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EFFICIENT NUMERICAL VALIDATION OF SOLUTIONS OF
NONLINEAR SYSTEMS.

G. ALEFELDt, A. GIENGERt, AND F. POTRAt

Abstract. A new stopping criterion for Newton's method is derived by combining the prop-
erties oi the Krawczyk operator and a corollary of the Newton-Kantorovich theorem. When this
criterion is satisfied the authors use the last three Newton iterates to compute an interval vector
that is very likely to contain a solution of the given nonlinear system. The existence oi such a
solution is tested using Krawczyk's operator. Furthermore, each element from this interval vector
considered as an approximation to the solution has a relative error that is of the order oi the machine
precision. Extensive numerical testing has shown that the proposed method has very good practical
performance.
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1. Introduction. Newton's method is the best-known algorithm for solving non-
linear systems of equations. The most famous theoretical result on the convergence of
Newton's method is probably the theorem ofKantorovich (also known as the Newton-
Kantorovich theorem), which gives sufficient conditions that guarantee the existence
and uniqueness of a solution x* as weIl as the convergence of the Newton iterates to-
wards that solution. However, the sufficient conditions are phrased in terms of a global
Lipschitz constant, so that they are very difficult to check in practice. Nevert,heless
in the case of simple solutions, Le., solutions at which the Jacobian is nonsingular, the
Kantorovich hypothesis is always satisfied if the starting point is elose to the solution.
A common numerical practice is to stop the Newton iteration whenever the distance
between two iterates is less than a given tolerance, i.e., when

(1) IIXk+1- xkll ~ f.

As shown in Gragg and Tapia [6], this practice is justified because if the Kantorovich
hypothesis is satisfied at xk, then

(2) IIXk - x*1I ~ 2f, IIXk+l - x*1I< f.

However, just the fact that (1) is satisfied does not guarantee the existence of a
solution. Even if a solution for x* exists, (1) alone does not provide an estimate for
the distance between xk or xk+1 and the solution.

Over the past thirty years a lot of effort has been spent in order to overcome
these problems. By using interval arithmetic methods, different algorithms have been
developed to generate sequences of n-dimensional intervals [x]k, k = 0,1,..., that
satisfy the relation

x* E [xt+l ~ [x]k~ .. . .

Such an iterative algorithm can be safely stopped when the diameter of the interval
[xt becomes smaller than f.
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Because of extensive use of interval arithmetic, these iterative procedures tend to
be quite expensive computationally. Moreover they need a starting interval [x]o that
is guaranteed to contain a simple solution x*. A number of interval operators, like
different variants of the Krawczyk operator K, have been developed to test whether
or not an interval contains a root. (The precise definition of K is given in Chapter
3.) Namely, by using Brouwer's fixed point theorem, it can be shown that if

(3) K[x] ~ [x],

then x* E K[x]. The problem is then to find a suitable test interval [x], to compute
the interval K[x] so that it includes all round-off errors, and to test (3). A recent
survey on such interval operators has been given in [14].

Another approach is mentioned in Moore and Kioustelidis [8], where Miranda's
theorem is used instead of Brouwer's fixed point theorem for proving the existence of
a solution in a given test interval. As mentioned by the authors (see [8, p. 523]), the
test interval has to be chosen neither too large nor too small. However, no numerical
methods for obtaining such a test interval are given.

In the present paper we propose the use of the Kantorovich theorem in order to
efficiently produce a good test interval that presumably contains a solution. Namely,
we proceed with Newton's method performed in normal floating point arithmetic.
For a given eps equal to the machine precision, we devise a stopping criterion and
construct a test interval [x]such that (3) is very likely to be satisfied. Moreover,our
method is designed in such a way that the condition

(4) lIy - x*IIoo ~ eps
IIx*IIoo

is also eventually satisfied. Bere y denotes any point of the interval K[x].
Besides having an elegant theoretical justification, the resulting algorithm turns

out to be very efficient in practice. It gives highly accurate results and at the same
time provides a tool for establishing the existence of solutions of certain equations.
For example, in [9] the problem of existence of a solution of the methanol-8 problem
wasmentioned as unsolved. By using the algorithm presented in the present paper we
have managed to both establish the existence of a solution of the methanol-8 problem
and to find a very good approximation for it.

2. Notation and preliminaries. Real numbers are denoted by a, b, . . .. Real
bounded and closed intervals are denoted by [al = [al, a2],[b]= [bI,~], The same
notation is used for real vectors and interval vectors, e.g.,

a = (<li),

[al = ([a]i) ,

ai ER,

where [a]iare compact real intervals.

Real (n, n )-matrices are denoted by A = (aij),... and the corresponding interval
matrices are denoted by [A]= ([a]ij), The operations in the set of intervals and
in the set of interval matrices andfor interval vectors can be found in [2, Chap. 10].

The diameter of an interval [al= [al,a2]is d([a])= a2 - al. The absolute value
is defined as na]l = max {lall, la21}. We mention just a few rules:

d([aJ :f: [b)) = d([a)) + d([b]) ,
d([a][b)) ~ d([a))l[bJl + l[aJld([b]).



254 G. ALEFELD, A. GIENGER, AND F. POTRA
"

If 0 E [a] and 0 E [b], then

d([a][b]) ~ d([a])d([b]) (see [3]).

For interval vectors and interval matrices the diameter and the absolute value are

defined componentwise.

3. The Krawczyk operator. Assume that F : D ~ Rn -- Rn is a differen-
tiable mapping for which an interval arithmetic evaluation F'([x]) of the derivative
exists for a certain set of interval vectors [x] ~ D. Let x E [x]be areal vector, and
let C be a fixed real nonsingular (n, n)-matrix. The mapping

K([x],x, C) = x - CF(x) + (I - CF'([x])([x] - x)

is ca1led the Krawczyk operator. K([x] , x, C) is again an interval vector.
The following result holds (see [2, Thm. 10, Chap. 13], or [7]).
THEOREM3.1. If K([x],x,C) ~ [x], then F has a zero x* in K([x],x,C). 0
The proof of Theorem 3.1 is based on Brouwer's fixed point theorem. Theorem

3.1 is a very powerful result that allows the validation of solutions in a given interval
vector.

In the discussion below we need the following result concerning the Krawczyk
operator.

THEOREM3.2. Assume that the mapping F : D ~ Rn - Rn is differentiable
and that the derivative has an interval arithmetic evaluation F'([x]) for all [x] E D
such that

(5) IId(F'([x])lIoo ~ Llld([x])lIoo, [x]~ D,

for some L ~ O. If C-1 E F'([x]), then the inequality

(6) IId(K([x], x, C»lIoo ~ ,lId([x])11002

holds with, = IICllooL.
Proof. Following the rules for the interval arithmetic operations, for the diameter

and for the absolute value, we obtain

d(K([x] ,x, C» = d(x - CF(x) + (I - CF'([x])([x]- x»
= d((I - CF'([x])([x] - x»
~ deI - CF'([x])d([x] - x)
= d(C(C-1 - F'([x]))d([x])

= ICld(F'([x])d([x]).

Using (5) we obtain (6). 0
A fundamental problem in applying Theorem 3.1 is the question of finding an

appropriate "test- interval" [x]. In practice one usually proceeds as follows.
By some iteration method a floating point approximation x to a solution x*

of F(x) = 0 is computed. Then one defines x := x and an interval vector [x] is
constructed with x as the center and with diameter 2t: where t: is "small." Finally,
Cischosen as a floating point approximation to F'(X)-l. If the Krawczyk operator
maps [x] into itself, then [x] contains a solution. Otherwise a certain strategy, called
t:-inflation, is used to construct a new test intervaL See [13],for example.

In this paper we introduce a strategy for computing a test interval that is based
on someelementaryconclusionsfollowing from the Newton-Kantorovich theorem.



EFFICIENT NUMERlCAL VALIDATION 255
"

4. The Newton-Kantorovich theorem and the construction of test in-
tervals. Consider Newton's method

(7) Xk+1 = xk - F'(xk)-l F(xk), k = 0,1,2,...,

applied to a mapping F : D ~ Rn -+ Rn. The Newton-Kantorovich theorem gives
sufficient conditions for the convergence of Newton's method starting at xo. Fur-
thermore, it contains an error estimation. A simple discussion of this estimation in
conjunction with Theorem 3.2 will lead us to a test interval that can be computed by
using only iterates of Newton's method.

THEOREM 4.1 (see [10, Thm. 12.6.2]). Assurne that F : D ~ Rn -+ Rn is

differentiable in the ball {xiIIx- xo 11 ~ T} and that

(8) IIF'(x) - F'(y) 11~ Lllx - yll

fOT aIl x, y from this ball. S-upposethat F'(xO)-1 exists and that IIF'(xO)-11l ~ Bo.
Let

IIXl - xOIl= IIF'(xO)-1 F(xO) 11~ TJo,

and assume that

1

ho = BoTJoL ~ 2'

--h
1 - vr=- 2 ° TJo~ T.TO= ,

Then the Newton iterates (7) are weIl defined, remain in the ball {xlllx - xOll~ TO},
where '

1 - viI - 2ho
TO= ho TJo,

and converge to a solution x* of F(x) = 0 that is unique in D n {xiIIx- xOIl< TI},
where

1 + vlr=-2ho
Tl = ho TJo,

provided T 2: Tl. M oreoveT, the erroT estimate

(9) IIx* - xkll ~ 2k~1 (2ho)2k-ITJO'
k>O

holds. 0

'We mention that this theorem has been used in [11] to prove the existence of
solutions by explicitly computing L (this can be done by interval arithmetic evaluation
of the second partial derivatives) and the bounds Bo and TJo.A comparison between
such an approath and the test (3) is given in [12].

Since ho ~ ~,the error estimate (9) (for k = 0,1 and the oo-norm)leads to

IIx* - xOlloo ~ 2TJo = 211xl - xOlloo,

IIx* - Xl 1100 ~ 2hoTJo ~ TJo = IIxl- xOlloo.

By replacing xO with xk one can show in a similar manner that if the hypothesis of
the Newton-Kantorovichtheorem is satisfied,then (1) implies (2).
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FIG. 1. Error estimate (9) fOT k = 1 and the oo-norm.

This suggests a simple construction of an interval vector containing the solution.
The situation is illustrated in Fig. 1. If xOis eloseenough to the solution x*, then xl
is much doser to x* than xo since Newton's method is quadratically convergent. The
same holds if we choose any vector (# x*) from the ball {xiIIx - Xl 1100 :s; 1]0} as the

starting vector for Newton's method. Because of (6) and since x* E K([x], x, C), it is
reasonable to assume that K([x],xl,F'(xO)-I) ~ [x]for

(10) [x]= {xiIIx - Xl 1100< 1]0},

The important point is that this test interval [x] can be computed without knowing
Bo and L. Of course all the arguments above are based on the assumption that the
hypothesis of the Newton-Kantorovich theorem is satisfied, which may not be the
case if xO is far away from x*.

We try to overcome this difficulty by first performing a certain number ofNewton
steps until we are elose enough to a solution x* of F(x) = O. Then we compute the
interval (10) and using the Krawczyk operator we test whether this interval contains
a solution. The quest ion of when to terminate the Newton iteration is answered by
the followingconsiderations.

Our general assumption is that the Newton iterates are convergent to x*. For
ease of notation we set

[y] ;= K([X],XkH,F'(Xk)-I),
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where

(11) [x] = {X E Rnlllxk+1 - Xlloo ::; TJk},
TJk = IIXk+1 - xklloo

for some fixed k.
Our goal is to terminate Newton's method as soon as

(12) IId([y])lIoo ::; eps
IIxk+ll1oo

holds, where eps is the machine precision of the floating point system. If x* E [x],
then x* E [y] so that for any y E [y] we have

(13) IIx* - ylloo < IId([yDlloo
IIx*lIoo - IIx*lIoo .

Since IIx*lIoodiffers only slightly from IIxk+1l1ooif xk+1 is near x*, (12) guarantees
that the relative eITor with which any y E [y] approximates x* is elose to machine
precision.

Now let L = max{1."L}, where1., and L are defined by (5) and (8), respectively.
Since by Theorem 3.2 we have

IId([y])lIoo ::; 11CIIooL11 d([x])1100 2

and since IId([x])lIoo = 2TJk,(12) holds if

- 2

(14) 411CllooLTJk < eps
IIxk+ll1oo-

is true.
From Newton's method we have

Xk+l - xk = C {F(xk) - F(xk-l) - F' (xk-l )(xk - xk-l)}

and by 3.2.12in [10]it followsthat

(15)
1 - 2

TJk ::; 2I1CllooLTJk-l.

Replacing the inequality sign by the equality in this relation and eliminating IICllooL
from (14) we get the following stopping criterion for Newton's method:

8TJ~ <
11

k+l ll 2 - eps.
x ooTJk-l

(16)

Of course, it is not a mathematical proof that if (16) is satisfied, then the interval
[y] constructed as above will contain x* and that the vectors in [y]will approximate
x* with a relative eITor elose to eps. However,it seemsreasonablethat (16) should
work well in practice.

Inequality (16) is not explicitly formulated in terms of Land IIClloo,but contains
only eps, xk-l, xk, and xk+l. Hence (16) can be checked at earo step of Newton's
method as soon as three successiveiterates have been computed.
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H (16) is fulfilled we take the interval vector [x]defined in (12) and compute

K([x], xk+l, F'(xk)-I)

= xk+1 - F'(xk)-I F(xk+1) - (I - F'(xk)-I F'([x])) ([x] - xk+I).

Now if

[y] = K([x], xk+1, F/(xk)-I) ~ [x],

we know by Theorem 3.1 that F{x) = 0 has a solution x* E [y] ~ [x].

The test based on the stopping criterion (16) works extremely well in practice, as
will be seen in the examples in the next section. Oceasionally, however, it happens that
the radius 1Jkofthe ball is already too small for ensuring K([x], xk+1, F/(Xk)-I) ~ [x].

In this case we replace [x] from (12) by

(17) [x]= {x E Rnlllxk+1 - xlloo::; v'1Jk1Jk-I}.

This modification was necessary only in a few examples and worked very weIl.

5. Test examples and numerica1 results. The ideas of this paper have been
extensively tested on a large number of numerical examples. These tests ean be found
in [5]. Because of lack of space, we explicitly list here only two examples. The first
example is quite standard and easy to handle, while the other one is more difficult.

Example 1. The usual discretization of the nonlinear boundary problem (see [1])

3y"y + (y/)2 = 0,

y(O) = 0, y(1)= 20,

with the exact solution y = 2üt3/4 leads to the nonlinear system

FI(X) = 3XI(X2 - 2XI)+ ix~,

Fi(X) = 3Xi(Xi+1 - 2Xi+ Xi-I) + i(Xi+1 - Xi-l)2,

Fn(x) = 3xn(20 - 2xn + Xn-I) + i(20 - Xn-l)2..

i = 2(l)n - 1,

We take Xi = 10, i = 1(I)n as the starting value for Newton's method.
Example 2. The second problem we list here is the s<rcalled "distillation eol-

umn test problem," which is described in full detail in [9]. We consider the so-called
methanol-8 problem, which leads to a nonlinear system with 31 unknowns and equa-
tions. In the diseussion of the numerical experienee with this system, More reports
in [9]: "I still do not know if there exists a solution to the methanol-8 problem." We
treated this problem and we were suceessful in proving the existence of a solution.
The numerical values are available upon request. (We were also able to validate the
solutions of the hydrocarbon-6 and hydrocarbon-20 problems.)

In Tables 1-2 below we have used the following abbreviations: n: number of un-
knowns and equations; k + 1: number of Newton steps until the termination criteria
(16) is fulfilled; 1Jk: infinity norm of the difference of the two last iterates; "/k: ge-
ometrie mean of 1Jkand 1Jk-I, "/k = (1Jk1Jk-l)lj2;Val: indicates the radius r of the
ball with center xk+l for which the validation test was successful; Pk: infinity norm
IId([yDllooof the diameter of [y], rel: approximation of the relative error of y E [y],
rel = Ild([yJ)Iloo/llxk+lllooo
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TABLE 1

Numerical results for Example 1.

'Yk ~~lk+ll T/k T/k-l Pk rel

T ABLE 2
Numerical results for Example 2.

0 k+l I T/k I T/k-l I 'Yk ~ Pk I rel I
[}D 5 I 1.30.10-10 11.62.10-4 I 1.46.10-7 @ 2.00 .10-10 I 2.05.10-13 I

The numerical examples have been computed on an HP-90oo workstation using
the programming language PASCAL-XSC. The machine eps on this computer is
approximately 10-16.

We elose this section with a few remarks concerning the practical programming
of the ideas in this paper.

(a) Newton's method and the test for the stopping criteria are performed in
floating point arithmetic;

(b) Assume that C denotes a floating point approximation of F'(xk)-1 (where
F'(xk) is the floating point derivative for the floating point approximation of xk).
Such an approximation can be computed very cheaply, since from the last Newton
step the floating point triangular decomposition of F'(xk) is lmown. Then testing
K([x],xk+1,C) ~ [x]we have to take into account the rounding errors in computing

K([x],xk+1,C) =xk+l- CF(xk+1) - (1 - CF'([x]))([x] - xk+l).

This is done in the following way. The floating point vector xk+1 is considered as
an interval (with diameter zero) and F(xk+l) is computed by following the rules
of interval arithmetic and by rounding outwards in each step. Therefore we get an
inelusion of F(xk+1). We proceed similarly in computing F/([x]). Afterwards we
compute the right-hand side of the Krawczyk operator by again following the rules
of interval arithmetic and rounding outwards where necessary. In this manner we get
an intervalvector K([x],xk+1, C) with K([x],xk+1, C) ~ K([x],xk+1,C). Therefore,
if K([x],xk+1,C) ~ [x], then K([x],xk+1,C) and a solution of F(x) = 0 exists in
K([x], xk+1, C).

More details can be found in [5].
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