
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inequalities in (3.13)reduces from 2 (n(n 2+1) + n) =n(n+l)+2n to n(n+l).
The inequalities now read

<

~ }
j = i + 1,..., n

!!ijXiXj - Zij

-aijXiXj + Zij ~
n

b - 2 "'-
=-iXi- aiiXi - L.J Zij

;=1
;#

n
- 2 "'-

-bi xi + !!;iXi+ L.J Zij
j=1
;~i

In order to show what happens when eliminating Zij = Zji for i =I j we will
choose Z12 as the next candidate. Here, we have to replace the six inequalities

!!12X1X2 - Z12

-(112X1X2 + Z12
n

b - 2 "'-
-I Xl - al1x1 - L.J Zlj

j=2
n

-bI Xl + !!n x~+ L Zlj
j=2

n

b - 2 "'-
-2X2 - a22X2 - L.J Z2j

;=1
#2

n

-112X2 + !!22X~+ L Z2j
j=1
;~2

by the six non-trivial inequalities

< 0

< 0

< 0

< 0
(3.15)

< 0

< 0

!!12XlX2

n

- 2 "'-
< blxl - !!l1Xl - L.J Zlj

j=3

!!12Xl X2

n

< b2x2 - !!22X~- L Z2j
j=3

n
- 2 "'-

QlXl - an Xl - L.J Zlj
j=3

< a12Xl X2

n

b - 2 "'-
-2X2 - a22X2- L.J Z2j

j=3

< a12X1X2

< 0 I

i = 1,.. .,n. (3.14)

I
< 0
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n

b - 2 "'-
-I Xl - anXl - L- Zlj

j=3

n
- 2 "'-

< b2x2 - ~!22X2- L.-JZ2j
j=3

n

b - 2 "'-
-2X2 - a22X2 - L.-J Z2j

j=3

n
- 2 "'-

< blxl - ~nXl - L.-JZlj
j=3

which are equivalent to
n

!!rXl - GnXi - G12XlX2- L Zlj
j=3

n

-bI Xl + gn xi + ~12XlX2+ L Zlj
j=3

n

bX2 - a22X~ - a12Xl X2 - L Z2j
j=3

n

-b2x2 + ~22x~ + ~12X1X2 + L Z2j
j=3

n

b
-
b - 2 2 "' (

- -
)-1 Xl - 2X2 - an Xl + ~22X2 - L.-J Zlj - Z2j

j=3n

-b1Xl + Q2X2 + ~nXI - G22X~+ L(Zlj - Z2j)
j=3

(3.16)

The remaining inequalities of (3.14) are unchanged. Continuing the reduction
process of Zij along the lines of Lemma 1 ends up with a set of inequalities each
of which describes a quadric, if'~ 0' is replaced by '= 0'. Among this set one
finds the inequalities

n

b.Xi - "'aijXiXj-s L.-J
j=1

n

-bixi + L!!ijXiXj
j=1

< 0

< 0
i =1,. ..,n. (3.17)

(For a proof use the first four inequalities of (3.16) and the first
two sets of inequalities from (3.13).) For Xi > 0 we can divide
(3.17) by Xi to end up with (3.10). This means that the set of in-
equalities characterizing S must necessarily be satisfied for X E Ssym
- a trivial statement. Nevertheless curvilinear boundaries normally will oc-
cur far Ssym. They arise from the last two inequalities of (3.16). If Xi = 0, the
division by Xi is forbidden in (3.17). Since X = (Xi) E Ssym implies X E S, the
inequalities (3.10) are satisfied also in this particular case Xi = O.

< 0

< 0

< 0

< 0

< 0

< o.
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As with the non-symmetrie solution set S, repeated applieation of Lemma 1
shows that the statements 'z E Ssym' and 'z satisfies the set of inequalities
constructed by the above-mentioned procedure' are equivalent for Z E 01-
Here again, dispensing with the restrietion Z E 01 means ehanging the bounds
in (3.12) whieh involve Zi, Zj. Thus we obtain

aijZiZj ~ Zij ~ ~jZiZj if ZiZj < 0,

and
n

bizi ~ LZij ~ ~Xi ifzi < O.
j=l

Due to our previous considerations we get the following theorem.

Theorem 2. Let [A]= [AV E IRnxn and let [b]E IRn. Then in eaeh orthant
the symmetrie solution set Ssym ean be represented as the interseetion 0/ the
unsymmetrie solution set Sand sets with quadries as boundaries.

3.4 On theNumber of Inequalities to
Describe 8symfor Tridiagonal Matrices

We want to derive an upper bound n for the number n# of the inequalities whieh
are necessary to describe Ssymfor tri diagonal matrices [A]= [AV E IRnxn. In
this case, we use the elements Zij only for 0 ~ j - i ~ 1, and we start with the
inequalities

"

Q;,i+1 XiXi+l - Zi,i+1 ~ 0
-a. .+l X.X" +l + Z" .+1 < 0

1,1 I I 1,1 -
hZl - auzi - Z12 ~ 0
- 2-blz1 + guzl + Z12 ~ 0
b - 2 - -
:-iZi- aiiXi - Zi-l,i - Zi,i+l-
b 2 - -

- iZi + Q;iZi + Zi-l,i + Zi,i+1
b - 2 - <-nZn - annZn - Zn-l,n -
- 2-

-bnzn + f!nnXn + Zn-l,n <

}
i = 1,..., n - 1,

~ 0
~ 0

0
0

}

(3.18)
i=2,...,n-1,

for SsymnOl whieh we get after having eliminated the diagonal elements Zii, i =
1,..., n (cf. (3.14».

Consider a fixed element Zk,k+1' The elimination process shows that in eaeh
step of this process half of the inequalities containing Zk,k+l has the form

r+Zk,k+l~O (3.19)
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while the other half has the form

r - Zk,k+1::; 0 (3.20)

with r, rindependent of Zk,k+1' Each inequality of the form (3.19) has a
counterpart (3.20) which one gets by changing plus to minus and the upper
bars to lower ones, and vice versa.

We will eliminate Zk,k+1 in the order k = 1,2,...n - 1. In the k-th of these
elimination steps we will find the following situation.

Lemma 2. Let [A]= [AV E IRnxn be a tridiagonal interval matrix and let
[b] E IRn. Assume that the off-diagonal element Zk,k+1 is eliminated in the
k-th elimination step where the n preceding elimination steps for the diagonal
elements Zii, i = 1,... n, have already been performed (and therefore are not
cO'lmted here).

a) Before the k-th elimination step Zk,k+1 occurs in 4 + 2k inequalities of
which 2 + 2k = 2(k + 1) contain Zk,k+l as the only element Zi,i+l while the
remaining two inequalities contain Zk,k+1 together with Zk+1,k+2' (In the
case k = n - 1 we define Zn,n+l := 0.)

b) Before the k-th elimination step Zi,i+l, i = k + 1,..., n - 1, occurs in six
inequalities. With the exception ofthe two inequalities which contain Zk,k+1
together with Zk+1,k+2,these inequalities are the original ones (which have
not been changed after having eliminated the elements Zii, i = 1,..., n).

c) Right after the k-th elimination step, k < n - 1, there are k2 + k final
inequalities, i.e., inequalities which are no more changed during the suc-
ceeding elimination process. If k =n - 1 this number increases by 2n.

Proof. The assertion is trivial for k =1. Let it hold for some fixed k < n - 1.
Those inequalities which contain Zk,k+1as the only element Zi,i+1combine to
final inequalities. Combining an inequality with its counterpart results in an
inequality which always holds. (Keeping track of the history of an inequality
L$ ::; 0, one can see that L$ can be expressed as SUffiof some of the terms
+QilxiL -bilxiL +~ijlxil'lxjj, -aijlxil'lxjl and those Zij which have not yet
been eliminated. Therefore L$ and its counterpart combine to a final inequal-
ity, say Lt ::; 0, in which Lt is the sum of some of the terms -d([b]i) lXiI,
-d([a]ij )Ix;! . IXjL where d([a]) := a - ~ denotes the diameter of an inter-
val [a]. Hence Lt ::; 0 is trivially true.) We will omit such trivial inequali-
ties in our further considerations. In the k-th elimination step we thus get
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(k + 1)2- (k + 1) = k2 + k final inequalities and 2(k + 1) new ones. These new
inequalities contain Zk+!,k+2 as the only element Zi,i+!. All other inequalities
remain unchanged. Among them there are two inequalities which contain only

Zk+1,k+2 and two which contain Zk+!,k+2 together with Zk+2,k+3. The increase
of 2n in the case k =n -1 results from the 2n new inequalities for Zn,n+1which
are final ones since we defined Zn,n+1to be zero. This proves the lemma. 0

Adding all the final inequalities results in

n-1 n-1

n = L:k2+ L:k+2n
k=l k=1

(n - 1)n(2n - 1) + n(n - 1) + 2n = ~(n2 + 5).623

The elimination process for tri diagonal matrices shows, that n# = Ti"may be
possible, i.e., the above bound n is sharp. There are also cases in which n# < n
holds, as can be seen from any diagonal matrix.

We state our result in the following theorem.

Theorem 3. Let [A] = [AV E IRnxn be a tridiagonal interval matrix, let
[b]E IRn and let n# be the number of inequalities obtained by the elimination
process described above for the intersection of 8sym with an orthant. Then n#n
is boundedby n = "3(n2 + 5). This boundis sharp.

3.5 Particular Cases

In the particular case of2x2 matrices we end up with the following6 inequalities
for 8symn 01 which can be deduced from (3.18).

Q1Xl - au xi - (l12X1X2
- 2

-b1xl + QllX1 + Q12X1X2

b - 2 -
-2X2 - a22X2 - a12x1x2
- 2

-b2x2 + Q22X2+ Q.12XlX2

- 2 2
Q1X1- b2x2 - aÜx1 +Q22X2
- 2 2

-blxl + Q2X2 + Qll Xl - a22X2

:S 0

:S 0

:S 0

< 0

<

<

0

o.
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Dividing the first two inequalities by Xl, the next two by X2 yields the inequal-
ities for the unsymmetric solution set S n 01, The last two inequalities just
characterize the sets C+ and C- in [2].

For tri diagonal 3 x 3 matrices Ssymn 01 is characterized by the 7 inequalities

b - 2 -
-1 Xl - an Xl - a12X1X2

Q2X2 - a12X1X2 - a22X~ - a23X2X3

QaX3 - a23X2X3 - a33X~
- 2 2

Q1Xl - b2x2 - an Xl + g22x2 + g23x2X3
b

-
b +b - 2 + 2 - 2

-1 Xl - 2X2 ~X3 - an Xl g22X2 - a33X3
Q1X1- (b2 - Q2)X2 - an XI - a12X1X2 - (a22 - g22)X~

b
-
b - - 2 + 2

-2X2 - 3X3 - a12X1X2 - a22X2 ~3X3

and their 7 counterparts, which can easily be deduced from (3.21). The first
three inequalities and their counterparts describe the unsymmetric solution set
S n 01. The sixth inequality equals the first one if [b2] and [a22] are point
intervals.

Without proofwe mention that the number ofinequalities for SsymnO increases
to 44 for a dense 3 x 3 system.

4 EXAMPLES

In this section we want to illustrate some aspects of the results in Section 3.

Example 1. Let

[A] = ( [- ~,'1]
[-1,1] )-1 ' [b]= (;) .

The matrix [A] contains the singular matrix Al = ( - ~ - ~ ), for which
no solution of the system A1x = b exists, and the singular matrix A2 =
(i := i ), for which the solutions of A2x = bare given by Xl - X2 = 2.

However, [A] contains no singular symmetrie matrix, since det (~ - ~ )=
-1 - 82 ::; -1. The solution sets Sand Ssym can be represented by

Ssym= { 1: 82 ( ~ ~1: ) I - 1 ::;8 ::;1 } ~ 04

< 0
< 0
< 0

< 0 (3.21)
< 0
< 0
< 0
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and

S-
{

2
(

l+s
)11+ st -1 + t - 1 :S s, t :S 1, st # -1 } U

{ ( :~ )1 Xl - X2 = 2} ,

where 04 denotes the fourth quadrant of R2. The inequalities (3.11) character-
izing S n 04 read

2 - Xl + X2 :S0
-2+XI+X2 :SO

-2 - Xl - X2 :S0

where we have dropped the fourth inequality since it coincides with the first
one.

For Ssyrn=Ssyrn n 04 we need, in addition, the inequalities

-(xi + x~ - 2XI+ 2X2) :S 0

xi + x~ - 2XI + 2X2 < 0

which we combine to the equality

xi + x~ - 2XI+ 2X2= 0

or, equivalently,
(Xl - 1)2+ (X2+ 1)2=2. (3.22)

Thus, Ssyrnis the half-circle which results as the intersection ofthe circle (3.22)
with 04, while S is the union of the half-strip in Figure 1 and the straight line
Xl - X2 =2.

Example 2. Let

(

-2 2
[A]= 2 2

0 [3,8]

0

) (

-2 2
[3,8] , At = 2 2
-2 0 t

and b= [b]= ( t~ ) .

~
)

,3 :St :S8,
-2
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X2

-1

1

1
Xl

-1

s

Fig. 1 The shape of the solution sets S, Ssymin Example 1.

Prom Atx = b we get

12t + 32 > 0,
Xl = X2 = t2 + 8 -

16t - 48 > 0 .X3 = .'>. ~ (3.23)
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In particular, At is regular and Ssym = Ssym n 01. The inequalities in (3.21)
yield

Xl - X2 = 0,

3X3:S 16 - 2X1 - 2X2 :S 8X3,

3X2 :S 12 + 2X3 :S 8X2,

(3.24)

which characterize S n 01, and

3X2X3 :S 16x2 - 2xi - 2x~

xi + (X2 - 4)2 + (X3 + 3)2

( )
2

( )
2

Xl - 8 Xl - 8 2

- 2 + 2 + X2 + (X3 + 3)

< 8X2X3,
- 25, (3.25)

(3.26)= 9,

which select Ssym from Sn01. Note that the sixth inequality of (3.21) coincides
here with the first one (after having divided by xd; therefore it has been
omitted. The intersection of the sphere (3.25) with center (0,4, -3) and radius
5 with the plane (3.24) is the cirele C on this plane with center (2,2, -3) and
radius V17. Since Ssym is connected (see [2]or prove it direetly from (3.23» it
must be an arc of C. A eloser look at (3.23) reveals that Ssym is the are of C

whieh lies in 01 between (4,4,0) and (196,~6, 1~). One obtains these endpoints
as the solutions of Atx = b for the values t = 3 and t = 8, respectively.
The equation (3.26) describes a distorted one-sheeted hyperboloid. Ssym is
illustrated in Figure 2.

The unsymmetrie solution set S is the tri angle with the corners

(4,4,0), (~7, 187,~), (196,196,~O) which lies in the plane (3.24) and in 01,
and which contains Ssym.
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