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ABSTRACT

We give a new deduction of the set of inequalities which characterize the solution set
S of real linear systems Az = b with the n x n coefficient matrix A varying between
a lower bound A and an upper bound A, and with b similarly varying between b and
b. The idea of this deduction can also be used to construct a set of inequalities which
describe the so—called symmetric solution set Ssym, i.e., the solution set of Az = b
with A = AT varying between the bounds A = AT and A = A". This is the main
result of our paper. We show that in each orthant Sy, is the intersection of S with
sets of which the boundaries are quadrics.

1 INTRODUCTION
In [2], [3], [4], [5], [6], [7], and others, the intersection S N O of the solution set
S:={zeR"| Az =b, A€ [A], be[b]} (3.1)

with an orthant O is characterized by a set of inequalities which describe half-
spaces. Here, [A] denotes an n x n matrix with real compact intervals as entries,
[6] is a given vector with n real compact intervals as components, and [A] is
assumed to be regular, i.e., it contains only regular matrices as elements. In
[2] it is also shown that for regular symmeiric interval matrices [A] = [A]T the
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symmetric solution set
Seym :={z €R"| Az =b, A= AT c[A], be B} C S (3.2)

is compact and connected. For 2 x 2 interval matrices, the intersection Seym NO
was characterized as an intersection of S with sets of which the boundaries are
quadrics. The proof could, however, not be generalized to the n x n case, n > 2.
In the present paper, we handle this general problem by another technique
based on results of Tarski [9] and Seidenberg [8]. In addition, we dispense with
the regularity of [A] in the definition of S and Seym. It is obvious that these
sets then no longer need to be bounded. First, we apply the new technique
to obtain the description of SN O by the above-mentioned set of inequalities.
Then we show that the same technique can be used to characterize Sgym N O
as intersection of S with sets of which the boundaries are quadrics. This is
the generalization of the results from [2] to the case n > 2. The proof is
constructive, 1.e., all the inequalities can be explicitly derived. However, their
number n4 increases tremendously with the number n of rows and columns of
[A]. Therefore, we restrict ourselves to describing the way in which to derive
them. An optimal bound for ny is given in the particular case of symmetric
tridiagonal n x n matrices [A], which can also be viewed as generalizations of
2 X 2 matrices.

We conclude our paper with several examples which illustrate the theory.

2 NOTATION

By R, R**" IR, IR", IR"*" we denote the set of real vectors with n com-
ponents, the set of real n x n matrices, the set of intervals, the set of interval
vectors with n components and the set of n x n interval matrices, respectively.
By ‘interval’ we always mean a real compact interval. Interval vectors and
interval matrices are vectors and matrices, respectively, with interval entries.
We write intervals in brackets with the exception of degenerate intervals (so—
called point intervals) which we identify with the element being contained, and
we proceed similarly with interval vectors and interval matrices. As usual, we
denote the lower and upper bound of an interval [a] by a and @, respectively.
Similarly, we use A and A for the bounds of interval matrices [A] € IR**",
We write [A] = [4, 4] = ([a;;]) = ([a;;,@;]) € IR™" simultaneously, without
further reference. By [A]7 we mean the transposed matrix of [A]. We mention
that [A] = [A]7 is equivalent to A = AT and 4 = a.
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For computations with interval quantities we refer to [1].

We denote any orthant of R® by O, and the first orthant by O;.

3 RESULTS

3.1 A Fundamental Lemma

We start this section with the following lemma, which goes back to results
of Tarski [9] and Seidenberg [8]. This lemma is basic for all our subsequent
considerations. In particular, it contains the constructive procedure which leads

to the inequalities mentioned in Section 1.

Lemma 1. Let L; = Li(z1,...,2n), i =1,...,m, be m given linear functions
of n real variables z1,...,2,:

L;(ZI,...,zn):C;—E—ZI,'ij ; iE{l,...,m}.

j=1
Without loss of generality, let
Li=0 if ieM’:={1,...,m},
(1 <0 ¢if ieM™ ={m+1,...,my},
Li>0 if ieMt:={my+1,...,m},
where at least one of the sets M°, M~—, M is not empty. If M° = () we set

my =0, if M~ =0 we set my :=mq, if Mt = 0 we set my :=m.
Let m :=my + (my — my)(m — mg); If m > 0 then construct linear functions
L; := Li(2z2,...,2a), t=1,...,7, in the following way:

i) If M° # 0 then let

J?J,' ::L;, iZI,..-,ml.

i) f M~ # 0 and M* # 0 then forp € M~, ¢ € Mt and i = p+
(q_m2_1)(m2“’m1) (i-e‘;p:ml‘}'ls---im% q:m2+1:-°'sm;
and therefore i = my +1,...,my+ (m — my — 1)(my — my) = 1) let

ORI o (TR AT

L= 7 +,§-:2(I 2j.

b1 g p
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No L; is constructed s m=10.

Let the real numbers 25, ...z, be given. Then the following two assertions are
equivalent.

a) There ezists a real number Z; such that

Li(31,0:4,8) €0, §=1,...,m.

b) The inequalities
ﬁi(z'?)"':zn)sor i:l,...,ﬁl, (3'3)

hold, where we define (3.3) to be true in the case i = 0, i.e., if no condition
Li(Z2,...,%n) < 0 ezists.

Remark. The procedure of constructing the functions L; starting from the
functions L; is called an elimination of z;.

Proof of Lemma 1.

a) = b) : Let Li(Z1,...,Z,) < 0 hold for ¢ = 1,...,m. Then
Li(Basvinin) = Bilfnae; Ba) £0 ok = 1. o TEM™ =) and M= @,
respectively, then my = m; and m = m;, respectively; hence = = m,, and b)
follows.

Assume now M~ # @ and M* # 0. Let p € M~. Then l,; < 0; hence
Ly(Z%1,...,%,) <0 is equivalent to

c Loiin. -
*I—P - l’izj <7z. (3.4)
Pl = Pl
Analogously,
% <———z:‘,qlz_1 forge M. (3.5)

Combining (3.4) with (3.5) results in

n
. "PJ % 9 - B %
Ipl = "pl = 11 ZI Z forpeM™, ge M, (36)
which is equivalent to

I:J,-(Zg,...,f,,) <0 fori=p+(g—my— 1)(m3—m1).
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This shows b).

b) = a): Let L;i(%2,...,%,) <Ohold for i = 1,...,7h. Then, by definition,
Li(%,...,%2,) <0fori=1,...m; and for any z; €R.
If M~ = 0 choose any Z; such that

¢ L
Zl < min ——"E‘“—Z'ﬂ"% §
geM+

lg1

Then Ly(%,...,%2,) < 0for each g€ MT.
If M+ = 0 choose any z; such that

which is equivalent to L,(%1,...,2,) <0 foreach pe M~.
If M~ # 0 and {'/I‘" # 0 then f,g(Zg,...,En) <0forti=my+1,...,m. By the
construction of L; this means

Z P-’ ”.__Z;—-ZI Zz; foreach pe M™, geMt .

This implies

n
Cp IPJ ~ . 9j
c = max { —— — £ Coit = MIN o -
T peM- { lp1 i 7 lp1 } T gem+ { sz }

Choose Z; € [cmax, Cinin); then Li(Z,...2,) < Ofori = m; +1,...,m. This
proves b). 1]

3.2 Characterization of the Solution Set S by
Inequalities

Using Lemma 1, we will characterize the solution set S by inequalities. To this
end let [4] € II"\?’"X"I [6] € IR" and Az = b with A € [A] and b € [b]. Without
loss of generality, let z € O;1. Then

a;;z; < a,,zJ a5 5 5.3 =il

Q‘-SEG,‘J;SJ' Sb,‘, z:l,n (37)
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With

%y =T, HI=Laan;

the n? + n double inequalities (3.7) are equivalent to the 2(n? + n) inequalities

a;;Tj — Zi; < 0 ]
_ _ i=1,...,n
-—{Igj.tj +Z,‘j S 0
n
ég—zzij <0 ) = LowagTis (3.8)
ji=1
~bi+Y Z; < 0
i=1 J

It is obvious that (3.8) is in the form prescribed by Lemma la) (not yet
ordered in the way described there) with Z; instead of Z;. Therefore,
if %11, %12, %13, . ., Znn satisfy (3.8) then Zi3,Z13,...,2Znn satisfy a system
Li(%12, %13, - - -1 Znn) < 0 with L; from Lemma 1. Note that for fixed i and
j the term %;; occurs exactly once in each line of (3.8), i.e., four times for each
i. In the notation of Lemma 1, the values of the coefficients I;; are only —1, 0, or
1, and M~ # 0, M+ # 0. Elimination of Z;; means replacing the inequalities

in (3.8)

e t1—2z11 < 0
—5112;'1 -|' 211 S 0
< 0

n
.321 - E Zij
g=1

1]
~bi+Y 7 <0
j=1

|

by
a7y < @ _ )
n
a2 < bi— Zflj
j=2
n
2 - » s
b, — z1; < @z (3-9)
g =
] n
_111—251;‘ < 51—251;‘ b <h
j=2 Fi=2 y

while keeping the remaining ones. (Cf. the process of getting (3.6) from (3.4)
and (3.5) in the proof of (3.3) in Lemma 1.) The first and the fourth inequality
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of (3.9) always hold; therefore we delete them. Then (3.9) is equivalent to
b, — a1z —Zflj < 0,
ji=2

~bi+ayTi+ Yy Ay < 0.
ji=2

Together with the inequalities of (3.8) which do not contain Z;; yields a
system of inequalities for which the arguments above can be repeated for
Z12, 213, - - - Znn. After a total of n? elimination steps we end at the following
ny = 2n relations.

i=1,...,n. (3.10)

Repeated application of Lemma 1 shows that the statements ‘z € S° and ‘z
satisfies (3.10)’ are equivalent for z € O;. Note that (3.10) is just the well-
known characterization of S which can be found, e.g., in [2].

We assumed z € O;. If z € O; then the bounds in the first group of inequalities
in (3.7) are changed for those j for which z; < 0. For z; < 0, they are
@;;z; < ajjz; < a;;z; . The elimination process for the Z;; proceeds now in an
analogous manner. The final result is summarized in the following theorem (cf.
[2]). Equivalent formulations can be found in (3], [4], [5], [6] and [7].

Theorem 1. Let [A] € IR"*" and-let [b] € IR". Then z € S if and only if z
satisfies

a.. 1f23120

=3

n — -
E&ijxj < 3;‘ with a;; = { a; fz; <0
- (3.11)

ﬂ -
- . - a:: :fz. < 0
.&i S JE_I Q55 L5 with a;; 1= { _‘(;:‘; ’ij Z 0

Jora = vy
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3.3 Characterization of the Symmetric
Solution Set S, by Inequalities

Let the symmetric interval matrix [A] = [A]T be given. Of course, the solution
set S of [A] is characterized by Theorem 1 also in this particular case. We are
now going to describe the symmetric solution set Sgym_.

We want to apply Lemma 1 to show that the symmetric solution set Sgym can
be characterized as an intersection of closed half-spaces and closed sets of which
the boundary is formed by quadrics. This result generalizes that in [2] which
was only valid for 2 x 2 matrices.

Due to the equality of a;; and aj; the numbers z; := a;jz; and Zj; := aj;z; are

no longer independent if z; and z; are given. Therefore, the procedure for char-

acterizing S must be modified in order to get a set of inequalities which describe

n(n+1)
2

Ssym- Instead of considering a;;z; we will now use the numbers

z;j = aiizizy, 4,j=1,...n, 1<].

They can be introduced by multiplying (3.7) by z; taking into account the sign
of z;. For simplicity we restrict ourselves (without loss of generality) to the
first orthant. We then get the inequalities

8;;ZiTj < 4Ty = Zi; < a;;z;x;, 3] =l 0,0% 3
n n
bz; < Zaszszj = Zfij bz,  i=l.,
i=1 F=1
with Z;; := Zj; in the case j < i
(3.12)
which are equivalent to
gl-jar,-a:j s 2,‘3' S U i
_ - J=4..,n
—Gjzizi+z; < 0
n
bz — Zfs'j < 0 b V= Lovoi i (3.13)
Jj=1
n
—b;z; +Zf;j < 0
j=1 J

with Z;; = Z;;. Lemma 1 can now be applied as it was in the proof of Theorem
1. Thus, if Z11,%2,..., %4, are eliminated first, the number of non-trivial
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1
inequalities in (3.13) reduces from 2 (% + n) = n(n+1)+2n to n(n+1).

The inequalities now read

a;:zizi—%; < 0 ]
e = j=i+1,...,n
—Q§; TiTj + Zij S 0

n

. Feopl 5. .
b;z; —ajiz; _z_;zu < 0 b $ =R (3.14)
G

“bizitagel+) % <0
=1

J# y

In order to show what happens when eliminating z;; = Zj; for ¢ # j we will
choose Z;5 as the next candidate. Here, we have to replace the six inequalities

8,2T1T2—212 < 0 )
—ai;2z12+212 < 0
n
byz1 —anizi — Z Zij <0
y=2
n
*311?1-{-0 x2+221- < 0
Gurit 2 4y = > (3.15)
j=2
1
— 2 -~
byzy — Az — Z Zj < 0
=1
7#2
n
—byzo + gzzz% - z Z3 < 0
=1
i#32 J
by the six non-trivial inequalities
n
< bz — 2=y 3
Q15712 S 01T — 01,7 =13
i=3
b3
_ . )
4127122 < baZy —agp73 — z B
j=3
n
- - o
byzy — @127 — E z1; < @1271%2
j=3
n
- 2 - -
byTy — Tpazi — Y Zp; < TiaziZa

j=3
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n

n
2 - - 2 -
bizy — a2y — E Z1j < bazy — @555 — E :"‘21'

j=3 j=3

n n

— 2 ~ = 2 £
byzo — 2oz — E Zyj < bizy —ay7] - E Z1;
j=3 j=3
which are equivalent to
n 3
— 2 FE -
bz1 —anzy — @122122 — E zij < 0
j=3

IA
=

n
_ " _
_5131+Ql131 +aqz123 + E 215

j=3
n

byZ2 — U2a%3 — 122172 — Z@j <0

e Y (3.16)
—bazy + 85573 + @15T172 + Z Zzj < 0
j=3
n
byx1 — bazy — G112} + 69923 — Z(Elj —Zy) < 0
j=3
n
—b1z1 + byz3 + ay,7% — Tyozi + 2(515 ~%) < 0.
j=3 J

The remaining inequalities of (3.14) are unchanged. Continuing the reduction
process of 2;; along the lines of Lemma 1 ends up with a set of inequalities each
of which describes a quadric, if ‘< 0’ is replaced by ‘= 0’. Among this set one
finds the inequalities

Qt-:c,- — EE‘J TiT; < 0

=4 i=1,....n. (3.17)

~biz; + Egjjzixj < 0
j:l

(For a proof use the first four inequalities of (3.16) and the first
two sets of inequalities from (3.13).) For z; > 0 we can divide
(3.17) by z; to end up with (3.10). This means that the set of in-
equalities characterizing S must necessarily be satisfied for z € Sgym
— a trivial statement. Nevertheless curvilinear boundaries normally will oc-
cur for Ssym. They arise from the last two inequalities of (3.16). If z; = 0, the
division by z; is forbidden in (3.17). Since £ = (2;) € Ssym implies z € S, the
inequalities (3.10) are satisfied also in this particular case z; = 0.
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As with the non-symmetric solution set S, repeated application of Lemma 1
shows that the statements ‘z € Ssym’ and ‘z satisfies the set of inequalities
constructed by the above-mentioned procedure’ are equivalent for z € O;.
Here again, dispensing with the restriction £ € O; means changing the bounds
in (3.12) which involve z;, z;. Thus we obtain

a;jziz; < zij < 8;; TiTj if z;z; < 0,

and

3,‘1:,' < ZE{} < Q,-a:,v ifz; <0.
j=1

Due to our previous considerations we get the following theorem.

Theorem 2. Let [A] = [A]T € IR**" and let [b] € IR". Then in each orthant
the symmetric solution set Sgym, can be represented as the intersection of the
unsymmetric solution set S and sets with quadrics as boundaries.

3.4 On the Number of Inequalities to
Describe Sy, for Tridiagonal Matrices

We want to derive an upper bound 7 for the number ny of the inequalities which
are necessary to describe Sgym for tridiagonal matrices [4] = [A]T € IR**". In
this case, we use the elements Z;; only for 0 < j —i < 1, and we start with the
inequalities
e ®i®ist —Hi1 < 0 } i=1,...,n—1 ‘
—@ii41ZiTip1 + Ziip1 < 0 T :
bizi—anzi—-Z < 0
—biz1 +ap 2l + 52 < 0
bz — iix? — Zim14 — Fii : 18)
—biz; + auz? + %1+ Fiip

0 .
} T —
éﬂ‘rﬂ _armzi = 2'-n—l,n < 0

—bpzn +an¢3; o Eﬂ—l,ﬂ < 0 J

INIA

for Sgym NO1 which we get after having eliminated the diagonal elements Z;;, i =
1,...,n (cf. (3.14)).

Consider a fixed element Z; y41. The elimination process shows that in each
step of this process half of the inequalities containing Z r41 has the form

r+ 2k,k+1 <0 (319)



T2 CHAPTER 3

while the other half has the form
e ey 9B (3.20)

with r, 7 independent of % x41. Each inequality of the form (3.19) has a
counterpart (3.20) which one gets by changing plus to minus and the upper
bars to lower ones, and vice versa.

We will eliminate Z; k41 in the order k = 1,2,...n —1. In the k—th of these
elimination steps we will find the following situation.

Lemma 2. Let [A] = [A]T € IR"™*" be a tridiagonal interval mairiz and let
[b] € IR®. Assume that the off-diagonal element Z; y41 is eliminated in the
k-th elimination step where the n preceding elimination steps for the diagonal
elements Z;, i = 1,...n, have already been performed (and therefore are not
counted here).

a) Before the k-th elimination step Zx k41 occurs in 4 + 2k inequalities of
which 2+ 2k = 2(k+ 1) contain Z; k41 as the only element Z; ;11 while the
remaining two inequalities contain Zg p41 together with 241 k42 (In the
case k =n — 1 we define Zy n41 :=0.)

b) Before the k—th elimination step % ;41, i=k+1,...,n—1, occurs in siz
inequalities. With the exception of the two inequalities which contain Zg k41
together with 741 k42, these inequalities are the original ones (which have
not been changed after having eliminated the elements Z;, i=1,...,n).

c) Right after the k-th elimination step, k < n — 1, there are k% + k final
inequalities, i.e., inequalities which are no more changed during the suc-
ceeding elimination process. If k = n — 1 this number increases by 2n.

Proof. The assertion is trivial for k = 1. Let it hold for some fixed k < n — 1.
Those inequalities which contain Zg 41 as the only element Z; ;4 combine to
final inequalities. Combining an inequality with its counterpart results in an
inequality which always holds. (Keeping track of the history of an inequality
L, < 0, one can see that L, can be expressed as sum of some of the terms
+b;|z:], —bilzil, +a;;12:] - |z5], —@ijlzi| - |z;| and those Z;; which have not yet
been eliminated. Therefore L, and its counterpart combine to a final inequal-
ity, say Ly < 0, in which L; is the sum of some of the terms —d([b];)|z:,
—d([alij)|z:| - |zj|, where d([a]) := @ — a denotes the diameter of an inter-
val [a]. Hence L, < 0 is trivially true.) We will omit such trivial inequali-
ties in our further considerations. In the k—th elimination step we thus get
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(k+ 1)2 —(k+1) = k? + k final inequalities and 2(k 4 1) new ones. These new
inequalities contain Ziy1k4+2 as the only element 2; ;1. All other inequalities
remain unchanged. Among them there are two inequalities which contain only
Zk4+1,k+2 and two which contain Zg4 42 together with Zx g r43. The increase
of 2n in the case k = n—1 results from the 2n new inequalities for Z, ,41 which
are final ones since we defined Z, 541 to be zero. This proves the lemma. O

Adding all the final inequalities results in
n-1 n—1
o= Y k'+) k+2n
k=1 k=1

(n—1)n2n-1) n(n-1)
6 L

+2n = g(wﬂ +5).

The elimination process for tridiagonal matrices shows, that ng = 7 may be
possible, 1.e., the above bound 7 is sharp. There are also cases in which ng <7
holds, as can be seen from any diagonal matrix.

We state our result in the following theorem.

Theorem 3. Let [A] = [A]T € IR™™" be a tridiagonal interval matriz, let
[6] € IR™ and let ng be the number of inequalities obtained by the elimination
process described above for the intersection of Seym with an orthant. Then ny

is bounded by 7 = g(n2 +5). This bound is sharp.

3.5 Particular Cases

In the particular case of 2x2 matrices we end up with the following 6 inequalities
for Sgym N O; which can be deduced from (3.18).

— 2 -

lel — @117 — a12T1Tp
T 2

—b1zy +a,,27 + a,,7172

e 2 e
byzy — Taazy — T12z122

IA A IN A

I 2
—bazy + azy73 + a157122

1 w3 2
bizy —bozy — @127 + 85575

T — 2
—blxl + szz + g‘_llmg — G234

(==l e} o o o o

IA A
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Dividing the first two inequalities by z;, the next two by z; yields the inequal-
ities for the unsymmetric solution set S N O;. The last two inequalities just

characterize the sets C* and C~ in [2].

For tridiagonal 3 x 3 matrices Sgym N O1 is characterized by the 7 inequalities

byzy — @23 — Grazizz < 0 )
bozo — @12T 122 — ?izzzg —@z3zzz3 < 0
bsz3 — G23T223 — G332 < 0
bz — bozy — 1122 + @9y T2 + @9372z3 < 0 b (3.21)
byzy — bazy + b3z — @127 + @925 —Tazzy < 0
lel = (52 = Q2)332 == 5112?% — G1271%3 — (532 — gzz)m% = A
byzy — b3T3 — T12Z1T2 — Tpaxy + azzz3 < 0 y

and their 7 counterparts, which can easily be deduced from (3.21). The first
three inequalities and their counterparts describe the unsymmetric solution set
S N O;. The sixth inequality equals the first one if [b2] and [a22] are point
intervals.

Without proof we mention that the number of inequalities for Sgym NO increases
to 44 for a dense 3 x 3 system.

4 EXAMPLES

In this section we want to illustrate some aspects of the results in Section 3.

Example 1. Let

w=( i ) =)

The matrix [A] contains the singular matrix A; = __1 _i , for which
no solution of the system A;z = b exists, and the singular matrix A; =

( i :i ), for which the solutions of A3z = b are given by z; — 22 = 2.

. : : o 1
However, [A] contains no singular symmetric matrix, since det ( P _'; ) ==

—1— s? < —1. The solution sets S and Ssym can be represented by

B 2 1+4s
Ssym-{*i*“_;_';;( _,1+5)|—15351}<_:04
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and

3:{ 2 ( 1+S)‘—l§s,t§l,st;&—l U

148t \ —1+41
{(2) }
T1—z29=2,,
I2

where O4 denotes the fourth quadrant of R2. The inequalities (3.11) character-
izing S N O4 read

2—z14+z2 <0
—24z14+2z, <0
-—2-—3‘1—.’52 SD

where we have dropped the fourth inequality since it coincides with the first
one.

For Ssym = Ssym N O4 we need, in addition, the inequalities

w(z:¥+$§—2$1+2272) < 0
2422-271+2z, < 0

which we combine to the equality
2 2 S
T3 +$2—2£1 +2z9=0

or, equivalently,
(21 —1)2 + (22 +1)>=2. (3.22)

Thus, Seym is the half-circle which results as the intersection of the circle (3.22)
with Oy, while S is the union of the half-strip in Figure 1 and the straight line
T — Ty = 2.

Example 2. Let

2 2 0 i
[A]:( 5 2. [3,8]),14‘:(
0 [3.8] =2
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X2

Fig. 1 The shape of the solution sets S, Sgym in Example 1.

From A;z = b we get

12t + 32 16t — 48
Slzxgz-mz F r3 =

510+ (3.23)
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In particular, A; is regular and Sgym = Seym N O1. The inequalities in (3.21)
yield

r1—z2 = 0, (3-24)
3z3< 16 —2z; — 2z < 8z3,
3z, < 124 2z3 < 8z,

which characterize S N O;, and

Jzozsz < 1629 — 2zf — 2:::3 < 8zszs,
22+ (22— 4%+ (z3+3)2 = 25, (3.25)
z; —8\2 r,— 8 2
—( 12 ) +( 12 +-’L'2) +(2?3+3)2 =" B (3.26)

which select Sgym from SNO;. Note that the sixth inequality of (3.21) coincides
here with the first one (after having divided by z;); therefore it has been
omitted. The intersection of the sphere (3.25) with center (0,4, —3) and radius
5 with the plane (3.24) is the circle C on this plane with center (2,2, —3) and
radius /17. Since Seym is connected (see [2] or prove it directly from (3.23)) it

must be an arc of C. A closer look at (3.23) reveals that Sgym is the arc of C

which lies in O; between (4,4, 0) and (19—6, 19—6, %) One obtains these endpoints

as the solutions of A;xz = b for the values t = 3 and t = 8, respectively.
The equation (3.26) describes a distorted one-sheeted hyperboloid. Sgym 1s
illustrated in Figure 2.

The unsymmetric solution set S is the triangle with the corners

(4,4,0), (E P Y 50 g1 which lies in the plane (3.24) and in O,

! 8 ’E: E)a (?r ?13)
and which contains Sgym .
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Fig. 2 The shapeo
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CHAPTER 3

f the solution set Ssym in Example 2.
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