
SIAM J. MATRIX ANAL. ApPL.
Val. 16, No. 4, pp. 1223-1240, Oetober 1995

@ 1995 Society for lndustrial and Applied Mathematics
015

ON THE SYMMETRIC AND UNSYMMETRIC SOLUTION SET OF
INTER VAL SYSTEMS*

GÖTZ ALEFELDt AND GÜNTER MAYERt

Abstract. We eonsider the solution set S of real linear systems Ax = b with the n x n eoeffieient
matrix A varying between a lower bound A and an upper bound A, and with b similarly varying
between Q, b. First we list some properties on the shape of S if all matriees Aare nonsingular. Then
we restrict A to be nonsingular and symmetrie deriving a eomplete deseription for the boundary of
the eorresponding symmetrie solution set Ssym in the 2 x 2 ease. Finally we derive a new eriterion
for the feasibility of the Cholesky method with whieh bounds for Ssym ean be found.
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1. Introduction. In [2] we introdueed the interval Cholesky method in order to
find an interval enclosure [xjC of the symmetrie solution set

(1.1) Ssym := {x E Rnl Ax = b, A = AT E [A], bE [bJ},

where [A] = [A]T is a given n x n matrix with real eompaet intervals as entries, and
where [b]is a given veetor with n real eompact intervals as eomponents. We showed
that [x]C need not enclose the solution set

(1.2) S := {x E Rnl Ax = b, A E [A], bE [bJ};2 Ssym,

where in this definition the symmetry of A is dropped.

astonishing, sinee, in general, Ssym differs from S as was
example.

In this paper (§4) we want to intensify our study on the symmetrie solution set
Ssym. To this end, in §3 we repeat some eharacteristie properties of S. Parts of them

are stated and proved in [4]. We will prove them again in a mueh shorter way than

in [4] following the lines in [8]. We then turn over to properties of Ssym' For 2 x 2
matriees Ssym ean be represented in eaeh orthant 0 as the intersection of S, 0, and
two sets of whieh the boundary is formed by eonie seetions. Thus, one deduees at

onee that in the general n x n ease, the boundary 8Ssym ean be eurvilinear in eontrast
to 8S, whieh is shown in [4] to be the surfaee of a polytope.

In the seeond part of our paper (§5) we prove new eriteria for the feasibility of the
interval Cholesky method. Assuming the midpoint matrix A of [A] to be symmetrie
and positivedefinitewe willshow,for example, that the method results in an enclosing
interval [xjC if the spectral radius of ~ iACld([A]) is less than 1, where d([A]) E RT.xn
denotes the diameter of [A] and where lAGI is a matrix whieh is defined later.

\Ve mention that symmetrie interval systems have also been eonsidered by Jansson
[5]. In his paper the symmetrie solution set is enclosed by an iterative process.

This phenomenon is not

shown in [2] by a simple
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2. Preliminaries. We start this section with some notations that we use through-
out the paper.

By Rn, Rm Xn, IR, I Rn, I Rm Xn, we denote the set of real vectors with n
components, the set of real m x n matrices, the set of intervals, the set of interval
vectors with n components, and the set of m x n interval matrices, respectively. By
"interval" we always mean areal compact interval. Interval vectors and interval ma-
trices are vectors and matrices, respectively, with interval entries. We write intervals
in brackets with the exception of degenerateintervals (so-called point intervals) which
we identify with the element being contained, and we proceed similarly with interval
vectors and interval matrices. Examples are the ith column e(i) of the n x n identity
matrix land the null matrix O. As usual, we identify RnXl and IRnxl with Rn
and I Rn, respectively. We use the notation [a]= [g,a] E IR simultaneously without
furt her reference and, in an analogous way, we write [x] = [~,x] = ([X]i) E IRn and
[A] = [A,A] = ([a]ij) E IRnxn. Fm [a], [b]E IR we define

(2.1)

a := (g + a)/2

l[a]1 := max{lgl, lai}
d([a]) := a - g

q([a], [b]) := max{lg - QI, la - bl}

ß([a], [b]):= l[a]1+ q([a], [b]).

midpoint,

absolute value,

diameter,

distance,

For interval vectors and interval matrices, these quantities are defined entrywise, i.e.,
they are real vectors and matrices, respectively. In particular, lxi = (lxiI) E Rn for
point vectors x. We equip Rn and also Rnxn with the natural partial ordering :::;. In
addition we write x < y or, equivalently,y > x for vectors x = (Xi), Y = (Yi) E Rn if
Xi < Yi for i = 1,. . . ,n. With the definition

([a]) := { ~in{lgi, lai}
if 0 E [a] E IR,
otherwise,

we construct the comparison matrix ([A]) := (Cij) E Rnxn of [A] by setting

{ ([a]ij)
Cij := -I [a]ijI

if i = j,
if i i= j.

We call [A] E IRnxn regular if no matrix Ä E [A] is singular, and we write p(A)
for the spectral radius of A E Rnxn. Intervals [a]are named zero symmetric if g = -a.
For interval vectors and interval matrices zero-symmetry is defined entrywise.

We elose this section by noting equivalent formulations of nonempty intersections
of intervals and by recalling two properties of the function ß above, which are proved

in [6, Lemma 1.7.5, p. 28].
LEMMA 2.1. Let [a], [b]E IR. Then the following properties are equivalent.

(a) [a]n [b]i= 0.
(b) Q ~ band a > Q.

(c) la - bl :::; !d([a])+ !d([b]) .
LEMMA 2.2. With ,8 from (2.1) the following properiies hold.

(a) 1f [a]i' [b]iE IR, [aJi ~ [b]ifor i = 1,. .. ,n, then

ß ([ah . ... . (a]n , [bh [b]n)< ß ([ah, [bh) . .,. . ß([a]n, [b)n).
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(b) If [al, [b]E IR, [a]~ [b]and([a))>q([a],[b]), then

ß ([ar 1,[btl) :s ( ([a])- q([a], [bJ))-1 ,

where [ctl := {c-ll cE [c]} for [c]E IR, °<t [c].
3. The solution set S. In this section we reeall some properties of the solution

set S defined in (1.2). To this end, we always assurne that a fixed regular interval
matrix [A] E IRnxn and a fixed interval vector [b] E IRn are given. Then the
elements of S can be eharacterized in two equivalent ways.

THEOREM3.1. The following three properties are equivalent.
(a) xE S;
(b) lAx - bl:S~d([A])lxl+ !d([b]);
(c) [A]x n [b] =10. .

The equivalence(a) {:} (b) is knownas Oettli-Prager criterion [7],the equivalence
(a) {:} (e) is due to Beeek [3]. We will omit the proof.

To derive some more properties on S we deeompose Rn into its closed orthants
Ok, k = 1, . . . , 2n, whieh are uniquely determined by the signs Skj E {-I, + I}, j =
1, . ., n, of the eomponents of their interior points. Henee, if 0 denotes some orthant,
fixed by the signs SI, .. . , Sn, then x = (Xi) E 0 fulfills

(3.1)
{

> 0
Xj :S0

if Sj = 1,
if Sj = -1.

(3.2)
{

a..-tl

Cij:= aij

if Sj = 1,
if Sj = -1,

For [A], [b]as above, and for i, j = 1,. . . ,n, let

H. '--t

n

Y E Rnl I:CijYj :Sbi
j=1

i = 1,... ,no

and

(3.3)
{

aij
di]' := a..-tl

if Sj = 1,
ifsj=-1.

Denote by H i' H i, the half spaces

(3.4)

Hi .-

n

Y E Rnl I:dijYj 2:~i
j=1

Note that Hi' Hi depend on the choice of the orthant O. By means of these half
spaees we ean represent Sn 0 in the following way (cf. also [8, Cor. 1.2]).

THEOREM 3.2. Let [A] E IRnxn be regular and let 0 denote any orthantof Rn.
Then

(3.5)

n

SnO= n(HinHi)nO.
i=1

In particular, if S nO is nonempty, it is convex, compact,connected,and a polytope.
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S is compact, connected, but not necessarily convex. It is the union 01 jinitely
many convex polytopes.

Proof Let [al E I R, ~ E R. Then

~. (a]=
{

(~Q,~]
($i, ~Q]

if ~ > 0,
if ~ < o.

Henee (3.5) follows from Lemma 2.1(a), (b), from Theorem 3.1(a), (e), and from the
definition of H i' H i.

Sinee 0, Hi' Hi are eonvex, the same holds for Sn 0 because of (3.5). This
in turn shows that S n 0 is eonneeted. The eompaetness and the eonneetivity of S
follows from the same property of [A} x [b}and from the continuity of the function

.
{

[A] x [b] ~ Rn,

g. (A,b) f-+ A-lb,

the range of whieh is S. Now S being eompaet the same holds for Sn 0 sinee 0 is
closed. The remaining property of S follows trivially from

2n

S= U(snOj)
j=l

and from (3.5), where Oj, j = 1,..., 2n, denote the orthants of Rn numbered arbi-
trarily. 0

That S ean be noneonvex is seen by the following example.

Exarnple 3.3. Let [A] = ( [-;, 1] ~), (b} = ( [-~' 1] ) . Then S is given by
S = {(x, y) Ilyl :s; lxi :s; 1} as illustrated in Fig. 1.

THEOREM3.4. Let (A] be a point matrix. Then S is a parallelepiped; in partic-
ular, S is convex.

Proof Let (A] = [A,A],and denotethe eolumnsof A-l by Cl,... ,cn. Then

S=

{
A-lQ+ ttjdl o:s; tj:S; d((bb), j = 1,...,n }

.
)=1

This proves the theorem. 0

We remark that a necessary and suffieient eriterion for the eonvexity of S ean be

found in [9].

4. On the symmetrie solution set Ssym' We now turn over to the symmetrie
solution set Ssymdefined in (1.1). We again assume [A] E IRnxn to be regular, and,

. in addition, to fulfill

(A]- [A}T,

which is equivalent to A = AT and A = AT.

We first prove two simple properties of Ssym'
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y

-1

1

S

x
1

-1

FIG. 1. The shape of the solution set S in Example 3.3.

THEOREM 4.1. Let [A] = [A]T E I Rnxn be regular. Then Ssym is compact and
connected.

Proof Define [A]sym:= {A E [A]IA = AT}. Then

(4.1) f.
{

[A]sym x [b] ~ Rn,

. (A, b) r-+ A -1 b

is continuous. Let {Ak} be an infinite sequence from [A]sym. Since the (l,l)-entries

of Ak are all contained in the compact set [a]n, there is a subsequence {Aii)} of
{Ad such that its (1, l)-entries are convergent. By the same reason one can choose a

subsequence {Ai2)} of {Aii)} such that the (1,2)-entries are convergent. It is obvious

that the (1, l)-ent~ies of {Ai2)} keep this property. Repeating the arguments by
running through the indices (i, j), 1 :S i :S j :S n and taking into account the
symmetry of Ak shows that there is a convergent subsequence of {Ak}, which proves
[A]symto be compact. Therefore, [A]symx [b]is compact, and the same holds for the
range Ssym of f.

If Al, A2 E [A]sym then the line segment Al + t(A2 - Ad E [A]sym, O:S t :S 1.
Hence [A]sym is connected and also [A]sym x [b]. Using the continuous function f
from (4.1) once more shows Ssym to be connected. 0

We next investigate Ssym in the 2 x 2 case morecarefully. To this end, as in §3,
we fix an orthant 0 given by the signs SI,..., Sn of the components of its interior
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points. We define Bi, Hi as in (3.2)-(3.4) and e, fERn by

{

b.-2
ei := bi

{

b.
!i := b2-2

if Si = 1,

if Si = -1,

if Si = 1,
if Si = -1.

For n = 2 we use the sets

(4.2) c- := {y E R21 Qllyi - a22Y~- hYI + e2Y2S; o} ,

(4.3)
2 2. 2

}c+ := {y E R I allYl - Q22Y2 - elYI + !2Y2 ~ 0 .

Obviously, each of these two sets has a conic section as boundary provided that
QII + a~2 =I- 0 for C- and, similarly,aiI + Q~2 =I- 0 for C+. As for the hyperplanes
Hi, Bi in §3 we point out that C-, C+ depend on the choice of the orthant O.
However, the type of the conic section is independent of 0 if one does not distinguish
between hyperbolas and pairs of intersecting straight lines, and if one considers a
single point as an ellipse. If each symmetrie matrix from [A] is positive definite then
Qii > 0, i = 1, 2, hence the boundary of C- and C+ is formed by hyperbolas in the
above-mentioned generalized sense.

We now describe Ssym in the 2 x 2 case by means of S, C-, and C+ .
THEOREM 4.2. Let [A] = [A]T E IR2x2 be regular and let 0 denote any orlhant

of R2. Then

(4.4) Ssym n 0 = S nOn C- n C+ .

In parlieular, if Ssym n 0 is nonempty, it is eompact, but not neeessarily convex.
Proof The compactness follows from Theorem 4.1. The nonconvexity is shown

by Example 4.4. It remains to prove (4.4).
~ : Let x E Ssym n O. Then x E S n 0, and there exists asymmetrie

matrix A E [A] and a vector b E [b] such that Ax = b. With [t] := [a]12= [abI and
t := al2 = a21 we get

(4.5)

(4.6)

allxl + tX2 = bl ,
tXI + a22X2 = b2 .

Multiplying (4.5) by Xl and (4.6) by X2 and substituting tXIX2 we obtain

allxi - a22x~ = blxl - b2x2 .

Thus

(4.7)
XT ( [a611

0

) T ( [bh ) 0
-[ah2 x n X -[bh =I- ,

whence, byLemma 2.1, we get equivalently

2 - 2 <1Qllxl - a22x2 - lXI - e2X2 ,
- 2 2 > fall Xl - Q22X2 - el Xl - 2X2.

This means X E C- and X E C+, respectively. Therefore, Ssymn 0 ~ Sn 0 n C- n c+ .
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2: Let

(4.8) x E Sn 0 n c~ n C+ .

Since x ES, there are A E [A], b E [b]such that

(4.9) Ax=b

holds. We are going to show that A E [A] in (4.9) ean be chosen to be symmetrie
when changing b E [b]appropriately. To simplify the notation we use

tl := a12 E [ah2 and t2 := a2l E fahl = (ah2 =: (t]

for the two off-diagonal entries of A in (4.9).
If tl = t2 then x E Ssym n O. Therefore, assume tI =1= t2, say

(4.10) tl < t2 .

If Xl = 0 then A ean be replaeed in (4.9) by the symmetrie matrix

( an h )Asym := tI a22

thus showing x E Ssym n 0 . Analogously one proeeeds für X2 = 0 .
Let now Xl =1= 0 and X2 =1= O. We first consider the ease Xl > 0, X2 > 0, which, by

(4.8), means that 0 is the first quadrant of R2. Our proof is based on the equivalenee
of (4.9) with

(4.11) bl - allXl E [tl,
h = X2

b2 - a22x2 E [t] .
t2 = Xl

Assume X 1. Ssym n O. This means that b E [b]and A E [A] from (4.9) cannot be
replaced sueh that (4.9) is satisfied for some symmetrie matrix Asym E [A] and some
suitably modified vector bE [b]. Taking into aceount (4.10) we eonsequently obtain

(4.12)
bl - Qll Xl Q2 - a22X2 -1 :Stl :S tmax := < tmin := :St2 :St,

X2 Xl

whenee

- 2 2
blxl - QllXl < Q2X2 - a22X2'

Sinee we supposed 0 to be the first quadrant this implies X f/ C-, whieh eontradicts

(4.8).
Replaeing (4.10) by t1 > t2 and assuming X f/ Ssym n 0 yields

- h - al1Xl b2 - Q22x2
t 2 h 2 tmin := > tmax := 2 t2 21

X2 Xl

from which we get the eontradietion X f/ C+. Therefore,

(4.13) S nOn C- n C+ ~ Ssymn 0

holds if 0 is the first quadrant 01 .
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Let now x E 0 =1= 01, Xl =1=0, X2 =1=0, SI := sign(xd, S2 := sign(X2), Dx :=

diag(s}, 82) E R2x2. Then (4.9) is equivalentto

(4.14) M=b

with A := DxADx E Dx[A]Dx =: [Al, x := Dxx E 01, b:= Dxb E Dx[b] =: [bI . Let
S, Ssym, C-, C+, ei, fi be associated with the given quantities [Al, [bI, and 0, and

let S, Ssym, 6-, 6+, ei, Ji be the eorresponding quantities associated with [A], [bI,
and 01. Sinee

{ bI if SI = I } .

{ [ ] }
~

slft = -Ql if SI = -1 = max SI b 1 = ft

and

{ 122 if S2 = I }
.

{ [b] }
~

s2e2 = -b
-
f - 1 = mln S2 2 = e2,

- 2 1 S2 - -

we get from y E C- the inequality

0~ (SIQllSd(Slyd2 - (S2a22S2) (S2Y2)2 - (slfd(SlYd + (S2e2)(S2Y2)

= QllY~- a22y~ - itYl + e2Y2,

where Y := DxY . Henee Y E C- implies Y E 6-, and analogously Y E c+ yields
YE 6+. Therefore, x E Sn 0 n c- n c+ results in x E Sn 01 n 6- n 6+ whenee

(4.15) x E Ssym n 01

as we have proved above. Sinee (4.15) implies AsymX = b for some symmetrie matrix

Asym E [A] and some right-hand side bE [bI, it yields X E Ssym n 0 via (4.14). 0
The generalization of Theorem 4.2 for the ease n > 2 is not straight forward sinee

the elimination proeess performed in the proof does not seem to work in this ease.
Sinee X E C- n C+ is equivalentto (4.7), we obtain immediately the subsequent

eorollary from Theorem 3.1(a), (e) and from Theorem 4.2.
COROLLARY 4.3. For regular matrices [A] = [AV E IR2x2 and [bI E IR2 the

following properties are equivalent.
(a) xE Ssym.
(b) [A]x n [bI=1= (/) . (i. e., xE S) and

xT ( [a]ll 0 )x n xT ( [bh ) =1= (/)-
0 -[ab2 -[bb

Note that in contrast to Theorem 4.2 no orthant enters explicitly in Corollary
4.3. Therefore, it ean be viewedas an analogue of Theorem 3.1.

We now illustrate Theorem 4.2 by two examples. In partieular we show that Ssym
ean be noneonvex in the orthants and that its boundary ean be eurvilinear.

Example 4.4. Let

[A] := ( [-:,0] [-~,O]) and [b]:=( ~ ) .

With

Ah,t2 := ( t~t~ ), tl, t2E [-4,0],
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we get

Hence Sand Ssym are completely contained in the first quadrant 01. With the
notations of §§3 and 4 we obtain

2 -- 2
H 1={y E R I 5Yl - 4Y2 :S 9} , H1 ={y E R I 5Yl ~ 9} ,

2 -- 2
H2={y ER I - 4Yl + 5Y2 :SO}, H2={y E R I 5Y2~ O},

hence S = H 1nH 1nH 2nH 2n01 is the triangle with the vertices (1.8,0), (1.8,1.44),
and (5,4). To describe Ssym we list the sets

c- = {y E R2 I5y; - 5yi - 9Yl :SO} ,

c+ = {y E R2 I 5y; - 5yi - 9Yl ~ O} .

Then K := C- n C+ is the hyperbola

(
9

)
2 81

K : Yl - 10 - Y~ = 100 .

By (4.16) or by Theorem 4.2 one can see that Ssym is that part of the right branch of

K which lies between the points (1.8,0) and (5,4). The sets Sand Ssym are illustrated
in Fig. 2.

Our next example shows that parts of a parabola, of a circle, and straight lines
can also form the boundary of Ssym.

Example 4.5. Let

[A] := ( [1~2]

[1,2] )[-1,0] , [b]:= ( [1~2] ), Aa,ß" := (~ ~) E [A]

with a, ß E [1,2], , E [-1,0]. Since detAa,ß" =,- aß:S -1, the interval matrix
[A] is regular with

A-1 = 1 ( ' -a ) .
a,ß,~f det A ß -ß 1a, "

With b1 ~ 2b2 ~ 2 we get A;::,~" . b ~ 0 for any choice Aa,ß" E [Al, b E [b]. Hence
Sand Ssym are completely contained in the first quadrant 01, Using the notation
above we obtain for 01 the following sets:

2 -- 2
H1={yER IYI+Y2:S;4},H1={YER IYl+2Y2~4},

2 -- 2
H2={yER IYI-Y2:S2},H2={YER 12Yl~I},

C- = {Y E R21 yi - 4Yl + Y2 :S O} = {y E R21 Y2:S 4 - (YI - 2)2},

C+ = {Y E R21 yi + yi - 4Yl + 2Y2 ~ O} = {y E R21 (Yl - 2)2+ (Y2+ 1)2 ~ 5}.
-- -- . . 1 7 1 7 8 2

The set S = H1nH 1nH 2nH 2nOl ISthe convex huH of the pomts (:2' "4)' (:2' :2)' ("3'"3)
and (3, 1). The boundary of Ssym= Sn 01 n C- n C+ is formed by the foHowingfour
curves.

A-1 - 1 (5 -tl) > 0tl,t2 - 25-t1t2 -t2 5 -

and

(4.16)
-1 (9) 1 (45)At t' 0 = 9t' tl, t2 E [-4, 0] .1, 2 25 - t1t2 - 2



1232 G. ALEFELD AND G. MAYER

X2

5

1

Ssym

S

3

1 3 5 X1

FIG. 2. The shape of the solution sets Sand Ssym in Example 4.4.

(i) The straight line between (~, i) and (~, ~).
(ii) The straight line between (1,3) and (3,1).

(iii) The part of the parabola Y2= 4 - (Yl- 2)2 between (~, D and (1,3).
(iv) The part of the circle (Yl - 2)2 + (Y2 + 1)2 = 5 between (~,~) and (3,1).

The situation is illustrated in Fig. 3.

5. Computing enclosures für Ssym. As was shown in [2], Ssymcan be enclosed
by the vector [xf, which results from the following interval version of the well-known
Cholesky method, for which we assume [A]= [A]TE IRnxn, and [b]E IRn.

Step 1. "LLT decomposition"
für j := 1 to n do

(

j-l

)

!

[l]jj:= [a]jj- I:[lUk ;
k=l

for i := j + 1 to n do

[l]ij :=
(ra]ij - I: [l]ik[l]jk)

/ [l}jj;
k=l
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X2

5

3

1

1 3 5 X1

FIG. 3. The shape 01 the solution sets Sand Ssym in Example 4.5.

Step 2. Forward substitution
for i := 1 to n do

[V],:= ([bJ' - % [IJ'j[YJ;) / [I]" ;

Step 3. Backward substitution
for i := n downto 1 do

[xJ;' := ([y],- ;~1[IJ;,[XJf) / [IJ" ;

ICh([A], [b]) := [x]C .

Here,

(5.1) [a]2 := {a2 I a E [an

and

[a]1/2:= M := {..[ä I a E [an

1233

for intervals [a].
In contrast to the classical, i.e., noninterval Cholesky method, it is an open ques-

tion when the interval Cholesky method is feasible. In [2]several criteria are given that
guarantee the existence of [x]C. We add here two new ones as wen as a nonexistence
criterion, which we formulate first.
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THEOREM 5.1. If [A] = [AV E IRnxn contains at least one symmetric matrix
A which is not positive definite, then [xJC does not exist.

Proof We first recall that a real symmetrie matrix has an LLT -decomposition
with positive diagonal entries lii if and only if this matrix is positive definite (see [11]).
L can be computed by the Cholesky method. Assume now that A = AT E [A] = [A]T
is not positive definite. Then the Cholesky method will break down. This is the case
if and only if for some index j either ljj cannot be computed because of

j-l

ajj - L lJk < 0
k=l

(see Step 1) or Yi cannot be computed because of lii = 0 (see Step 2). By the inclusion
monotonicity of the interval arithmetic, either [l]jj does not exist, or 0 E [l]ii and the
interval Cholesky method will break down. 0

Example 4.5 illustrates Theorem 5.1: Since

(
1 1

) ( 1 [1,2] )A= 1 -1 E[A]= [1,2] [-I,OJ

is not positive definitive, [xJCdoes not exist for [A]. Note, however, that the interval
Gaussian algorithm is feasible for this interval matrix.

, Before formulating our new feasibility criterion we need some preparations.
By Theorem 3.4 in [2] we have for [y] from Step 2 in the interval version of the

Cholesky method

[y] = [Dn]([Ln-I] ([Dn-l] (H. ([L2]([D2]([LI] ([D1][b]))))...)))

and

(5.2) [xf = [D1]([Ll]T ([D2] (.. . ([Ln-2r ([Dn-l] ([Ln-l]T ([Dn][y])))) . . .))) ,

where the diagonal matrices [DS] and the lower triangular matrices [LS] are defined
for s = 1,..., n -1 by

WJ'j := { i/[IJ",

[/S]'j:= { : [I]"

if i = j =1= s,
if i = j = s,
otherwise,

if i = j,
if i > j = s,
otherwise,

with [l]ij from the Cholesky method. (Note that [l]ij is computed in the jth step of
the "LLT-decomposition"). By (5.2) it is easy to see that the mapping

(5.3)
{

IRn -7 IRn,

f : [b] ~ ICh([A], [b])

is a sublinear one in the sense of [6, p. 98], Le.,
(i) [b]~ [c] =? f([b])~ f([c]) ,

(ii) a ER=? f(a[b]) = af([b]) ,
(iii) f([b] + [cD ~ f([b]) + f([c]) for [b], [c]E IRn.
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Ä.= ~«;J ~~u:\.'Pu~\).tion. yields

I [Dn]1.1 [Ln-I] 1.1 [Dn-lJ 1' 1 [L2ll'l [1)2J1.1 [Li] !.I [Dl] 1= ([L])-l

again with [L] = ([l]ij) from the Cholesky method. Hence, for the particular "right-

hand side" [bJ := [-1, I]e, where e = (1,..., l)T,one gets

ICh([A],[b])= [xJG= ([L]T)-1 ([L]) -1 [bJ)= ([LJT) -1 ([L]) -1) [bJ .

With the abbreviation

(5.4) . I [A]G I := ([L]T)-1 ([L]) -1,

one therefore obtains for any [b]~ [b] the inclusion

ICh([A}, [b])~ I[A]G I [bJ .

Thus, I [Ar Ican be thought of as a measure for the width ofthe enclosure ICh ([A], [b])
of Ssymthat does not depend on the right-hand side [bJas long as [bJis contained in
[b]. The condition [bJ ~ [bJ can be considered as a sort of normalization. If it no

longer holds, replace [b] by t[bJ with t > 0 as small as possible such that [bJ ~ t[b] is
.valid. Then

ICh([A], [b]) ~ tl [Af I [bJ,

hence tl [AJGI is acorresponding measure.
By (5.2) we also get

I( ICh ([A), [-e(l), e(l)}) , . . . ,ICh ([AJ,[-e(n\ e(n)])) I = ! [Af I '

hence I [Ar Iis the absolute value of the sublinear mapping f in the sense of [6, p.
.100J. By an elementary rule of the diameter d (cf. [1])one proves at onc~ the property

d(f([b])) 2 I [A]GId([b])

of f which is then called normal in [6, p. 102].
. We next recall an equivalentdefinition of Step 1 in the intervalCholeskymethod.
DEFINITION5.2. ([2]) Let either [A] = ([a]u) E IR1X1 or

[A}= ( [alu [cf )= [A]T
E IRnxn n> 1 [cl E IRn-1

[cl [A'] ",

[A'] E IR(n-1)x(n-l).

(a) ~[AJ := [A'] - (I/[a]u) [cHcf. E IR(n-1)x(n-1) is termed the Schur comple-
ment (of the (1,1) entry [alu) provided n > 1 and 0 f/. [aJu. In the product
[cHcJTwe assume that [C]i[C]iis evaluated as [cl; (see (5.1)). ~[AJ is not
defined if n = 1 or if 0 E [aJu.

(b) We call the pair ([L],[LV) the Cholesky decomposition of [A] if 0< gll and
if eithern = 1 and [L]- (~) or
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(5.5)
(

~ 0

)[L} = [Cl [L'] ,~
where ([L'], ([L'DT) is the Cholesky decomposition of E[A] provided that
it exists.

As was shown in [2] the matrix [L] of the Cholesky method and that of the
Definition 5.2(b) are identical.

The proof of OUTmain result, Theorem 5.4, is heavily based on the following
lemma.

LEMMA5.3. Let the Cholesky decomposition ([L], [LV) of [A] = [A]T E IRnxn
exist, and let [B] = [B]T ;2 [A] be such that for a suitable u > 0 we have

(5.6) q([A], [BDu < ([L])([L]T)u .

Then the Cholesky method is feasible for [B].
Proof by induction. The proof proceeds similarly as for Lemma 4.5.14 in [6].
Let n = L Then (5.6) implies u > O. Again (5.6) together with 0 < Qu yields

(Ql1 - Ql1)u~ q([A],[B])u < ([a]n)u = Qnu ,

hence

0 < Qnu

folIows. This shows 0 < hl = ([b]n) which proves the existence of ICh([B], [b])for
n=L

Assurne now that the statement is true for some dimension n :2:1, and let (5.6)
hold for

(5.7) [A] = ( [a]n [cV )C [B]= ( [b]u [dV ) E IR(n+l)x(n+l)
[cl [A'] - [d] [B'] .

We first show Qu > O. With

(5.8) (
T

)qll r
q([A],[BD = (qij) = r Q'

we get from (5.6)

n+l n+l

L qljUj < ([a]u) Ul - L I[ahj I Uj ,
j=l j=2

hence

{

n+l

}Qu - qll = ([~]n) - qll > ~(qlj + I [ahj I)Uj / Ul :2: O.

Together with (5.7) this implies 0 < Qn = ([b]n), whence the Schur complement
E[B] ;2E[A] exists.
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By our assumptions, the Schur complement ~[A] has a Cholesky decomposition
([L'], [L'jT). If we can show that

(5.9) q(~[A]' ~[B])U'< ([L'))([L']T)u'

holds for some vector u' > 0 then ~[B] has a Cholesky decomposition, say ([i/), [i/JT),
by the hypothesis of our induction, and with

(

~ 0

)[t] := [d) li/] ,~
we obtain the Cholesky decomposition ([L], [L]T) of [B].

To prove (5.9) we apply ß from (2.1) componentwise, and use the notation from
(5.8) as weil as that of Lemma 2.2. We then get

(5.10)

q(~[A], ~[B])= q ([A'] - [c][c]T[a]ll\[B']- [d][d?[b]ll)

:::; Q' + q([c][c]T[a] 111, [d][d?[b]1/ )

= Q' - I [c][c]T[a]lll I + ß([c][cf[a]ll, [d][d]T[b]1/)

= Q' -I [c]11[c? I ([a]u)-l + ß([c][c]T[a]ll, [d][d]T[b]li1)

:::; Q' - 1 [cl 11 [c]T I ([a]u) -1 + ß([c],[d]). ß([c?, [df) . ß([a]li1, [b]ll)

= Q' - I [c] 11 [c]T I ([a]1l) -1 + (I[clI+ r)(1[c]I+ rf ß([a]l/'[b]ll).
We now want to apply Lemma 2.2 (b) on the last factor in (5.10). To this end we
must show

(5.11) ([a]1l) > q([a]u, [bhd = ql1 .

Therefore, we set u = ( ~~ ) in (5.6). With (5.5) and with the notation (5.8), we
then obtain

( q11r~ )(u; )<
(
-1flfP ~

) (
~

r Q u .~ ([ )) 0

I [c]T I

)
~ U1

([L'jT}) (u') ,
whence

(5.12) ql1Ul + rT u' < ([a]n)U1-I [cf lu'
and

(5.13) rUl + Q'u' < -I [cl IU1 + I [cl 11[c]T I ([a]l1)-1u' + ([L'))([L']T)u'.

Since Ul > 0, the inequality (5.12) implies (5.11), and Lemma 2.2(b) and (5.10) yield

q(~[AJ ' ~[B]) ::; Q' - I [cl 11[c]T I ([a)u) -1 + (I[clI+ r)(1 [c]I+ rf (([a]u) - qU)-l .
Together with (5.11), (5.12), (5.13), this implies

q(~[A], ~[B])U':::;Q'u' -I [cl11[c]T1([a]1l)-1u'

+(I.[c] I + r)( ([a]u) - ql1)-l(1 [cl I + rl u'

< -rul - I[cl IU1 + ([L')) ([L']T)u' .

+(1 [cl I+ r)( ([a]u) - ql1)-1( ([a]U)ul - q1lUl)

= ([L')) ([L']T)u'.
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This proves (5.9) and terminates the induction.
We are now ready to prove our main result.

THEOREM5.4. Let [A], [B] E IRnxn, [A] = [A]T, [B] = [BjT, and suppose that
ICh([A], [bDexists. If

(5.14)

0

p(1 [Afl q([A],[BD) < 1,

then the Cholesky method is feasible for [B].

Proof Let Q := q([A], [BD, [Cl := [A] + [-Q, Q]. Then [B] ~ [C], and
ICh([B], [bDexists if ICh([C], [b])does. By (5.14) the inverse of 1 - I [A]CI Q ex-
ists and can be represented as Neumann series

CXJ

(1 -I [AfIQ)-1 = L (I [Af IQ)k> 0 .
k=O

With any v E Rn satisfying v > 0 define

(5.15) u:= (1 -I [Af IQ)-1 I[Af Iv.

Since 1 [A]C I ~ 0 and (1 -I [A]CIQ)-1 ~ 0 are regular each of their rows contains at
least onepositive entry. Therefore I[AjC Iv> 0 and u > O. Now (5.15) yields

I [AflQu = u -I [A]CIv,

whence

Qu = ([L])([L]T)u- v
< (L)(L)T u,

with ([L], [LjT) being the Cholesky decomposition of [A]. Hence, Lemma 5.3 guaran-
tees the feasibility of the Cholesky method for [Cl and therefore also for [B]. 0

We illustrate Theorem 5.4 by a simple example.
Example 5.5. Let

(

4 2 2

)
[B] := 2 4 [0,2] .

2 [0,2] 4

Then ([B]) . (1,1, l)T = 0, hence ([B]) is singular. In. particular, ([B]) is not an
M-matrix (which requires ([B])-l ~ 0; cf. [2D, whence, by definition, [B] is not an
H-matrix. Therefore, Theorem 4.2 in [2] does not apply. Consider now

(

4 2 2

)
[A] := 2 4 1 ~ [B] .

214

Since ([A]) is irreducibly diagonally dominant, the interval Cholesky method is feasible
for [A] by Corollary 4.3 (ii) in [2], for example. A simple computation yields

(

2 0 0

)[L] = . 1 V3 0 - ,
1 0 J3

([L])-l = V3
(

J3 0 0

)
6 1 2 01 0 2
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and

(
5 2 2

)
I [Afl = ([L]T)-l([L])-l = 2- 2 4 0 .

. 12 2 0 4

Prom

whieh has the eigenvalues -l, 0, l. Therefore, Theorem 5.4 applies. The elements
[i]ij that result from the interval Cholesky method for [B] are given by

(

2 0 0

)
[t] = 1 J3 0 .

1 [-1,1]/V3 [y'8,3]/V3.

Our example also illustrates the following eorollary.
COROLLARY5.6. Let the midpoint matrix A of [A] = [Af E IRnxn be positive

definite, and assume that

p (~IACI d([A])) < 1 .

Then the interval Cholesky method is feasible for [A].
Proof Because of [A] = [A]T, the matrix A is symmetrie. Sinee it is positive

definite by assumption, the inter val Cholesky method is feasible for A when viewed
as a point matrix. Taking into aceount q(A, [A])= ~d([A]), the assertion is a direct
eonsequenee of Theorem 5.4. 0

6. Concluding remarks. We stress the faet that the main purpose of this paper
is to give eriteria for the feasibility of the interval Cholesky method. If this feasibility
is guaranteed-for example, this is the ease if one of the eriteria presented in this paper
or in [2]holds-the quest ion arises immediately how dose the symmetrie solution set
Ssym is induded. Especially, what is the relation between the results of applying
the Gaussian algorithm (or some other method) and the interval Cholesky method,
respeetively? In [2] it was shown by simple examples that generally no eomparison
is possible. The examples from [2] can be generalized to arbitrary large dimensions
n > 2 without any diffieulties. Henee up to now it is not dear under whieh eonditions
on the given interval matrix the interval Cholesky method is superior to the interval
Gaussian algorithm or viee versa. The investigation of this question andfor some

c 0 0)
q([A],[B])= 0 0 1 ,

0 1 0

we get the matrix

1 1
0 - -

6 6

I [Aflq([A], [BD = I 0
1

0 -
3

1
0 - 0

3
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statistics about the width of the bounds for systems of larger dimension will be part
of further research.

We also mention that for a given real system a very careful analysis of the floating-
point Cholesky decomposition was performed in [10]. If the matrix as weH as the
right-hand side are afHicted with tolerances then bounds are computed for the set of
all solutions for data within tolerances.

Acknowledgments. The authors are grateful to two anonymous referees for a
series of comments and remarks that improved the paper considerably.
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