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Two efficient algorithms for enclosing a zero of a continuous function are presented. They are
similar to the recent methods, but together with quadratic interpolation they make essential use
of inverse cubic interpolation as well. Since asymptotically the inverse cubic interpolation is
always chosen by the algorithms, they achieve higher-efficiency indices: 1.6529... for the first
algorithm, and 1.6686... for the second one. It is proved that the second algorithm is optimal in
a certain family. Numerical experiments show that the two new methods compare well with
recent methods, as well as with the efficient solvers of Dekker, Brent, Bus and Dekker, and Le.
The second method from the present article has the best behavior of all 12 methods especially
when the termination tolerance is small.
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. INTRODUCTION

In a recent paper Alefeld and Potra [1992] proposed three efficient methods
for enclosing a simple zero x, of a continuous function f. Starting with an
- initial enclosing interval {a,, b;] = [a, b], the methods produce a sequence of
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328 . G. E. Alefeld et al.

intervals {{a,, b,])°_,, such that

z, €la,,, 0,11 cla,,b,]c - cla,,b,] =[a,b] (1)
lim (4, — a,) = 0. (2)

The asymptotic efficiency indices of each of the three methods in the sense
of Ostrowski [1973] are 2V/2 =14142..., 473 =15874..., and (3 +
(13%/2))/2)}3 = 1.4892..., respectively. Subsequently, Alefeld et al. [1993]
improved the methods of Alefeld and Potra and obtained two new enclosing
methods having asymptotic efficiency indices (1 + (2!/2))!/2 = 1.5537 and
(1 + (52))/2 = 1.6180..., respectively. The numerical experiments pre-
sented by Alefeld et al. show that the five methods mentioned above are
about as efficient as the equation solvers of Brent [1972], Dekker [1969], and
Le [1985]. The second method in Alefeld et al. has the best behavior of all
eight methods.

Although there are many enclosing methods for solving the equation

f(x) =0, ' (3)

where f is continuous on [a, b] and has a simple zero x, in [a, b], most of
them do not have nice asymptotic convergence properties of the diameters
{(b, — a,); .. For example, in case of Dekker’s method, the diameters b, — a,
may remain greater than a relative large positive quantity until the last
iteration when a “&-step” is taken. In case of Le’s [1985] Algorithm LZ4, the
convergence properties of {(5, — a,));., have not been proved except that the
total number of function evaluations is bounded by four times of that needed
by the bisection method, which is also an upper bound for the number of
function evaluations required by the second method to be presented in this

- article.

Bus and Dekker [1975] published two improved versions of Dekker’s [1969]
method and proved that the upper bounds of the number of function evalua-
tions are four or five times of that needed by the bisection method. However,
for those two methods, as well as for Brent’s method, the Illinois method, the
Anderson-Bjorck method, Regula Falsi, Snyder’s method, the Pegasus method,
and so on, only the convergence rate of {lx, — x.[J;.,, where x, is the
current estimate of x,, has been studied and not the convergence rate of the
diameters (4, — a,). However, finding the rate of convergence of the sequence
of the diameters is extremely important because in most algorithms for
solving nonlinear equations the stopping criterion is constructed in terms of
the diameter of the enclosing interval. '

In case f is convex on [a,b], the classical Newton-Fourier method
[Ostrowski 1973, p. 248], Schmidt’s [1971] method and the methods of
Alefeld and Potra [1988] produce a sequence of enclosing intervals whose
diameters are superlinearly convergent to zero. The highest asymptotic effi-
ciency index of those methods, 1.5537..., is attained by a method of Schmidt
and a slight modification of this method due to Alefeld-Potra. The convexity
assumption was eventually removed in the methods of Alefeld and Potra
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[1992], and the methods of Alefeld et al. [1993]. The second method in Alefeld
et al. achieves the efficiency index (1 + (5'/2))/2 = 1.6180... which was, up
to that moment, the highest efficiency index for a general nonlinear equation
solver with superlinear convergence of the diameters of the enclosing inter-
vals and without any convexity requirements on f. The methods of Alefeld
and Potra [1992] and Alefeld et al. are based on “double-length secant steps”
and on appropriate use of quadratic interpolation and are briefly described in
the next section.

We propose two methods which further improve the methods of Alefeld et
al. [1992]. The improvements are achieved by employing inverse cubic inter-
polation instead of quadratic interpolation whenever possible. We show in
Section 5 that asymptotically the inverse cubic interpolations will always be
chosen by the algorithm. Our first method requires at most 3 while our
second method requires at most 4 function evaluations per iteration. Asymp-
totically our first method requires only 2 and our second method only 3
function evaluations per iteration. For our first method, {(5, — a,)}; ., con-
verges to zero with R-order at least 1 + (3!/2) = 2.732..., while for our
second method {(b, — a,)};., converges to zero with R-order at least 2 +
(7/2) = 4.646... . Hence the corresponding efficiency indices are (1 +
(3/2)¥2 = 1.6529... and (2 + (7/2))/3 = 1.6686..., respectively. We also
show that our second method is optimal in a certain class of algorithms.

Section 3 describes our subroutine for inverse cubic interpolation, and
Section 4 presents the major algorithms of this article. In Section 5 the
convergence results are proved, and in Section 6 numerical experiments are
presented. We compare the two methods of this article with the methods in
Alefeld and Potra [1992] and Alefeld et al. [1993], with the methods of Brent
[1972] and Dekker [1969] which are used in many standard software pack-
ages, with the Algorithms M and R of Bus and Dekker [1975)}, and with the
Algorithm LZ4 of Le [1985]. The numerical results show that the two meth-
ods of the present article compare well with the other 10 methods. The second
method in this article has the best behavior among all methods especially
when the termination tolerance is small. :

2. SOME RECENT ENCLOSING METHODS

In this section we briefly describe the recently developed enclosing algorithms
of Alefeld and Potra [1992] and their improvements proposed by Alefeld et al.
[1993] for enclosing a simple zero x, of a continuous function f in [a, b]
where f(a)f(b) < 0. In all, there are three methods proposed in Alefeld and
Potra and two methods proposed in Alefeld et al. “Double-length secant step”
is used by all-five methods, and quadratic interpolation techniques are
applied in all but the first method of Alefeld and Potra. In the present article
we call those methods Algorithms 2.1-2.5 and summarize their asymptotic
convergence properties in the following table, where NFM stands for “the
maximum number of function evaluations required per iteration,” NFA for
“the number of function evaluations required asymptotically per iteration,”
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330 . G. E. Alefeld et al.

and AEI for “asymptotic efficiency index” (the values of AEI are rounded to
the given number of digits).

Algorithm Method NFM NFA AEI
2.1 Method 1 of Alefeld and Potra [1992] 3 2 1.4142
2.2 Method 2 of Alefeld and Potra [1992] 4 3 1.5874
2.3 Method 3 of Alefeld and Potra [1992] 3 .3 1.4892
2.4 Method 1 of Alefeld et al. [1993] 3 2 1.5537
2.5 Method 2 of Alefeld et al. [1993] 4 3 1.6180

We first list out two subroutines that are called by Algorithms 2.1-2.5 as
well as by Algorithms 4.1 and 4.2 in Section 4. We assume throughout that f
is continuous on [a, ] and that f(a)f(b) < 0. We consider a point ¢ € (a, b).

Subroutine bracket(a, b, ¢, @, b) (or bracket(a, b, c, @, b, d))
If f(c) = 0, then print ¢ and stop;
If fa)f(c) <0,then @ =a, b =c, (d = b);
If f(b)f(c) <O, then @ = ¢, b=5,(d =a).

After calling the above subroutine, we will have a new interval [a, 8] c
[a, b] with f(@)f(B) < 0. Furthermore, if bracket(a, b, c, @, b, d) is called,
then we will have a point d & [@, 8] such that if d <& then f(a)f(d) > 0;
otherwise f(d)f(%) > 0.

Subroutine Newton-Quadratic(a, b, d, r, k)
Set A = fla,b,d), B = fla, b];
If A=0, then r =a — B~ !f(a);

 If Af(a) > 0, then ry = a, else ry = b;
Fori=1,2,...,% do:

P(r;_,)
L o P(r,_}) .
B(r;_,)
=r

r=r*.

The above subroutine has a, b, d, and %k as inputs and r as output. It is
assumed that d & [a, b] and that f(d)f(a) >0if d <a and f(d)f(b) > 0 if
d > b. k is a positive integer, and r is an approximation of the unique zero z
of the quadratic polynomial,

P(x) = P(a,b,d)(x) = f(a) + fla,bl(x —a) + fla,b,d}(x —a)(x - b)

in [a, b] where fla, b] = (f(b) — f(a))/(b — a), and fla, b,d] = (f(b,d] -
fla, b)) /(d - a); note that P(a) = f(a) and P(b) = f(b). Hence P(a)P(b) < 0.

The following five algorithms describe the methods in Alefeld and Potra
[1992] and Alefeld et al. [1993], where u < 1is a positivé parameter which is
usually chosen as u = 0.5.
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Algorithm 2.1 (Alefeld and Potra [1992)])

seta, =a,b,=b,forn=1,2,..., do:
2.11 ¢, =a, - fla,, b,17' f(a,);
2.1.2 call brac}zet(a,,, b 6..8.. 0.
213 i iilg. )= If(Bn)l, then set u, = a,, else set u, = 3,,;
214 seté, =u, - 2fla,, 5,1 f(u,);
2.15 if|¢, —u,l> 0505, - a,),
then &, = 0.5(5, +a | elsec =E
2.1.6 call bracket(a,, b,, é,, b,);
2.1.7 if b, — &, < u(b, - au),
then Gni1 = &m bn+l = Bn’
else call bracket(a,, b,, 0.5(&, + b,), @n, 1, basy)-

Algorithm 2.2 (Alefeld and Potra [1992])

seta, =a,b,=b,forn=1,2,... do:

221 & =a,—~fla.b]" " Na.) -

222 call bracket(a,, b,, c,, G,, b,);

2.2.3 ¢, = the unique zero of P(a,, b,, ¢,Xx)in [&,, b,};
224 call bracket(a,, b,, ¢,, @,, b,);

2.2.5-2.2.9: same as 2.1.3-2.1.7.

Algorithm 2.3 (Alefeld and Potra [1992))

set g, =a, b, =b,forn=1,2,... do:
23.1 c,=05(a, +b,);

2.3.2-2.3.6: same as 2.2.2-2.2.6;

2.3.7 call bracket(a,, b,, €,, @, 1> Bpsr)-

n* “n?

Algorithm 2.4 (Alefe!d et al. [1993))

24.1 seta,=a, b, =b, ¢, =a, —fla,, b, fla,);
2.4.2 call bracket(a,, b,, ¢,, a,, b,, dy);
For n =2,3,..., do: '
24.3 call Newton—Quadmtzc(a b6y 2
2.4.4 call bracket(a,, b,, c,, G,, b,, d,);
24.5 if |f(@) <|f(3,), then set u, =a,, else set u, = Bn;
246 setc, =u, - 2fla,, 5,17 f(u,);
24.7 if ¢, — u,l> 0505, — a,),
thenc = 0.5(, +3,), elsec =C,;
2.4.8 call bracket(a,, b,, é,, G,, b, cf %
249 if b, - é, < (b, - a,‘),
then T &n* bn+1 = Bn_! dn+l = Jn
else call bracket(d,, b,, 0.5(G, + b,), @ns1s Ons1s Bnsr)-

331
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332 . G. E. Alefeld et al.

Algorithm 2.5 (Alefeld et al. [1993))

2.5.1-2.5.2: same as 2.4.1-2.4.2;
Forn =2,3,..., do: |
2.5.3 call Newton Quadratzc(a b,,
2.5.4 call bracket(a,, b,, c,, @ E'J cf
2.5.5 call Newton- Quadratzc(a 5 d-
2.5.6 call bracket(a,, b,, ¢,, @,, b,, &‘
2.5.7-2.5.11: same as 2.4.5 2.4.9.

3. A BASIC SUBROUTINE

In this section we describe a subroutine for approximating a zero of f by
using the inverse cubic interpolation. This subroutine will be called by the
algorithms described in the next section. Assume that f is continuous on a
closed interval I, that f has a zero in I, and that a, b, ¢, d are four numbers
in I. If f(a), f(b), f(c), and f(d) are four distinct values, then the inverse
interpolation polynomial at (e, f(a)), (b, f(b)), (¢, f(c)), and (d, f(d)) is given
by the formula

IP(y) =a + (y = fla)) f [ f(a), f(B)]
+(y = f(@)(y = FOF M fla), £(B), f(e)] (5)
+(y = f(@)y = FO(y = FeNf L F(a), (), flc), f(d)],

where
F YU (@), F(B)] = __b;"__
YT Ry - fla)
_ FHFW), £ = £ f(a), F(B)]
1 s
and

£, o), F(A)) = £ fla), £(B), f(e))
f(d) - f(a) '

ff(@), (), f(c), F(A)] =

Notice that the polynomial IP(y) in (5) can always be constructed as long as
f(a), f(b), f(c), and f(d).are distinct, even if f is not invertible. Then we may
always compute x* = IP(0), which is an “approximate solution” of f(x) = 0
although X may lie outside of I. We are interested in the case where f(a),
f(b), f(c), and f(d) are distinct and where % is in I. We will prove that this
will always happen asymptotically.

In case f is continuously differentiable with f'(x) # 0 for all x € I and
f(a)f(b) < 0 for some [a,b] €I, f '(x) exists, and a simple root x, of
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f(x) = 0 lies in [a, b]. In this case, if we further assume that f'¥(x) exists
and is continuous on I, then

12 — x| =IP(0) — £~1(0)|
(4) (6)

Xyenn l[f“l(y)]
4!

ma
<lf(IFB)I F)IF(D)]
Since

[f'l(y)]“’ _ 10£7 ()" (x)f"(x) - 150 £ () = [ ()P F9(x)
[F (=)

for all y € f{I) with x = f"!(y) €I, we deduce that

1Z — x| < MIf()Ilf (B F()IIF ()], (7

where
& 10M,M, M, + 15M3 + MIM,

(m,)’

(8)

with M, = max_.;|f'(x)l, M, = max_ ., |f"(x)l, M3 = max,,;|f"(x)l, M,
=max, ;| f*(x), and m; = min__,|f(x). We mention that m, > 0 be-
cause I is assumed to be a closed interval. The following procedure for
calculating ¥ = IP(0) is a slight modification of the Aitken-Neville interpola-
tion algorithm that avoids unnecessary roundoff errors, as described in Stoer
and Bulirsch [1980].

Subroutine ipzero(a, b, ¢, d, X)

set
f(e)
Cu=le S - o)
f(b)
Q2l - (b - C)f(c) — f(b) ’
f(a)
Qs = (a - b)m.
f(c)
i D2l = (b - C)m,
D (a - b) L)
n=RETYEE) - fla)’
f(b)
Qa2 = (Dy, — Qn)m,
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334 . G. E. Alefeld et al.

f(a)
flc) = f(a)’
f(c)
fle) = fla)’

f(a)
Qi3 = (D3 — sz)m, -

Q32— (Dgy - Qzl)

Dy, = (Dsl = Qzl)

T=a +(Qs + Qs + Q33), end.

4. ALGORITHMS

In this section we present two algorithms for enclosing a simple zero x, of a
continuous function f in [a, ] where f(a)f(b) < 0. These two algorithms are
improvements of Algorithm 2.4 and Algorithm 2.5. They call the subroutines
bracket and Newton-Quadratic as described in Section 2, as well as the
subroutine ipzero from the previous section. The basic idea is that we will
make use of ¥ = IP(0) whenever it is computable and lies inside the current
enclosing interval, which is always the case asymptotically. The first algo-
rithm requires at most 3 while asymptotically 2 function evaluations per
iteration, and the second algorithm requires at most 4 while asymptotically 3
function evaluations per iteration. Under certain assumptions the first algo-
rithm has an asymptotic efficiency index (1 + (3'/2))1/2 = 1.6529..., and the
second algorithm has an asymptotic index (2 + (7'/2))!/3 = 1.6686... . We
also show that in a certain sense our second algorithm is an optimal proce-
dure. In the following algorithms, u < 1 is a positive parameter which is
usually chosen as u = 0.5. ‘ :

Algorzthm 41

411 seta,=a,b, =b,¢c, =qa, - fla,;, 5,17 flay);
412 call bracket(al, by, €1; Gg, by, dg);
Forn=2,3,..., do:
413 ifn= 2 or [T, {f; = f}) = 0 where f, = f(a,), fo = f(b,),
f =1(d,), and f, = f(e;),
then call Newton-Quadratic(a,, b,, d,, c,, 2),
else
call ipzero(a,, b,, d,, e,, ¢,),
if(c, —a,Xc, - 8,) =20
then call Newton-Quadratic(a,, b,, d,, c,, 2),

endif;
4.1.4 call bracket(a,, b,, c,, @,, b,, d,);
4.15 if |f(@ ) <If(B), then set u, = @,, else set u, = b,;
416 setc, =u, —2fla,,b,]” ‘f(u )

417 iflg, - u,l> 0503, —a,),
then ¢, = 0.5(b, + a@,), else ¢, = C,;
ACM Transactions on Mathematical Software, Vol. 21, No. 3, September 1995.
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4.1.8 call bracket(a,, b,, ¢,, é,, b,, d,);

419 ifb, —a, < u(b, —a,),
thena,,, =4,,b,,, = 3,,, o1 =d,, €, =d,,

else

TS S ‘fm

call bracket(4,, b,, 0.5(4, + b,), @, 1, bps1» dusy)s
endif.

Algorithm 4.2
4.2.1-4.2.2: same as 4.1.1-4.1.2;
Forn =2,3,..., do:
423 if n =2orIl;, (f; — f;) = 0 where f; = f(a,), f, = f(b,),
fs = f(d,), and £, = fle,),
then call Newton-Quadratic(a,, b,, d,, c,, 2),
else '
call ipzero(a,, b,, d,, e,, c,),
if(c, —a XNc,—5,)=20 -
“then call Newton-Quadratic(a,, b,, d,, c,, 2),
endif; '
424 seté, =d,, call bracket(a,, b,, c,, @,, b,, d,);
425 ifI1,, (f; - f;) = 0 where f, = f(&,), f = f(8,), f5 = f(d,),
fo =),
then call Newton-Quadratic(é,, b,, d,, é,, 3),
else
call ipzero(a,, b,, d,, €,, &,),
if (¢, —a,Xé, —b,)=0
~ then call Newton-Quadratic(a,, b,, d,, ¢,,3),
endif;
426 call bracket(a,, b,, ¢,, @,, b,, d,);

n

42.7-42.11: same as 4.1.5-4.1.9.

The following theorem contains a basic property of the above algorithms,
whose proof is straightforward and hence will be omitted.

THEOREM 4.3. Let f be continuous on [a,b), f(a)f(b) <0, and consider
either Algorithm 4.1 or Algorithm 4.2. Then either a zero of f is found in a
finite number of iterations, or the sequence of the intervals {[a,,b,]); -,
satisfies both (1) and (2) where x, is a zero of fin [a, b].

5. CONVERGENCE THEOREMS

From the previous section it is clear that the intervals {[a,, b,]}; ., produced
by either Algorithm 4.1 or Algorithm 4.2 satisfy &,,, — a,,; < u,(b, — a,)
for n > 2, where p, = max{pu,0.5). Since u, < 1, that shows at least linear
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convergence. In what follows we show that under certain smoothness as-
sumptions Algorithm 4.1 and Algorithm 4.2 produce intervals whose diame-
ters {(b, — a,))7 ., converge to zero with R-orders at least 1 + 3!/2 = 2.732...
and 2 + 7!/% = 4.646..., respectively. First, we have the following two lem-
mas.

LEMMA 5.1 (ALEFELD-POTRA [1992]). Assume that f is continuously differ-
entiable in [a, b], that f(a)f(b) < 0, and that x, is a simple root of f(x) = 0
in (a, b]. Suppose that Algorithm 4.1 (or Algorithm 4.2) does not terminate
after a finite number of iterations. Then there is an n; such that for all
n > ng, ¢, and u, in step 4.1.6 (or in step 4.2.8) satisfy

fe,)f(u,) <O. (9)

LEMMA 5.2. Under the hypothesis of Lemma 5.1, assume that f is four
times continuously differentiable on [a, b). Then:

(1) For Algorithm 4.1, there is r; > 0 and n, such that c, in step 4.1.3 will
always be obtained by calling ipzero for all n > n,, and

| fle)l < r(b, —a,)(b,_, —a,_,)’, Vn>n,. (10)

(2) For Algorithm 4.2, thereisr, > 0 and n, such that c, in step 4.2.3 and ¢,
in step 4.2.5 will always be obtained by calling ipzero for all n > n,, and

lFEI < (b, —a)'(b,_, —a,_,)°, Vn>n,. (11)

ProOF. By Theorem 4.1, x, € (a,, b,), and
b, —a, = 0. (12)

Since x, is a simple zero, f'(x,) # 0. Therefore, when n is big enough
f'(x) # 0 for all x € [a,, b,]. For simplicity, we assume that f'(x) # 0 for all
x € [a, b]. With this assumption, f is strictly monotone on [a, ], and hence
fi (i =1,2,3,4) in step 4.1.3 are four distinct values. Therefore, the subrou-
tine ipzero will always be called in step 4.1.3, and now we need only to prove
that ¢, calculated from ipzero satisfies c, € (a,, b,) whenever n is large
enough. _
From (7) we see that

le, = x| < Ml fCa ) FOI F(EN fle,)! -
< M(M))%(b, - a,)*(b,_; —a,_,)’

where M and M, are as defined in (7) and (8) with the interval I replaced by
[a, b]. Since x, € (a,bd), there is an €> 0 such that [x, —€,x, + €] C
(a, b). Hence (13) and (12) imply that there is an 7 such that

c,€lx, —€,x, +e)c(a,b), Vnz=n. (14)
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‘Therefore the following inequality _
[fe ) < Mle, — x| . (15)
holds for n > 7, ;md as a result we have
| fle) < Myle, — x| < M(M)D*(b, —a,)(b,_, — a,_)*| fla))
as well as
| fle)] < Myle, — x,] < M(M,) (B, = a,)(b,_, — a,_)*1 F(B)I.

Equation (12) enables us again to choose an n, > 7 such that ¢, € (a, b) for
all n > n, and

| f(c,)] < min{l f(e ), | f(BI}, Vn=n,. (16)

Since f is strictly monotone over [a, b], and f(a,)f(b,) < 0, (16) implies that
¢, € (a,, b,) whenever n > n,. Therefore c, in step 4.1.3 will always be
obtamed from ipzero for all n > n,, and now (10) follows immediately from
(13) and (15) with r, = M(M,)>.

A similar argument can be applied to show that there is an n, such that c,
in step 4.2.3 and ¢, in step 4.2.5 will always be obtained from ipzero for all
n > n,. For n > n, we can write,

lf(c N=sMlé, — x|
< M, MIf@&)If(5,)I£(d, )uf(e )]
= My M1 f(a N FON Fle N F(d)I
< (M)'M(b, - a,)%(b,_, — a,_DIf(c,)l
< (M)’M%(b, - a,)"(b,_, — a,_,)°
which proves (11) with r, = (M,)°M2. O

The following two theorems show the asymptotic convergence properties of
Algorithm 4.1 and Algorithm 4.2, respectively.

THEOREM 5.3. Under the assumptions of Lemma 5.2, the sequence of
diameters {(b, — a,)f;., produced by Algorithm 4.1 converges to zero, and
there is an L, > 0 such that

bnsr — Gpyy < Ly(b, _au)z(bn—l _an—l)zy Vn=2,3,.... 17
Moreover, there is an N, such that for all n > N, we have

-~ ~
a,,1 =4, and b, ,=5b,.

-

Hence when n > N,, Algorithm 4.1 requires only two function evaluations per
iteration.

PROOF. As in the proof of Lemma 5.2 we assume without loss of generality
that f'(x) # 0 for all x € [q, b). Take N, such that N, > max{r,, n;}). Then
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by Lemma 5.1, (9) holds for all n > N,. From steps 4.1.6-4.1.8 of Algorithm
4.1 and the fact that u«,, ¢, €(@,, b,] we deduce that

b, —é, <Ic, —u,l, Vn>N,. (18)
From step 4.1.6 we also see that

Ig, — u,l ='2f[c‘z,,,3,,] " flu,)

2 (19)
< —Iflu)l,
m,

where m, is as defined in (8) with the interval I replaced by [a, b]. Finally, -
since ¢, € {G@,, b,}, we have that |f(z,)| < |f(c,)l. Combining that with (18)
and (19) we have ’

-~ 2
b, —d, < —If(c,)l, Vn>N,. (20)
my
Now by Lemma 5.2, | f(c,)| < r (b, — a,)*(b,_; — @,_,)?, so that
b, —d, < —n—z_r’(b" -a,)(b,_,—-a,.;)y, Vn>N,. (21)
1

Since {(b, — a,)); ., converges to zero, if N, is large enough then
b, -d, <pub, —a,), VYn>N,.
This shows that for all » > N; we will have ¢,,, =@, and b,,, = b,. By
taking
2 (bpi1 —Gpsy)

L, > max{ —r,,
' 1k ' (bn = an)z(bn—l = a’n—l)z

and using (21) we obtain (17). O

COROLLARY 5.4. Under the assumptions of Theorem 5.3, {¢,);., ={(b, —
a, )., converges to zero with R-order at least 1 + 3'/2 = 2.732.... Since
asymptotically Algorithm 4.1 requires only two function evaluations per itera-
tion, its efficiency index is (1 + (3'/2))1/2 = 1.6529... .

PROOF. By Theorem 5.3, {€,J>_, converges to zero, and €,,; < L,e’€?_,,
for n =2,3,...; and the result follows by invoking Theorem 2.1 of Potra
[1989]. O .

THEOREM 5.5. Under the assumptions of Lemma 4.2, the sequence of
diameters {(b, — a,)), ., produced by Algorithm 4.2 converges to zero, and
there is an L, > 0 such that

bevp=Goin BLalB, ~a V', =8 5V Ma=2idu. (25

Moreover, there is an N, such that for all n > N, we have

) n=2.3,..,N,

a,,, =4, and b,.,=0b,.
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Hence when n > N,, Algorithm 4.2 requires only three function evaluations
per iteration. '

ProoF. The proof is about the same as that of Theorem 5.3. We assume
that f'(x) # O for all x € [a, b]. Take N, such that N, > max{n,, n,}. When
n > N, then, as in the proof of Theorem 5.3, we have

-~ 2
b, —d, < —IfE)l. _ _ (23)
n,
Now by Lemma 5.2, | f(é,)| < ry(b, — a,)*(b,_, — a,_,)°. Therefore
& : 2
by = G, < —ra(b, - a,)(b,_, —a,.)’, Vn>N,. (24)
1

The rest of the proof is similar to the corresponding pari; of the proof of
Theorem 5.3 and is omitted. O

COROLLARY 5.6. Under the assumptions of Theorem 5.5, {€,);., = {(b, —
a,):., converges to zero with R-order at least 2 + T/ = 4.646... . Since
asymptotically Algorithm 4.2 requires only three function evaluations per
iteration, its efficiency index is (2 + (7Y/2))*/3 = 1.6686.... O

Next, we notice that Algorithm 4.2 is an optimal procedure in the following
sense. It is clear that Algorithm 4.2 improves Algorithm 4.1 by repeating
4.2.3-42.4 in 4.2.5-4.2.6. If we repeat this & times, we will get an algorithm
of the form: ‘

Algorithm 5.7

5.1.1-5.1.2: same as 42.1-4.2.2;

for n =2,3,..., do

5.1.3: same as 4.2.3;

5.1.4: set eV = d_, call bracket(a,, b,, c,, a'”, b", d);

5.1.2k: set et~ = d*=2) call bracket(a*~?, bl*=2, ck=?, oD,
bg&—l), df‘k—l)); )
512k + 1:
if l_I,-,,'J-(f,- - f:-)'= 0 where f; = f(a®*~ "), f, = f(B}~D),
fo = @), F, = et~ | -
then call Newton-Quadratic(a'*~V, b*~1, di¥~1, ¢,, k + 1),
else :
call ipzero(al*~1), bl*-1), dik-1) k-1 ),
if (€, —a*~"V)e, - b)) >0
then call Newton-Quadratic(a* ", p*-1, d¢¥-D ¢,k + 1),
endif; '
5.1.2k + 2: call bracket(al*~ Y, b*-1, ¢,, a,, b,, d,);
5.1.2%k + 3-5.1.2k + 7: same as 4.2.7-4.2.11.
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Algorithms 4.1 and 4.2 are special cases of Algorithm 5.7. Furthermore,

when k& > 2, similar to Lemma 5.2, Theorem 5.3, and Theorem 5.5 we see
that for Algorithm 5.7,

(er-I e an+l) = Lk(bn - aﬂ):u_z(bn—l - an—l)a' n=23,..

for some L, > 0. Hence when & > 2 Algorithm 5.7 has the R-order at least

3k — 2 ‘/3 (3&—2)2
= ) a5 + 2 ’

which is the positive root of the equation ¢ — (3% — 2)t — 3 = 0. Since
asymptotically Algorithm 5.7 requires k2 + 1 function evaluations per itera-
tion, the efficiency index is

e (252 o (57 )

when k£ > 2. In a straightforward manner it can be proved that I, < I, for all
k > 2. Therefore, Algorithm 4.2 is optimal. -

1/(k+1)

6. NUMERICAL EXPERIMENTS

In this section we present our numerical experiments comparing Algorithms
4.1 and 4.2 with Algorithms 2.1-2.5, with the methods of Dekker [1969] and
Brent [1972], with the Algorithms M and R of Bus and Dekker [1975], and
with the Algorithm LZ4 of Le [1985]. In our experiments, the parameter x in
Algorithms 2.1-2.5 and 4.1-4.2 was chosen as 0.5. For Dekker’s method we
- translated the ALGOL 60 routine Zeroin, presented by Dekker, into Fortran;
for Algorithms M and R of Bus and Dekker we did the same (ie., we
translated into Fortran the ALGOL 60 routines Zeroin and Zeroinrat pre-
sented in Bus and Dekker); for Brent’s method we simply used the Fortran
routine Zero presented in the Appendix of Brent, while for the Algorithm LZ4
of Le we used his Fortran code. The machine used was an AT&T 3B2-1000
Model 80, in double precision. The test problems are listed in Table 1. The
termination criterion was the one used by Brent, i.e.,

b—-a<2-tole(a,b), (25)
where [a, b] is the current enclosing interval, and
tole(a, b) = 2 -|u|- macheps + tol.

Here u € {a, b} such that | f(z)| = min{| f(a)l, | f(b)]}; machkeps is the relative
machine precision which in our case is 1.9073486328 x 107'¢, and tol is a
user-given nonnegative number.
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Table I. Test Problems
# | function f(z) (a,B] parameter
1 smz—:/2 x/2,x]
2 | -27 3, (2i - 5 /(z - &) Gn,bn)
Ay = n? 4109
by =(n+1)2-10"% | n = 1(1)10
3 [ aze®* [-9,31] a=-40,b= -1
a=-100,b= -2
a=-200,b= -3
3 |z -a [0,5] a=021,n=4(2)12
[-0.95, 4.05] e=1,n=§(2)14
5 |sinz-05 0,1.5]
6 | 2ze" - 2=+ 1 _ 0,1 n = 1(1)5, 20(20)100
7 | [1+(1 = n)’)z - (1 — nz)? [0,1] n=510,20
8§ [/ -(1-2) 0,1 n=2,5,10,15,20
9 [T+ (1 =n) = (1 —nz)® 0,1 n=1,24,538,15,20
10| e™=(z-1)+2" 0,1 n=1,5,10,15,20
11 | (nz = 1)/((n - 1)z) [0.01,1] n=2,5,15,20
12 | z% — nn (1,100) n = 2(1)6,7(2)33
0 fz=0
1B { ze=" otherwise i)
14 { gl-s sz =l) gt:efw?” [-10%, /2] n = 1(1)40
¢ 1.859 ifz> 1%%,— .
s { SFEXIC 1859 if z € [0, 2512 | [-104,107] e ?ggg‘;g)moo
-0.859 ifz<0

Due to the above termination criterion, a natural modification of the
subroutine bracket was employed in our implementations of Algorithms
2.1-2.5 and 4.1-4.2. The modified subroutine is the following:

Subroutine bracket(a, b, c,

@, b) (or bracket(a, b, ¢, @, b, d))

set &= A-tole(a, b) for some user-given fixed A € (0,1) (in our experi-

ments we toock A = 0.7).

if b — a < 45, then set ¢ = (a + b)/2, goto 10;
if c <a + 25, then set ¢ = a + 28§, goto 10;
ifc>b— 26, thenset ¢ =b — 23, goto 10;

10

calculate tole(a B);

if f(c) = 0, then print ¢ and 1 tem:unate
if fla)f(c) <0,then @ =a, b
if f(b)f(c) <0,then@=¢c,b=b,(d =

= ¢, (d = b);
a);

irh - a <2 tole(a ), then terminate.

In our expenments we tested all the problems listed in Table I with
different user-given tol (tol = 10~7, 1019, 10~ !5, and 0). The total number of
function evaluations in solving all the problems (154 cases) are listed in Table
~ II, where BR, DE, M, R, and LE stand for Brent’s method, Dekker’s method,

Algonthms M and R of Bus and Dekker, and Le’s method, respectively, and
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Table II. Total Number of Function Evaluations in Solving All the Problems Listed in Table I

tol BR | DE M R LE 2.1 2.2 2.3 2.4 2.5 4.1 4.2
10~7 | 2804 | 2808 | 2839 | 7630 | 2694 | 3154 | 2950 | 2645 | 2791 | 2687 | 2696 | 2650
1un
10-19 1 2905 | 2963 | 2992 | 7768 | 2821 | 3338 | 3060 | 2789 | 2922 | 2819 | 2835 | 2786
1 un
10=%5 1 2975 | 3196 3261 | 8014 [ 3061 3448 | 3151 | 2948 | 3015 | 2914 | 2908 | 2859
1lun -
0 3008 | 2998 | 3146 | 8230 ! 3165 | 3509 | 3219 | 3029 | 3060 | 2954 | 2950 | 2884
| 15un | 1lun

Table III. Total Number of Function Evaluations in Solving the 139 Cases that are Solvable
by All Methods

tol BR | DE M R LE | 2.1 22 | 23 | 24 | 25 | 4.1 | 4.2
10-7 [ 2501 [ 2528 | 2527 | 6830 | 2412 | 2796 | 2588 | 2341 | 2464 | 2382 | 2377 | 2347
10-T0 | 2589 | 2666 | 2663 | 6952 | 2529 | 2957 | 2682 | 2464 | 2576 | 2501 | 2499 | 2469
10-T5 | 2651 | 2874 | 2903 | 7184 | 2756 | 3052 | 2762 | 2615 | 2664 | 2577 | 2570 | 2535

0 2674 | 2998 | 3035 | 7349 | 2835 | 3094 | 2820 | 2690 | 2696 | 2598 | 2600 | 2554

“un” stands for “unsolved” meaning that a problem is not solved within 1000
iterations. From there we see that Algorithms 4.1 and 4.2 compare well with
the other 10 methods. The Algorithm 4.2 in this article has the best behavior,
especially when the termination tolerance is small. This reconfirms the fact
that the efficiency index is an asymptotic notion.

In our experiments we noticed that problem (13) was not solved by Dekker’s
method within 1000 iterations. Furthermore, when tol = 0, there were 15
cases unsolved by Dekker’s method and 11 cases (among those 15) unsolved
by the Algorithm M of Bus and Dekker. To make the comparison more
informative we tested the 139 cases that were solvable (within 1000 itera-
tions) by all the 12 methods. The results are listed in Table IIL

We also mention that the functions behave quite differently around the
calculated zeros. In fact, problems (3), (13), (14), and (15) require many more
function evaluations than others. In particular, the Algorithm R of Bus and
Dekker behaves very badly on problems (14) and (15), while Dekker’s method
did not solve (13) (within 1000 iterations) at all. To clarify these situations,
we tested three groups, each representing a subset of the problem set listed
in Table I. The first group contains only problem (13). The second group
represents (3), (14), and (15). The third group represents the rest of the
problems. The number of function evaluations for each case with tol = 107'°
as well as the total number of function evaluations for each group, is listed in
Tables IV-VI, respectively.

Finally, it is interesting to mention that with problem (13) care is needed
when coding the function. In this case,

f(x)={0 . ifx=0

xe otherwise.
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Table IV. Number of Function Evaluations in Solving Problem (13) when tol = 10713

BR|DE[{M|R|LE|21[22|23|24|25]4.1]4.2
23 | un | 32|28 | 16 | 24 |31 | 19|27 | 23 | 28 | 29

Table V. Number of Function Evaluations in Solving the Second Group of Representative
Cases when tol = 107!®

Prob.|{ Para. |BR{DE| M | R |LE |21 22|23 |24 25| 4.1 | 4.2
#3 [a=-100] 19 | 20 | 20 | 18 | 16 | 29 | 34 | 26 | 26 | 27 | 25 | 24
b=-2

#14 n=10 21 | 23 ] 23 | 67 | 21 | 23 | 20 | 18 | 20 | 19 | 20 | 19
#14 n=30 21 | 231 23 |67 |21 |23 |19 |18 |20 | 19 | 20 | 19
#15 | n=30 | 36 | 36 | 36 | 136 35 | 38 | 33 | 29 | 29 | 32 | 29 | 31
#15 | n=500 | 39 | 39 | 39 [ 139 | 40 | 41 | 37 | 34 | 33 | 34 | 35 | 35
Total 136 | 141 | 141 | 427 | 133 | 154 [ 143 | 124 | 128 | 131 | 129 | 128

‘Para.’ stands for ‘parameter’.

Table VI. Number of Function Evaluations in Selving the Third Group of Representative
Cases when tol = 107!$

Prob.| Para. |BR|{DE| M | R [LE |21 [22]23|24/]25]|4.1|4.2

#1 9 10110} 9 9 11 9 11 | 10 9 10 | 10
#2 n=2 10 | 10| 10 ] 9 11 | 18 | 18 | 17 | 17 | 12 | 15 | 11
a=1
#4 n=4 15 | 16 | 16 | 14 | 12 | 18 | 20 | 16 | 12 | 13 | 12 | 13
on [0,5] |
#5 101010 9 9 11 9 10 | 10 | 8 11 | 10

#6 n=20 [ 13 {13 |13 | 15§ 12 | 15 | 13 | 16 | 12 | 11 | 12 | 11
#7 n=10 9 9 9 9 7 |11} 5 5 6 5 7 7
#8 n=10 | 11 | 11 | 11 | 11 | 11 | 15 | 15 | 17 | 14 | 15 | 12 | 11
#9 n=1 10 110 |10} 9 j10 12 |11 {11 11 j11 |11 ] 9
#10 n=5 | 9 9 9 9 9 |15} 14|14 j 14|11 | 12| 9
#11 | n=20 | 14 | 15 | 15 | 9 | 14 | 21 {21 | 20 | 18 | 21 | 17 | 18
#12 n=3 10 | 13 | 13 | 13 | 11 |13 |10 [ 13 [ 12 | 11 | 6 5
Total 120 | 126 | 126 | 116 | 115 | 160 | 145 | 149 | 136 | 127 | 125 | 114
‘Para.’ stands for ‘parameter’.

and the initial interval is [—1,4]. If we code xe~*" in Fortran 77 as
x-(e™'/%") then all 11 algorithms that solve this problem within 1000 itera-
tions deliver values around 0.02 as the exact solution, because the result of
the computation of 0.02 - (e~1/©92%) on our machine is equal to 0. However,
when we code xe™*"* as x/e!/*’, all algorithms give correct solutions. The
same is true when we tried to use Dekker’s method to solve this problem with
a larger tolerance such as tol = 1073,
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