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ON THE SYMMETRIC AND UNSYMMETRIC SOLUTION SET OF
INTERVAL SYSTEMS*

GOTZ ALEFELD! AND GUNTER MAYER?

Abstract. We consider the solution set S of real linear systems Az = b with the n x n coefficient
matrix A varying between a lower bound A and an upper bound A, and with b similarly varying
between b, b. First we list some properties on the shape of S if all matrices A are nonsingular. Then
we restrict A to be nonsingular and symmetric deriving a complete description for the boundary of
the corresponding symmetric solution set Sgym in the 2 x 2 case. Finally we derive a new criterion
for the feasibility of the Cholesky method with which bounds for Seym can be found.
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1. Introduction. In {2] we introduced the interval Cholesky method in order to
find an interval enclosure [z]¢ of the symmetric solution set

(1.1) Seym ={z € R Az =b, A= AT € [4], be [B]},

where [A] = [A]T is a given n x n matrix with real compact intervals as entries, and
where [b] is a given vector with n real compact intervals as components. We showed
that [z]“ need not enclose the solution set

[}

Q

(1.2) S:={re€R"| Az =b, A€ [4], be [b]} D Ssym,

where in this definition the symmetry of A is dropped. This phenomenon is not
astonishing, since, in general, Sy, differs from S as was shown in [2] by a simple
example.

In this paper (§4) we want to intensify our study on the symmetric solution set
Ssym- To this end, in §3 we repeat some characteristic properties of S. Parts of them
are stated and proved in [4]. We will prove them again in a much shorter way than
in [4] following the lines in [8]. We then turn over to properties of Sgr,. For 2 x 2
matrices Ssym can be represented in each orthant O as the intersection of S, O, and
two sets of which the boundary is formed by conic sections. Thus, one deduces at
once that in the general n x n case, the boundary 0Ssym can be curvilinear in contrast
to 05, which is shown in [4] to be the surface of a polytope.

In the second part of our paper (§5) we prove new criteria for the feasibility of the
interval Cholesky method. Assuming the midpoint matrix A of [4] to be symmetric
and positive definite we will show, for example, that the method results in an enclosing
interval [z]€ if the spectral radius of L1AC|d([A]) is less than 1, where d([4]) € R™*"
denotes the diameter of [A] and where |A| is a matrix which is defined later.

We mention that symmetric interval systems have also been considered by Jansson
[5]. In his paper the symmetric solution set is enclosed by an iterative process.
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2. Preliminaries. We start this section with some notations that we use through-
out the paper.

By R", R™", IR, IR", IR™", we denote the set of real vectors with n
components, the set of real m x n matrices, the set of intervals, the set of interval
vectors with n components, and the set of m x n interval matrices, respectively. By
“interval” we always mean a real compact interval. Interval vectors and interval ma-
trices are vectors and matrices, respectively, with interval entries. We write intervals
in brackets with the exception of degenerate intervals (so-called point intervals) which
we identify with the element being contained, and we proceed similarly with interval
vectors and interval matrices. Examples are the ith column e(*) of the n x n identity
matrix I and the null matrix O. As usual, we identify R™! and TR™*! with R™
and IR", respectively. We use the notation [a] = [a, @] € I R simultaneously without
further reference and, in an analogous way, we write [z] = [z,Z] = ([z];) € ITR" and
[4] = [4, 4] = ([a]i;) € IR™ ™. For [a], [b] € IR we define

a:=(a+a)/2 midpoint,
lla]| := max{la|, |a|} absolute value,
d([a]) :=a—a diameter,
q([a], [b]) == max{|a—b|, [a—b]}  distance,
(2.1) B(lal, [b]) = lla]l + q((al, [b])-

For interval vectors and interval matrices, these quantities are defined entrywise, i.e.,
they are real vectors and matrices, respectively. In particular, |z| = (|z;]) € R" for
point vectors z. We equip R™ and also R™*™ with the natural partial ordering <. In
addition we write < y or, equivalently, y > z for vectors ¢ = (z;), y = (y;) € R" if
z; <y; for i =1,...,n. With the definition

{{a):{o if 0 € [a] € IR,

min{|al, [a]} otherwise,
we construct the comparison matriz ([A]) = (¢;;) € R™" of [A] by setting

c...:{ ([ali;) ifi=,
v —|lals;| i i #£ 5

We call [A] € IR™™ regular if no matrix A € [A] is singular, and we write p(A)
for the spectral radius of A € R™*". Intervals [a] are named zero symmetricif a = —a.
For interval vectors and interval matrices zero-symmetry is defined entrywise.

We close this section by noting equivalent formulations of nonempty intersections
of intervals and by recalling two properties of the function 8 above, which are proved
in [6, Lemma 1.7.5, p. 28].

LEMMA 2.1. Let [a], [b] € IR. Then the following properties are equivalent.

(a) [a]N]b] # 0.

(b) a<banda>b.

(c) |a— b < 3d(a]) + Sa(B) -

LEMMA 2.2. With B from (2.1) the following properties hold.

(a) If [a);, [bl: € IR, [a]; C [b]; fori=1,...,n, then

B(alt - aln , Bli- oo [ln) < B ([alr, (1) - Ak, Bln) -
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(b) If [al, [b] € IR, [a} C [b] and ([a]) > g(la], [B]), then

BB < (@) - a(la] )7,
where [c]™! == {c7|ce ]} for [ € IR, 0¢ ] .

3. The solution set S. In this section we recall some properties of the solution
set S defined in (1.2). To this end, we always assume that a fixed regular interval
matrix [A] € TR™ ™ and a fixed interval vector [b] € IR"™ are given. Then the
elements of S can be characterized in two equivalent ways.

THEOREM 3.1. The following three properties are equivalent.

(a) T € S;v
(b) |Az —b| < 3d([A])|z] + 3d([B]);
(c) [Alzn[b] # 0.

The equivalence (a) < (b) is known as Oettli-Prager criterion [7], the equivalence
(a) < (c) is due to Beeck [3]. We will omit the proof.

To derive some more properties on S we decompose R" into its closed orthants
Ok, k =1,...,2", which are uniquely determined by the signs sz, € {-1,+1}, j =
1,...n, of the components of their interior points. Hence, if O denotes some orthant,
fixed by the signs si, ..., sn, then z = (z;) € O fulfills

>0 ifs;=1,
Bl J’{ <0 ifs;=-1

For [A], [b] as above, and for 7,7 =1,...,n, let

i end] S if s; =1,
(32) s { E,-j 1f Sj = r—l,
and

st a;; if s; = 1,
(3.3) s { o Eae o

Denote by H,, H;, the half spaces

n
H, = J{y€eR" Zcijyj <b;
(3.4) ’:‘ T -
H; = {yeR D djy; >b
j=1

/

Note that H;, H,; depend on the choice of the orthant O. By means of these half
spaces we can represent S N O in the following way (cf. also [8, Cor. 1.2}).

THEOREM 3.2. Let [A] € IR™ ™ be regular and let O denote any orthant of R™.
Then ;

(3.5) - Sno= ﬁ(_ﬁij)nO.

=1

In particular, if SN O is nonempty, it is convez, compact, connected, and a polytope.
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S 1is compact, connected, but not necessarily convezr. It is the union of finitely
many convex polytopes.

Proof. Let [a] € IR, £ € R. Then

1) [€aéa €20,
Sl={lme <0

Hence (3.5) follows from Lemma 2.1(a), (b), from Theorem 3.1(a), (c), and from the
definition of H,, H;.

Since O, H;, H; are convex, the same holds for S N O because of (3.5). This
in turn shows that SN O is connected. The compactness and the connectivity of S
follows from the same property of [A] x [b] and from the continuity of the function

J [Alx[p] - R",
9'{ (A4,6) — A~lp,

the range of which is S. Now S being compact the same holds for S N O since O is
closed. The remaining property of S follows trivially from

21’1

S= U(SOOJ)

Jj=1

and from (3.5), where O;, j = 1,...,2", denote the orthants of R™ numbered arbi-
trarily. g
That S can be nonconvex is seen by the following example.

Ezample 3.3. Let [A] = ( {_i 1 (1] ) , [b] = ( [“E’ d ) . Then S is given by

S ={(z,y)||y] < |z| £ 1} as illustrated in Fig. 1.

THEOREM 3.4. Let [A] be a point matriz. Then S 1s a parallelepiped; in partic-
ular, S is convez.
Proof. Let [A] = [A, A], and denote the columns of A~! by c!,...,c". Then

S=qA+Y t;d|0<t; <d([b]y), 5=1,...,n

=1

This proves the theorem. 0

We remark that a necessary and sufficient criterion for the convexity of S can be
found in [9].

4. On the symmetric solution set Ssy,. We now turn over to the symmetric
solution set Sgym defined in (1.1). We again assume [A] € IR™™" to be regular, and,
“in addition, to fulfill

which is equivalent to A = AT and 4 = a,
We first prove two simple properties of o -
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»

F1G. 1.  The shape of the solution set S in Example 3.3.

THEOREM 4.1. Let [A] = [A]T € IR™ " be regular. Then Seym is compact and
connected.

Proof. Define [Alsym := {A € [A]| A= AT}. Then

 J [Alsym x )] — R",
(&:1) f'{ (A4,0) = A-lp

is continuous. Let {A} be an infinite sequence from [Alsyr,. Since the (1,1)-entries

of A are all contained in the compact set [a];;, there is a subsequence {AE)} of
{Ay} such that its (1, 1)-entries are convergent. By the same reason one can choose a
subsequence {A?)} of {ALI)} such that the (1,2)-entries are convergent. It is obvious
that the (1,1)-entries of {Af) } keep this property. Repeating the arguments by
running through the indices (¢,5), 1 < ¢ < j < n and taking into account the
symmetry of Ay shows that there is a convergent subsequence of { A}, which proves
[A]sym to be compact. Therefore, [Alsym X [b] is compact, and the same holds for the
range Sgym of f.

If Ay, Az € [Alsym then the line segment A; +t(As — A;) € [Alsym, 0 <t < 1.
Hence [A]sym is connected and also [A]sym X [b]. Using the continuous function f
from (4.1) once more shows Sgym to be connected. O

We next investigate Ssym in the 2 X 2 case more carefully. To this end, as in §3,
we fix an orthant O given by the signs s1,...,s, of the components of its interior
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points. We define H;, H; as in (3.2)—(3.4) and e, f € R" by

R Q'E if 33 = 1,
&= B@ if §; = ‘—].,
Bi if §; = 1,
fi _{ Qi ifS:‘—_-—l.
For n = 2 we use the sets
(4.2) C™:={y€ R?| ay,¥} —any3 ~ fiy1 + e2yp < 0} ;
(4.3) C*:={y e R?| auyi — a3 — er1y1 + foyo > 0}.

Obv10usly, each of these two sets has a comc section as boundary provided that
a? + a22 # 0 for C~ and, similarly, a}; + a2, # 0 for Ct. As for the hyperplanes
H;, H; in §3 we point out that C~, C* depend on the choice of the orthant O.
However, the type of the conic section is independent of O if one does not distinguish
between hyperbolas and pairs of intersecting straight lines, and if one considers a
single point as an ellipse. If each symmetric matrix from [A] is positive definite then
a;; > 0, i =1, 2, hence the boundary of C~ and C* is formed by hyperbolas in the
above-mentioned generalized sense.

We now describe Sgyr, in the 2 x 2 case by means of S, C~, and Ct .

THEOREM 4.2. Let [A] = [A]T € IR?*? be regular and let O denote any orthant
of R%. Then

(4.4) . e NO=8000NC™0C* ;

In particular, if Sy N O is nonempty, it is compact, but not necessarily convez.
Proof. The compactness follows from Theorem 4.1. The nonconvexity is shown
by Example 4.4. It remains to prove (4.4).
C : Let ¢ € Seym N O. Then z € SN O, and there exists a symmetric
matrix A € [A] and a vector b € [b] such that Az = b. With [t] := [a];2 = [a]o; and
ti= aiz = Q91 wWe get

(4.5) anz) +tre = by,
(46) tzy + a0 = by .

Multiplying (4.5) by z; and (4.6) by z2 and substituting tz;z2 we obtain
{1119:% i (12211?3 = blxl = bgi‘g .

Thus

(1) mT( [ag’u —[2]22 )_m : :ET( "{g]]; ) i

whence, by Lemma 2.1, we get equivalently

2 e, 2
Gy, Ty — Gooxy < f1T1 — €2z,

— 2 2
Q1177 — A9pTy Z EjiLy = fzﬁ?g .

This means z € C~ and z € Ct, respectively. Therefore, Ss;mNO C SNONC~NCT.
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2 B Let
(4.8) zeSnonCc—ncCt.
Since x € S, there are A € [A], b € [b] such that
(4.9) Az =b

holds. We are going to show that A € [A] in (4.9) can be chosen to be symmetric
when changing b € [b] appropriately. To simplify the notation we use

11 ;= a12 € [ﬂ]lg and {9:=a9 € [a]gl — [8]12 = [t]

for the two off-diagonal entries of A4 in (4.9).
If {1 = to then z € Ssym N O. Therefore, assume t; # t, say

(410) it

If z; = 0 then A can be replaced in (4.9) by the symmetric matrix

t
A = a1 1
i ( t1 a2
thus showing = € Sqym N O . Analogously one proceeds for z3 =0 .

Let now z; # 0 and x5 # 0. We first consider the case ; > 0, z2 > 0, which, by
(4.8), means that O is the first quadrant of R?. Our proof is based on the equivalence
of (4.9) with ‘

by —anx;
) fy o R T o i SRS
(@11 =AM e, =2 ey
Assume = & Ssym N O. This means that b € [b] and A € [A] from (4.9) cannot be

replaced such that (4.9) is satisfied for some symmetric matrix Asym € [A] and some
suitably modified vector b € [b]. Taking into account (4.10) we consequently obtain

- b, — Qoo "
(4.12) E <t S b = B < b 1= 22 <1y <
2 T

whence
1 2 - 2
b].r‘]_ = gllxl < ézIQ e 0;223:2 .

Since we supposed O to be the first quadrant this implies z ¢ C~, which contradicts
(4.8).
Replacing (4.10) by t; > ¢, and assuming = € Sgym N O yields

. b2 — ay0T2
tmax =
To T

by —anz

>t 2ty = 2ta 21

from which we get the contradiction = ¢ C*. Therefore,
(4.13) SHONC~ Mo € Sanm O

holds if O is the first quadrant O, .



1230 G. ALEFELD AND G. MAYER

Let now z € O # Oy, 71 # 0, z2 # 0, s; := sign(z1), s2 = sign(zz2), D, =
diag(s, s9) € R***. Then (4.9) is equivalent to

(4.14) Az =b

with A := D;AD, € D,[A|D, =: [4], % := D,z € Oy, b:= Db € D,[b] =: [B] . Let
S, .S'Sym, C~, C*, e;, f; be associated with the given quantities [A], [b], and O, and

let S, Ssym, C , Ct, &, fi be the corresponding quantities associated with [A], [B],
and O; . Since

sih ={ "zi ;11: SiiE _i }zmax{31[b]1} =fi

81 =
and
- b_2 if 82 = 1 o . o e
Soep = { by i e 1 } = min{s;[b]2} = é>,

we get from y € C~ the inequality

0> (s18y;51)(5151)° — (8282252) (s292)° — (51£1)(5191) + (52€2) (5292)
= 1,9} — 82203 — fili + é2ie,

where § := D,y . Hence y € C~ implies § € C~, and ‘analogously y € C™ yields
i € Ct. Therefore, 1€ SNONC~-NC* results in 2 € SN0, NC~ N Ct whence

(415) Te Ssym N Ol

as we have proved above. Since (4.15) implies flsym:i‘: = b for some symmetric matrix
Asym € [A] and some right-hand side b € (8], it yields z € Seym N O via (4.14). 0

The generalization of Theorem 4.2 for the case n > 2 is not straightforward since
the elimination process performed in the proof does not seem to work in this case.

Since £ € C~ NCT is equivalent to (4.7), we obtain immediately the subsequent
corollary from Theorem 3.1(a), (¢) and from Theorem 4.2.

COROLLARY 4.3. For regular matrices [A] = [A]T € IR**? and [b] € IR? the
following properties are equivalent.

(a) z € Ssym-

(b) [Alzn[b]#0 (ie,z€S)and

()20 () 9.

Note that in contrast to Theorem 4.2 no orthant enters explicitly in Corollary
4.3. Therefore, it can be viewed as an analogue of Theorem 3.1.

We now illustrate Theorem 4.2 by two examples. In particular we show that Ssym
can be nonconvex in the orthants and that its boundary can be curvilinear.

Example 4.4. Let

= (b 57) mab=(3)-

L &
Atl,fg S ( 52 E': ) , ti, o € {—4, 0],

With
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Wwe get
i 1 5 —t
= — . o
Atl t2 20 — t1to ( —t9 9 ) 20
and
i oy .. @ 45
(4.16) At ( 0 ) =% L ( —9t, )) t, t2 € [—4,0] .

Hence S and Ssym are completely contained in the first quadrant O;,. With the
notations of §§3 and 4 we obtain

Hi={yeR|5y -4y <9}, Hi={yec R’| 5y, >9},
H,={y€ R*| — 4y, + 5y, <0}, Ha={y e R?| 5y, >0},

hence S = H,NH NH,NH,NO; is the triangle with the vertices (1.8, 0), (1.8,1.44),
and (5,4). To describe Sgym we list the sets

C™ ={y € R*| 57 — 5y; — 91 < 0},

C* = {y € R?| 597 — 5y3 — 9y; > 0}.
Then K := C~ NC? is the hyperbola

97 81
K : = | gt
(yl 10) 2= 100

By (4.16) or by Theorem 4.2 one can see that Sgyr, is that part of the right branch of
K which lies between the points (1.8,0) and (5,4). The sets S and Sy, are illustrated
in Fig. 2.

Our next example shows that parts of a parabola, of a circle, and straight lines
can also form the boundary of Sgyp,.

Ezxample 4.5. Let

A= Gy ) B=(ply ) Aesa=(5 )i

with o, 8 € [1,2], v € [-1,0]. Since det A4 g,y = 7 — af < —1, the interval matrix

[4] is regular with
e 1 ¥y —a
L.t SR T ;
a’ﬁ"‘r det AQ!B»’Y ( H_ﬁ 1 )

With by > 2b; > 2 we get A% - b > 0 for any choice A, 5, € [A], b € [b]. Hence
S and Ssym are completely contained in the first quadrant O;. Using the notation
above we obtain for O; the following sets:
={yeR*|y1+y2 <4}, Hi={y € R?| y1 + 252 > 4},
Hy={ye R*|y1 —yp <2}, Hy={ye R*| 2y, > 1},

C-={yeR’|yi-dn+1p<0}={yc R’ |y <4— (v — 2%},
Ct={ye R*|yi+45 4 + 2 >0} = {y € B*| (1 — 2" + (12 + 1)* 2 5} .
Theset S = H,NH NH,NH;NO; 15theconvexhullofthepomts(2,4) (3.0), (8,2

and (3,1). The boundary of Sgym = SNO;NC™ NC is formed by the following four
curves.
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——

FiG. 2. The shape of the solution sets S and Ssym in Example 4.4.

214
(ii) The straight line between (1,3) and (3,1

(i) The straight line between (%, ) and (&, -)‘-55)

(iii) The part of the parabola y = 4 — (y; — 2)? between (3, %) and (1, 3).
(iv) The part of the circle (y; — 2)% + (y2 + 1)% = 5 between (3,8) and (3,1).

The situation is illustrated in Fig. 3.

5. Computing enclosures for Ssym- As was shown in [2], Ssym can be enclosed
by the vector [z]C, which results from the following interval version of the well-known
Cholesky method, for which we assume [A] = [A]T € IR™*", and [b] € IR".

Step 1. “LLT decomposition”
for j:=1tondo

-1\ 2
[l = ([G]jj - Z[I]?k) :

k=1
fori:::j—i—ltondo_

[lij = ([a]z'j B i[”ik[”jk) /W55 5

k=1
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I

1 ! |8
1 ] 1

1 3 5 X

FiGg. 3. The shape of the solution sets S and Ssym in Erample 4.5.

[ .

Step 2. Forward substitution
fori:=1tondo

W] = ([blz - i[ﬂa‘j[y]j /[0 5

=1

Step 3. Backward substitution
for i :=n downto 1 do

[2]¢ = | v} - Z [g]ji[l']? e

j=i+1
ICh([A], []) = [2]C .
Here,
(5.1) [a)? := {a®| a € [a]}
and

[u,]l”2 = \/@ :={Va| a € [d]}

for intervals [a].

In contrast to the classical, i.e., noninterval Cholesky method, it is an open ques-
tion when the interval Cholesky method is feasible. In [2] several criteria are given that
guarantee the existence of [z]©. We add here two new ones as well as a nonexistence
criterion, which we formulate first.
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THEOREM 5.1. If [A] = [A]T € IR™ ™ contains at least one symmetric matric
A which is not positive definite, then [r]C does not erist.

Proof. We first recall that a real symmetric matrix has an LLT-decomposition
with positive diagonal entries l;; if and only if this matrix is positive definite (see [11]).
L can be computed by the Cholesky method. Assume now that A = AT € [4] = [A]T
is not positive definite. Then the Cholesky method will break down. This is the case
if and only if for some index j either /;; cannot be computed because of

g==1
2
k=1

(see Step 1) or y; cannot be computed because of I;; = 0 (see Step 2). By the inclusion
monotonicity of the interval arithmetic, either [I];; does not exist, or 0 € [l];; and the
interval Cholesky method will break down. O

Example 4.5 illustrates Theorem 5.1: Since

a=(1 D)ew=( 4 &%)

is not positive definitive, [z]© does not exist for [4]. Note, however, that the interval
Gaussian algorithm is feasible for this interval matrix.

Before formulating our new feasibility criterion we need some preparations.

By Theorem 3.4 in [2] we have for [y| from Step 2 in the interval version of the
Cholesky method

vl = D™ (L™ (I (- (1271 (0% (7] ([P e1)))) - - )

and

(52) [=7 =D (LY (D (- (L7 (0™ (LT D“][:a] ))--)))

where the diagonal matrices [D°] and the lower triangular matrices [L°] are defined

fors=1,...,n—1by
1 ifi=j+#s,
[ds],‘j = 1/[3]55 if 4 =j =35,

0 otherwise,
1 if i = j,
[lij =4 —[lis fi>j=s3s,
0 otherwise,

with [l];; from the Cholesky method. (Note that [I];; is computed in the jth step of
the “LLT-decomposition”). By (5.2) it is easy to see that the mapping

IR — IR",
(53) & { B~ ICh([4], 6]

is a sublinear one in the sense of [6, p. 98], i.e.,
@ pcid = 5(p)<fd),
() acR = flab)=af(B),
Gi) f@E+) € F()+F(e) for Bl [d € IR™.



ON THE SYMMETRIC AND UNSYMMETRIC SOLUTION SET 1235

Ax cosy computation yields
1D |12 | D |- 112 1 10211 (Y 11 DY | = {2y~
again with [L] = ([I];;) from the Cholesky method. Hence, for the particular “right-

hand side” [B] := [~1,1]e, where € = (1,...,1)7, one gets

Ch((4], ) = [=1° = (L) ™" (2D ~B]) = () ™) -
With the abbreviation
(5.4) | A = () ™
one therefore obtains for any [5] C [5] the inclusion
1Ch([4}, ) C | [AI°| 1] -

Thus, | [4]€ | can be thought of as a measure for the width of the enclosure ICh([A], [b])
of Ssym that does not depend on the right-hand side [b] as long as [b] is contained in
[6]. The condition [b] C [b] can be considered as a sort of normalization. If it no
longer holds, replace [b] by ¢[b] with ¢ > 0 as small as possible such that [b] C ¢[b] is
‘valid. Then

ICh([4], [o]) C t][4]°] [B),

hence ¢| [A]€ | is a corresponding measure.
By (5.2) we also get

{( ICh ([A], [e®,e®)) ..., 1Ch (4], [-e™, ™)) )|= 141 |,

hence | [A]° | is the absolute value of the sublinear mapping f in the sense of [6, p.
100]. By an elementary rule of the diameter d (cf. [1}) one proves at once the property

d(f([6) 2 | [A]° | d([o])

of f which is then called normal in [6, p. 102].
“We next recall an equivalent definition of Step 1 in the interval Cholesky method.
DEFINITION 5.2. ([2]) Let either [A] = (la]11) € IR or

_( lau [C]T T nxan j el
[A]_( ! [A,])_[A] € IR™™ n>1, [ € IR™,

[Af] € IR(n—d}x(n—I).

(a) Tpa = [A] - (1/la)u1) [ddT € IR™ X1 is termed the Schur comple-
ment (of the (1,1) entry [a]11) provided n > 1 and 0 € [a]1;. In the product
[T we assume that [c]i[c]; is evaluated as [c]? (see (5.1)). Zpa is not
defined if n =1 or if 0 € [a];;.

(b) We call the pair ([L],[L)™) the Cholesky decomposition of [A] if 0 < a;; and
if either n =1 and [L] = (1/[a]11) or
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(55) L={ _l

where ({L’],([L’])T) is the Cholesky decomposition of L(a provided that

it exists.

As was shown in [2] the matrix [L] of the Cholesky method and that of the
Definition 5.2(b) are identical.

The proof of our main result, Theorem 5.4, is heavily based on the following
lemma.

LEMMA 5.3. Let the Cholesky decomposition ([L],[L]T) of [4] = [A]T € IR™™
ezist, and let [B] = [B]T D [A] be such that for a suitable u > 0 we have

(5.6) a([A], [B])u < ([LIN[L] )u -

Then the Cholesky method is feasible for [B.
Proof by induction.  The proof proceeds similarly as for Lemma 4.5.14 in [6].
Let n = 1. Then (5.6) implies u > 0. Again (5.6) together with 0 < a,, yields

(a1 — by)u < q([4], [BDu < ([la]lu)u = ajyu ,
hence
0 <bju

follows. This shows 0 < b;; = ([b]11) which proves the existence of ICh([B], [b]) for
n=1

Assume now that the statement is true for some dimension n > 1, and let (5.6)
hold for

67 [A]= ( [G[ij‘ %i];; ) clE = ( [ﬁ;]l %; ) c IRM+DX(n+1)

We first show b,; > 0. With

538) oL 1B) = @) = (4 G )
we get from (5.6)‘
n+l n+1

un’uj‘ < (lal11) u1 — Z | {a]uj|u; ,

hence
j=2

n+1 .
ay; — qu = ([gJu) - qu > {Z(QU +|laly; Dﬂj} /u120.

Together with (5.7) this implies 0 < b;; = ([b}11), whence the Schur complement
2[3} D X4 exists.
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By our assumptions, the Schur complement ¥4 has a Cholesky decomposition
(IL'], [L')T). If we can show that

(5.9) (S, S < (VLT

holds for some vector v’ > 0 then ¥p; has a Cholesky decomposition, say (L9 I0T5),
by the hypothesis of our induction, and with

) Vilu O
[L] = [d] [EI] 3
Vbl

we obtain the Cholesky decomposition ([L], [L]T) of [B].
To prove (5.9) we apply S from (2.1) componentwise, and use the notation from
(5.8) as well as that of Lemma 2.2. We then get

(5.10)
a(Sia, Eim) = ¢ (14 - [dld [l [B'] - [d][d)]T Bl5y)
< Q' +g([dld7 (el [dd T b))
= Q' - |[dld" a5 | + B(dc (el [d)[d)T b))
= Q' =T | {[al1) ™" + B el [ A" (b5 )
<Q - [ddT | (lau)™" + B(d, [d]) - B(]", [d)T) - Blaliy, ]5)
=Q = 1[dd” I{lah)™" + ([ ]+ )]+ )T B(al}, Bbl5) -

We now want to apply Lemma 2.2 (b) on the last factor in (5.10). To this end we
must show

(5.11) (lali1) > q(lali1, [B)11) = qu1 -

Therefore, we set u = ( :;f ) in (5.6). With (5.5) and with the notation (5.8), we
then obtain

E " (lalu) O i "] 1
(2 ) (2)< (G w ) (57 o ) ()
whence _

(5.12) guur + 7’ < ([aun)ur — | [T o

and
(513)  ru + Qv < —|[dfus +|[ [T [{la)u) T e + ([T )’
Since uy > 0, the inequality (5.12) implies (5.11), and Lemma 2.2(b) and (5.10) yield
a(Bay, i) < Q= T [{lahu) ™" + ([ | + )l e | + )T ({[a)u1) — qu) ™
Together with (5.11), (5.12), (5.13), this implies
4(Zay, Tip)e' < Q' — [ []" [{[alu) 7w
+(L +r)(a)in) = qu) (e |+ )T
< —rug = |[dJus + (L)) (ILT )"
+(l e | +r)({[al1) = q11) 7 ({[a]1)w = grawa)
= ([LI(LT ).
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This proves (5.9) and terminates the induction. O
~ We are now ready to prove our main result.
THEOREM 5.4. Let [A], [B] € IR™", [A] = [A]7, [B] = [B]T, and suppose that
ICh([A], [b]) ezists. If

(5.14) p( [AI°] o([4],[B]) < 1,

then the Cholesky method is feasible for [B].

Proof. Let Q := q([4],[B]), [C] = [A] + [-Q,Q]. Then [B] C [C], and
ICh([B], [b]) exists if ICh([C], [b]) does. By (5.14) the inverse of I — | [4]C |Q ex-
ists and can be represented as Neumann series

(I-1 A1 =3 (114°1Q)* > 0.
k=0
With any v € R"™ satisfying v > 0 define
(5.15) ui=(I-[4°1Q)™" |[4°v.

Since | [A]| > 0 and (I —|[A4]¢ fQ)_I > 0 are regular each of their rows contains at
least one positive entry. Therefore |[A]° |v > 0 and u > 0. Now (5.15) yields

[ [AIC1Qu = u— | [A]° |,
whence
Qu = ([L]{[L]")u—v
< (L)L),

with ([L], [L]T) being the Cholesky decomposition of [A]. Hence, Lemma 5.3 guaran-
tees the feasibility of the Cholesky method for [C] and therefore also for [B]. O
We illustrate Theorem 5.4 by a simple example.

Ezample 5.5. Let
' 4 2 2
Bl=4{ 2 4 [0,2] |.
2 [0,2] 4

Then ([B]) - (1,1,1)T = 0, hence ([B]) is singular. In particular, ([B]) is not an
M-matrix (which requires ([B])~! > 0; cf. [2]), whence, by definition, [B] is not an
H-matrix. Therefore, Theorem 4.2 in [2] does not apply. Consider now

[M;( )gmy

Since ([A]) is irreducibly diagonally dominant, the interval Cholesky method is feasible
for [A] by Corollary 4.3 (ii) in [2], for example. A simple computation yields

2 0 0 V3 0 0
[L]:(l V3 0), ([L]}l——\?( 1 2 0)
1 0 V3 1 0 2

RN
— R b
NG
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and

[
[ TN

| A% = (@)™~ = (

= O b
\-—.—_-/

From

q([AL, [B]) =

oo o
-0 O
O = O

we get the matrix
0

| [AI°la((A,[B) = | ©

O Wl DD =

0

Wl O

which has the eigenvalues —%, 0, % . Therefore, Theorem 5.4 applies. The elements

[l];; that result from the interval Cholesky method for [B] are given by

2 0 0
L= 1 V3 0 )
1 [-1,1]/v3 [V38,3]/V3

Our example also illustrates the following covrollary.
COROLLARY 5.6. Let the midpoint matriz A of [A] = [A]T € IR™™ be positive
definite, and assume that

p (5141 dap) <1

Then the interval Cholesky method is feasible for [A].

Proof. Because of [A] = [A]T, the matrix A is symmetric. Since it is positive
definite by assumption, the interval Cholesky method is feasible for A when viewed
as a point matrix. Taking into account ¢(4, [A]) = 1d([A]), the assertion is a direct
consequence of Theorem 5.4. O

6. Concluding remarks. We stress the fact that the main purpose of this paper
is to give criteria for the feasibility of the interval Cholesky method. If this feasibility
is guaranteed—for example, this is the case if one of the criteria presented in this paper
or in [2] holds—the question arises immediately how close the symmetric solution set
Ssym is included. Especially, what is the relation between the results of applying
the Gaussian algorithm (or some other method) and the interval Cholesky method,
respectively? In [2] it was shown by simple examples that generally no comparison
is possible. The examples from [2] can be generalized to arbitrary large dimensions
n > 2 without any difficulties. Hence up to now it is not clear under which conditions
on the given interval matrix the interval Cholesky method is superior to the interval
Gaussian algorithm or vice versa. The investigation of this question and/or some
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statistics about the width of the bounds for systems of larger dimension will be part

of further research.

We also mention that for a given real system a very careful analysis of the floating-
point Cholesky decomposition was performed in [10]. If the matrix as well as the
right-hand side are afflicted with tolerances then bounds are computed for the set of
all solutions for data within tolerances.

Acknowledgments. The authors are grateful to two anonymous referees for a
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