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ABSTRACT

We apply the well-known Cholesky method to bound the solutions of linear
systems with symmetrie matriees and right-hand sides both of whieh are varying
within given intervals. We derive eriteria to-guarantee the feasibility and the optimal-
ity of the method. Furthermore, we diseuss some general properties.

1. INTRODUCTION

It is weIl known that the fonnulae of the Gaussian algorithm can be used
to bound the solutions of the linear systems for which the coefficient matrices
and the right-hand sides are varying within given intervals; see [11], or [3] and
[13], where also criteria for the feasibility of this method can be found. A
method which can be used systematically for linear systems with areal
symmetrie and positive definite point matrix is the Cholesky method. Com-
pared with Gaussian elimination, it has among others certain advantages with
respect to the amount of work which has to be perfonned.

The purpose of the present paper is to investigate the Cholesky method
systematicaIly when applied to systems with interval data. To OUfknowledge
this has not been done before. After repeating some basic facts from interval
analysis and matrix theory (Section 2), we introduce the interval Cholesky
method in Section 3. Aseries of properties which may hold is illustrated by
examples. In Section 4 we derive several sufficient criteria for the method to
be feasible, and we prove some additional properties.
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2. PRELIMINARIES

By Rn, Rn x n, IR, IR n, IR nxn we denote the set of real vectors with n
components, the set of real n X n matrices, the set of intervals, the set of
interval vectors with n components, and the set of n X n interval matrices;
respectively. By "interval" we always mean areal compact interval. We write
interval quantities in brackets with the exception of point quantities Ci.e.,
degenerate interval quantities), which we identify with the element which
they contain. Examples are the- null matrix 0 and the identity matrix 1. We
use the notation [A] = [.:1, A] = ([aij]) = ([Qij' aij]) E IRnXn simultane-
ously without further reference, and we proceed similarly for the elements of
Rn, Rnxn, IR, and mn. We write 0 S for the tightest interval enclosure of a
given bounded sub set S ~ Rn and call it the interval hull of S.

By A > 0 we denote a nonnegative n X n matrix, i.e., aij > 0 for
i,j = 1,..., n. We call x E Rn positive, writing x > 0, if Xi > 0, i =
1,..., n.

We also mention the standard notation from interval analysis [3, 13]:

l[a]1 := max{lällä E [a]} = max{IQI,laI}

(absolute value), and

< [a]) ,~ min{lällä E [a]} ~ {;in{IQI, lai}
if 0 $. La],
otherwise

(minimal absolute value) for intervals [al For [A] E IRnXn we obtain

I[A]/ ERn x n by applying I. Ientrywise, and we deHne the comparison matrix
([AJ) = (Ci) E RnXn by setting

:=

(

-I [aij ] I

Cij <[a;;])

if i =1=j,

if i = j.

Since real numbers can be viewed as degenerate intervals, I. land ( . > can
also be used for them.

By znXn we denote the set of real n X n matrices with nonpositive
off-diagonal entries, by det A we mean the determinant of a matrix A E
Rnxn, and by p(A) we denote its spectral radius.

In Seetion 4 we will consider several classes of matrices A ERn x n for
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whieh we reeall the definitions (cf. [5, 8, 17]):

A is an M-matrix if A is nonsingular, A -1 ~ 0, and A E znXn.

A is a Stieltjes matrix if A is asymmetrie M-matrix.
A is an H-matrix if ( A> is an M-matrix.

A is diagonally dominant if

n

la..
1 ~ ~ la..!,.. '-' ')

j=l
j i=i

i = 1,..., n. (2.1)

A is strictly diagonally dominant if (2.1) holds with strict inequality.
A is irreducibly diagonally dominant if A is irredueible and if (2.1) holds

with strict inequality for at least one index i.
A is totally positive (totaIly nonnegative) if eaeh minor of A is positive

(nonnegative).
A is an oscillatory matrix if it is totaIly nonnegative and if at least one of

its powers A k is totally positive.
An interval matrix [A] E IR n x n is termed an M-matrix if each element

A E [A] is an M-matrix. In the same way the term "H-matrix" ean be
extended to IRn xn. It is easy to verify that

[A] is an M-matrix if and only if ~ is an M-matrix and aij < 0 for i =1=j, and
that

[A] is an H-matrix if and only if ([ A]) is an M-matrix.

To prove these two statements one ean refer to a very useful eriterion for
M-matriees due to Fan [6]:

LEMMA2.1. Let A E zn Xn. Then A is an M-matrix if and only if there
exists a positive vector x ERn sueh that Ax > O.

We reeall now some well-known results for symmetrie positive definite
matriees.

LEMMA2.2. 1f A ERn xn is a symmetrie matrix, then the following
properties are equivalent:

Ci) The matrix A is positive definite.
(ii) Eaeh principal submatrix of A has a positive determinant.
(iü) Eaeh eigenvalue of A is positive.

LEMMA2.3 (Cf. [5, p. 141]). A E Rnxn is a Stieltjes matrix if and only
ifA is asymmetrie and positive definite element of zn X n.

LEMMA2.4 (Cf. [7, p. 127]). 1fA E RnXn is asymmetrie and positive
definite tridiagonal matrix, then Ais an H-matrix. .
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We equip m, IRn, IRnxn with the usual real intelVal arithmetic as
described e.g. in [3, 11, 13]. We also assume that the reader is familiar with
the properties of this arithmetic. We only mention the formulae (cf. [3], [13])

I [:] [b]1= ([:D l[b]1

I[a]:t [b]1 ~1[a]1 +1[b]1

if 0 (/= [a],
(2.2)

for intelVals [a], [b], and we recall the definitions

M:= {~Ia E [a]} for 0 ~ Q (2.3)

and

[at := {a2la E [an. (2.4)

Instead of M we also write [a]1/2.

3. THE INTERVAL CHOLESKY METHOD

Westart this seetion by specifYing the problem which we want to attack.

Let [A] E mnxn be an intelVal matrix satisfYing [A] = [A]T. Furthermore,
let [b] E IRn be given. We want to bound the solution set

Ssym:= {xIAx = b, A E [A], A = AT, b E [b n (3.1)

by an intelVal vector [x].

Such a vector can be obtained by using an iterative method as described
in [3] or by applying the intelVal Gaussian algorithm, which also can be found
in [3]. Since we are only interested in bounds for the solutions of linear
systems with symmetrie coefficient matrices A, we can hope to succeed also
with an intelVal analogue of the Cholesky method which needs approximately
half the operations of the intelVal Gaussian algorithm. By this analogue, we
mean the construction of an intelVal vector [x]C = ICh([A], [b]) byapplying
the following algorithm, which we divide into three steps. To formulate them
we require [A] = [A]T, and we assume that all the steps are feasible. This
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means that no division by an interval which contains zero appears, and that all
square roots can be taken. Conditions which guarantee this feasibility will be
derived in Seetion 4.

INTERVALCHOLESKYMETHOD.

Step 1. "LLT decomposition":

for j := 1 to n do
[ljj] := ([ajj] - Ei:i [ljk]2)1/2;
for i := j + 1 to n do

[lij] := ([aij] - Ei:i [lik][ljk])/[ljj];

Step 2. Forward substitution:
for i := 1 to n do

[yJ:= ([bi] - L~:Ulij][Yj])/[lJ;

Step 3. Backward substitution:
for i := n downto 1 do

[xJc := ([yJ - Ld~i+l [lji][xjf)/[lii];
ICh([A],[b]) := [x] .

(3.2)

As usual, sums with an upper bound smaller than the lower one are
;Jet';~ e ;J I-~ h.o ~o r ~ 'rho S,.,n ar o s ;n Sl-o", 1 a..a a,,,,ln al-ar1 h y a",,,,l,,;nr< th°
U 1111 U ~v IJ~ Lv V. .LUv 'iu. v u' ""'Y.L 'v v..uu. ~v"'" LI YY'JU'& 'v

interval square function (2.4), which yields for arbitrary [a] E IR the inclu-
sion

[ a]2 ~ [a] . [a] with equality if and only if 0 $. int([ a]) . (3.3)

We recall that we only intend to enclose -the solutions for the symmetrie

matrices contained in [A]. This justifies the use of the squares [ljd2 as
defined in (2.4) in step 1 above.

As can be seen from the formulae in the interval Cholesky method, the
feasibility of this method is independent of the right-hand side [b]. There-
fore, the existence of ICh([A], [b]) is also independent of [b]. Subsequently,
we will simply write ,,[x f exists" if we mean that ICh([ A], [b]) exists for any
vector [b] E IRn.

The three steps in the interval Cholesky method correspond to the three
steps of the ordinary Cholesky method for a given symmetrie matrix A E
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Rn X n (provided that the feasibility is guaranteed):

Ci) Decompose A into A = LLT with a lower triangular matrix L satisfy-
ing lii > 0, i = 1,. . . , n.

(ü) Solve Ly = b.
(üi) Solve LTx = y.

As is weIl known, the decomposition in Ci)is unique.

Denne [L] as the lower triangular matrix with [lij] from step 1 of the
interval Cholesky method. By the inclusion monotonieity of interval arith-
metie it is clear that L from Ci)exists and is eontained in [L] for eaeh matrix

A = AT E [A]. This means that A = LLT E [L][L]T holds for symmetrie
matrices A E [A]. In partieular, =.1,A E [L][L]T, whenee [A] ~ [L][L]T,
with strict inclusion being possible, as the example

[A] = ([1;4] :) with [L] =
(

[1, 2]

[1,2] [l~ 2] )

and

[L][L]T =
(

[1,4]

[1,4]

[1,4]

)[2,8]

shows. Therefore, the name" LLT deeomposition" in step 1 of the interval
Cholesky method is in a certain sense misleading.

By the same reasoning as above, we obtain at onee the foIlowing theorem.

THEOREM 3.1. Let [x]C exist for [A] = [A]T E IRnXn. Then

Ssym~ [x]c. (3.4)

The question arises quite naturally whether equality holds in (3.4) and
whether the set

S := {x IAx = b, A E [A], b E [b]},

in which now A =I=- AT is allowed, is also eontained in [xf. We answer these

(and some more) questions by the foIlowing example.
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EXAMPLE3.2. Let

[A]'~ ([-~.l]

[-1,1]

)4 ' [b] := (~).

Setting

A:=(~ ~) for A E [A],

we get

A -lb - 6
(

4 - a

)16 - aß 4 - ß
with a, ß E [ - 1, 1].

If A = AT E [A], then ß = a yields

A-lb = 4: a (i ).

Thus

OS - ([18 2] [18 ])
T

sym - 15' , 15,2 , OS = ([i~,2], [i~, 2]f,

[ x ] c = ([ 1, 2], [ i~ ' 2] ) T , [x f = ([1,2], [ i~' 2]f,

where [x JGdenotes the vector resulting from the interval Gaussian algorithm.
The sets

Ssym={4:aU)I-1<a<1} = {y'U)I~<Y<2}
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1 2

FIG. 1. The sets S and Ssym.

and (see [9])

S = convex hull ({( ~ ' ~) T , (2, 2) T , ( ~~, i~) T , ( ~, ~~)J)
can be seen in Figure 1.

Example 3.2 illustrates that the following properties can occur:

Ci) OSsym"* os (cE.[13]).
(ii) OSsym"* [x]C.
(iii) OS"* [x]G.

(iv) S rJ,[x]C (but Ssym~ [x]C; cf. Theorem 3.1).
(v) [x]C ~ [x]G with [x]C "* [x]G.
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We enlarge this list by another property which is also possible:

(vi) [x]G ~ [x]G with [x]G * [x]C.

Our next example illustrates this property.

EXAMPLE3.3. Let

(

[1,4]

[ A]:= [0, 1]

[0,1]

)3 ' [ b] := ([ 0~2d .

Then [x]G = ([0.25,3], [-1, 1])T c [xf = ([0,3], [-1, I])T.

The reason why these two examples above work is best seen by expressing
[ x f and [x]G in terms of the input data. One obtains

c 1

(

[a ]

)
[X2] = 2 [b2] - ~[bl] ,

[a22] - [aI2] /[au] [au]

, I rb 1 r 1 \

[ ]c = .1 ! L IJ - Lal2J [ f~
Xl ~ \~ ~ X2 J'

[X2]G = 1
(
[b2] - [aI2] [bI]

)
,

[a22] - [aI2][aI2]/[aU] [au]

G 1
{

G

}[Xl] = -
[ ]

[bI] - [aI2][x2] .
au

Hence, by (3.3), we always get [x2f ~ [x2]G. If, however, 0 ft. int([aI2]),
then [x 2f = [x 2]G,and the subdistributivity of the interval arithmetic causes
[x I]G ~ [x 1f. Similar phenomena can appear in higher dimensions, too.

We now turn to an alternative representation of [ x f. As with the result of
the interval Gaussian algorithm (cf. e.g. [2] or [15]), the vector Ieh([ A], [b])
can be expressed as a product of certain diagonal matrices [Ds], s = 1,...,n,
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and lower triangular matrices [U], s = 1,.. ., n - 1, which are defined by

[d:j] .~ U/[l,,]

(l:j] .~ C [I;,]

if i=j=Fs,

if i=j=s,
otherwise,

(3.5)

if i = j,

if i > j = s,
otherwise.

By executing the steps 2 and 3 of the interval Cholesky algorithm, one gets
the proof of the following theorem.

THEOREM3.4. Let the elements of [Ds], [U] E mnXn be defined as in
(3.5). Then for the vectors [y] and [x JCof (3.2) we get

[y] = [Dn]([Ln-I]([Dn-I](-.. ([L2]([D]\[LI]([DIHb]))))... ))),

(3.6)

[ x]c =

[D1] ([ LIt ([ D2] (... ([U-2t (rDn-I]([U-I t ([ DnHy]))))... ))).

(3.7)

Note that the parentheses cannot be omitled in general, since the
multiplication of interval matrices is not associative. For point matrices
[A] == A, the matrices [DS] ==DS and [U] ==U are point matrices, too.
Hence, for a point vector [b] == b we get

y = DnDn-I{D-(n-I)U-1Dn-I}Dn-2

x {D-(n-2)u-2Dn-2} ... DI{ D-1 L1D1}b

= DnDn-l ... Dlfn-lin-2 ... Db

= I5ib (3.8)
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with D-s:= ( Ds ) -l 15:= DnDn-l ... D2D1 fs:= D-sUDs and i:=, "
in-I... i2[1. In (3.8) we used the fact that DS commutes with U for r > s

because of the particular shape of DS and U. By the same reasoning, we get

x = Dl(Ll/ D2(L2)T ... Dn-l(Ln-l)T Dny

= {Dl(Ll)TDl} {D2(L2/D2} ... {Dn-l(U-l)TDn-l} (Dn)2ib

= Üib, (3.9)

where Ü := {D1(L1)TD1}{D2(L2)TD2}... {Dn-l(Ln-l)TDn-l}(Dn)2.

Since i is a low~r triangula~ ma~rix with ones in its diagonal, the same
holds for its inverse L -1. Thus L -1 U-1 = A is the LU decomposition of A
resulting from the Gaussian algorithm without permuting rows or columns.
This well-known relation between the Cholesky decomposition and the LU
decomposition of A cannot be generalized to nondegenerate interval matri-
ces [A], again because the multiplication of interval matrices is not associa-
tive. In addition, inverses of such matrices do not exist in the usual algebraic
sense.

We end trus section with a different description of step 1 in the interval
Cholesky method.

DEFINITION 3.5. Let either [A] = ([au]) E IR1X 1 or

I

[ A] =
(

[au]

[e]

[eY

)

'

[ A']

= [AY E mnxn, n> 1, [e] E IRn-l, [A'] E IR(n-l)X(n-l).

(a) I[A]:= [A'] - (1/[au])[c][e]T E m(n-l)X(n-l) is termed the Schur
complement (of the (1,1) entry [au]) provided n > 1 and 0 $. [au]. In the

product [c][c]T we assume that [cJ[cJ is evaluated as [CJ2 [see (2.4)]. I[A] is
not defined if n = 1 or if 0 E [au].

(b) We call the pair ([L],[L]T) the Cholesky decomposition of [A] if

0< Qu and if either n = 1 and [L] = (~) or

[L] =

~
[c]

~

0

[L'] "
(3.10)

where ([L'], [L']T) is the Cholesky decomposition oE ~[A]'
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Definition 3.5(a) is a modification of the Schur complement defined in
[13, p. 155], where the square of an interval [a] is computed as [a] . [a].

THEOREM3.6. The matrix [L] in (3.2) exists if and onZyif [L] from
(3.10) exists. In this case, the two matrices are identicaZ.

Proof. We prove the assertion by induction with respect to the number
n of rows or columns of [ A].

If n = 1, the assertion follows from ~ ~ = [au] for 0 ~ Qu.
Let the assertion be true for some n, and choose [A] from IR(n+l)X(n+l).

For ease of argumentation we replace [L], [I.:] in Definition 3.5 by [M],
[M'].

Assurne first that [L] exists, where [L] is computed by the interval
Cholesky method (3.2). We show that [A] has the Cholesky decomposition
([M], [MY) satisfYing [M] = [L]. Since [L] exists, we obtain Qll > O.
Hence [Zn] = [mn] for i = 1,. . . , n + l.

For j > 2, the formulae in the interval Cholesky method can be reformu-
lated as

(

j-l

)

1/2

[Zjj] = ([ajj] - [zjd2) - k~) Zjk]2

(

' r ..]2 \ j-l \1/2

~ \[aJj] - ~~ J - '~2[lj,]2J

((

[]2

)

'-1

)

1/2

= [ajj] - [;:1] - :~2[ljk]2 ,

(3.11)

1

(

j-l

)
Pij] = -[Z.. ] ([aij] - [ln][ZjlD - E [Zid[ljd

)} k = 2

1

( (

[an][ ajl]

)

j - 1

)

= -
[Z.. ] [aij] - [] - E [Zid[ljk] .}} au k=2

These formulae can be interpreted as the interval Cholesky method applied
to LrA]E IRnxn,which results in a lower triangular matrix [L']. By the
hypotheses made for this induction, the matrix [M'] of Definition 3.5(b)
exists and equals [L']. Thus [M] exists and satisfies [M] = [L].
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Assume now eonverselythat [M] exists. Then, again, gn > 0, [Zn] = [mn]
for i = 1,. . ., n + 1, and [L'] = [M'] by the hypotheses and by (3.11). This
finishestheproof. .

We remark that Definition 3.5(b) is a formulation whieh is an analogue of
the triangular deeomposition of [A] made in [13, p. 155].

4. FEASIBILITY

In this seetion, we first eonsider the feasibility of the interval Cholesky
method. Westart with an example whieh shows that the method need not be
feasible for interval matriees [A] = [A]T even if it is for any symmetrie matrix
A E [A].

EXAMPLE4.1. Let

[ A] :=

(

[~ ]
[a]

[a]
1

[a]

[a]

)

[a]
1

with [a] := [0, ~] .

This matrix and a slightly modified one have already been used to illustrate
that the interval Gaussian algorithm is not feasible although it is for any
matrix A E [A] (cf. [10, 12, 14]).

Let A E [A] be symmetrie. Then

A~ U

a
1

;)
with a, b, c E [0, ~] .

c

The determinants DI, D2, D3 of the leading prineipal matriees have the
values DI = 1 > 0, D2 = 1 - a2 > 0, and D3 = 1 - C2 - a(a - bc) +
b(ac - b) = 1 - a2 - b2 - C2 + 2abc. The eontinuous funetion D3 =
Dia, b, c) has a minimum at some point (ao, bo, co) of the Cartesian
product [a]3 := [a] X [a] X [a], sinee [a]3 is eompact. If at least one of the
three coordinates ao, bo, Cois zero, we get Diao, bo, co) ~ 1 - (~)2 - (~)2

> O. If ao = bo = Co = ~, then D3(ao, bo, co) = ;7> O. If at least one of
the three coordinates ao, bo, Co is eontained in the interior of [0, ~], we ean
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w.1.o.g. assume that Co E (0, ~). Then

JD3(ao,bo,co) = -2co+2aobo=0,Jc

which implies

D3(aO' bo, co) = 1 - a~ - b~ + co( -co + aobo) + aoboco

>-: 1 _1_1 >0:r 9 9 .

Thus, for any ehoices a, b, c E [a], the matrix A is symmetrie and positive
definite by Lemma 2.2, and the ordinary Cholesky method is feasible (cf. [16,

pp. ~4-175E' B~t the in~erval Cholesky m~hod fails, sinee [ln] = 1,
[121] - [131] - [0, 3], [122]- [VS/3,1], [132]- [-4/(3VS), 2/ '1/5], and
[a33] - [131]2- [132]2= [- ~L 1] contains zero, i.e., [133]does not exist.

We now present a dass of matriees for whieh (3.2) is feasible.

THEOREM4.2. Let [A] E IRnXn be an H-rrw.trixsatisfying [A] = [A]T
and 0 < ~ii' i = 1,. . ., n. Then [xf exists, and [L] is again an H-rrw.trix.

Proof. Ey t.~e assumptions, A ;= ([ A]) isa Stieltjes matrix; in"particu-
lar, it is symmetrie and positive definite by Lemma 2.3. Henee A ean be
represented as A = ii! by using the Cholesky method (cf. [16, pp.
174-175]). From the formulae of this method it follows immediately that the
triangular matrix i is eontained in zn X n and has positive diagonal entries.
Therefore, it is an M-matrix. We show by induetion with respect to the
column index j that [L] exists and that

i ~ ([L]) (4.1)

holds.

For j = 1, [Zu] = ~ exists, since we assumed ~u > O. We get

([lu]) = v'([au]) = Zu, [Zn] = [an]j[Zu] exists, and it follows from (2.2)
that

I

[an]
I

If an] 1 A

l[ln] I = [Zu] = /r1 1\ = -ln,
i= 2,...,n.
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Let all columns of [L] exist which have an index less than j > 1. Assurne
that (4.1) holds for all these columns, and deHne

j-I

[s] = [§, s] :=L (ljk]2
k=I

and

[t] := [ajj] - [s].

Then using (2.2), {!:jj> 0, and the induction hypothesis we obtain

j-l j-l

0 < l] = < [ajj]) - L ~k < < [ajj]) - L I (ljd 12
k=I k=l

(

j-I

)
= {!:jj - s = t = <[t]) = [ajj] - L (ljk]2 .

k=I

Hence 0 $ [ajj] - Lt:1 [ljk]2. Therefore, [ljj] exists and satisfies ([ljj]) ~ l~j"
For i > j we get

1 ( j-I \
I [lij] I < Ir1 1\ \1[a;j]1 + L 1[l;dll[ljdIJ

I
k=I

1

(

j-I

)< f.. l[aij]1 + L ~k~k = -l~j')) k = I

This implies ~j < -I[lij]l.
Thus, [xf exists, and the H-matrix property of[L] followsfrom Corollary

3.7.4in[13]. .

Note that an analogue ofTheorem 4.2 holds also for the interval Gaussian
algorithm, as was shown in [1].

COROLLARY4.3. Let [A] = [A]TE mnXn with 0 < {!:ii,i = 1,..., n.
Then in .each of the following cases, [A] is an H -matrix and [x f exists.

(i) ([ A D is strictly diagonally dominant.
(ii) < [ AD is irreducibly diagonally dominant.
(iii) ([ A]) is regular and diagonally dominant.
(iv) ([ A]) is positive definite.
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Proof. By Theorem 2 in [10], [A] is an H-matrix in each of the four
cases; hence [x f existsbyTheorem4.2. .

in all of the followingcases, for example:

(i) [a] = [t, 1], [b] = [1,2], [e] = [t i],
(ü) [a] = [- i, 1], [b] = [1,2], [e] = [i, i],
(iü) [a] = [-i,1], [b] = [-1,2], [e] = [ti],
(iv) [a] = [- i, 1], [b] = [-1,2], [e] = [- t i],
(v) [a] = [-1, -~], [b] = [-2,1], [e] = [- t,{c].

Since ([ A]) is strictly diagonally dominant, [x f exists in all cases.

In our next corollary we consider the particular case of 2 X 2 matrices.

COROLLARY4.5. 1f [A] = [A]TE m2X2, then thefollowing properties
are equivalent:

(i) [x]C exists.

(ii) Any symmetrie matrix A E [A] is positive definite.
(üi) The Cholesky method is feasible for any symmetrie matrix A E [A].

EXAMPLE4.4. Let [a], [b], and [e] E IR and

[5,6] [a] [a] [b] [e]
[a] [8,9] [b] [b] [a]

[A] = I [a] [b] 6 [e] [a] I E IRsxs.

[b] [b] [e] [7,8] [b]

[e] [a] [a] [b] [7,8]

Then 0 < {!ii' i = 1,...,5, [A] = [A]T, and

5 -1 -1 -2 1
-2"

-1 8 -2 -2 -1

([ AD = I -1
-2 6 1

-12

-2 -2 1 7 -22
1 -1 -1 -2 72
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Proof. Ci) => (ii) follows from Lemma 2.2, sinee an = lfl > 0 and

det A = a22aU - a;2 =
(

a22 - a;2
)

. au = l~2lfl > O.
au

(ii) => (iii) follows from Theorem 4.3.3 in [16].
(iii) => Ci):Choose A E LA] sueh that A = AT and (A) = ([ A]) holds.

By the hypothesis, ln, l22 > 0; henee

au = lfl > 0,

2
- 2 a12

a22 - l22 + - > O.
an

This implies

([au]) = (au) = au > 0,

det([A]) = lanlla221-I[a12]12 = aUa22 - a;2 = l~2lfl > O.

Therefore, ([ A]) is symmetrie and positive definite, and f!n = an > 0,
Q22 = a22 > O. The assertion follows from Corollary 4.3. a

COROLLARY4.6. If [A] E mnxn is an M-11UltriXsatisfying [A] = [A]T,
then [x f exists.

As the example

A = (i ~)

illustrates, not every symmetrie H-matrix is an M-matrix. But symmetrie
H-matriees are closely related to positive definite matriees, as the following
theorem shows.

THEOREM 4.7. Let [A] E IRnXn be an H-11Ultrix satisfying [A] = [A]T
and 0 < Qii' i = 1, . . ., n. Then eaeh symmetrie 11UltriXA E [A] is positive
definite.

Proof. Since ([ A]) is an M-matrix, (A) ~ ([ A]) is an M-matrix, too.
Because Qii > 0, the matrix A has a nonnegative diagonal part D. Split A
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into A = D - B. Then (A) = D -I BI = sI - (sI - D + IBI), s ER. Bya
property whieh is equivalent to the definition of an M-matrix (ef. e.g. [5, (1.2)
and (N38)], s ean be ehosen such that

s > p( sI - D + IBI) and sI - D + IBI ~ 0; (4.2)

henee sI ~ D, and

IsI - AI = IsI - D + BI ~ \sI - DI + IBI = sI - D + IBI

implies

p( sI - A) ~ p( sI - D + IBI) < s

by results in [17, §2.l], following from the Perron-Frobenius theorem.
Therefore, all eigenvalues A of A satisfy Is - AI< s, whenee A > O. This
provesthe assertionbyLemma2.2. .

Note that the eonverse of Theorem 4.7 is not true. This is shown by the
matrix of Example 4.1. Every symmetrie matrix A E [A] = [A]T is positive
definite, and [A] satisfies f!:jj> 0, i = 1, . . . , n. But [A] is not an H-matrix,
sinee othe:rwise, [x f would exist by Theorem 4.2.

The faet that the interval Cholesky faetorization need not exist for fuJ
interval matrix whose symmetrie element matriees all are positive definite ean
make preeonditioning neeessary. An algorithm will be investigated in a future
paper.

For tridiagonal matriees we have the following result.

THEOREM4.8. Let [A] = [A]T E IRnXn be a tridiagonal matrix, and
let i E [A] be any symmetrie matrix whieh satisfies (i) = ([ A]) and
whieh is positive definite. Then [A] is an H-matrix; in particular, all
symmetrie matriees A E [A] are positive definite, and [xf exists.

Proof. Sinee i is assumed to be positive definite, all diagonal entries ajj
are positive. Therefore, (i) = ([ A]) and i E [A] implYf!:jj > 0, i =
1, . .., n. By Lemma 2.4, i is an H-matrix; henee [A] is an H-matrix; too..
Here we have used the equality (i) = ([ A]) onee more. The assertion
follows now from Theorems 4.2 and 4.7. .

COROLLARY4.9. Let [A] = [A]TE mnxn be a tridiagonalmatrix, and
let i E [A] be any symmetrie matrix whieh satisfies (i) = ([ A]). Ifi ean
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be chosen such that it fulfills one of the three properties

Ci) Ä is totally positive,
(ii) Ä is regular and totally nonnegative,
(iii) Ä is oscillatory,

then [A] is an H-matrix; in particular, all symmetrie matriees A E [A] are
positive definite, and [x]C exists.

Praof. In the ease of (i), the leading prineipal minors are positive; henee
Ä is symmetrie positive definite, and Theorem 4.8 proves the assertion.

In the ease of (ii), the assumptions yield det A > O. Thus Lemma 2.2
eombined with the inequality (116) in [8, p. 443] shows that the assumptions
of Theorem 4.8 hold. Therefore, the eorollary is proved in ease (ii).

Sinee det Äk > 0 for some integer k implies det Ä =1=0, (iii) is a partieu-
lareaseof(ii). .

Example 4.1 and Theorems 4.2 and 4.7 show that [x]C does not neeessar-
ily exist for interval matriees [A] = [A]T of whieh all symmetrie element
matriees A are positive definite, but that for an important subclass of sueh
matriees the existenee of [x]C is guaranteed.

We will now show that for an M-matrix [A] = [A]T the bounds of the

matrix [L] in step 1 of (3.2) ean be obtained independently of eaeh other
from the Cholesky deeomposition of the bounds ~, X

THEOREM 4.10. Let [A] = [A]T E mnxn be an M-matrix, and let

~ = L(l)(L(l))T, A = L(u)(L(u))T be the Cholesky decompositions of ~ and J\,
respectively. Then L(l), L(u) are M-matriees. The matrix [L] fram the Cholesky
decomposition of [A] can be represented as

[L] = [L(l), L(u)]; (4.3)

in particular, [L] is an M-matrix~

Proof. Sinee~, A are Stieltjes matriees, the formulae in (3.2) show at
onee that L(l), L(u) E znxn. Theorem 4.2, applied to ~ and to J\, respee-
tively, implies that they are M-matriees.

We now prove (4.3) by induetion with respect to the eolumn index j.
For j = 1 we get at onee

[Zu] = ~ = [y'Qu,y'au] = [zW,ll~)]
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and

[a' l]

[

a' l a' l

]

- ~ - =- ~ - (I) (u) .[Zn] -
[I ] - 1(1)' l(u) - [ln ,ln], Z> 1,11 11 11

with l(u) ~ 0tl "" ,

where we have taken into account an < 0 for i > l.
Assume now that (4.3) holds for all columns with an index less than j > l.

Then

pjj] ~ ([ ajj] - :$. [( lj,»)', (ljP)']r
= [1(1) l('!)

])) , ))

and

(

}-1

) [

1 1

]

- - (u) (u) (I) (I) . - -
[lij] - [aij] E [lik ljk ' lik ljk ] l('!)' 1(1)

k=l )) ))

= [1(1) I(U)
]t) , t) for i > j,

since aij < 0 and l}';) < 0 for i > j. This proves the assertion. 11

We now consider the quality of the enclosure of [x f with respect to Ssym
from (3.1).

THEOREM 4.11. Let [A] = [A]T E IRnXn be an M-matrix, and let

[b] E IRn satisfy Q ~ 0 or 0 E [b] or b < O. Then [xf = DSsym'

. Proof. Denote by (D(l)Y, (L(l»)S and (D(u»)S, (L(u»)S the matrices in the

r~resentation (3.7) when the interval Cholesky method is applied to .:1 and
A, respectively. By Theorem 4.10 and by (3.5), these matrices are nonnega-
tive, and

[D]" = [(D(U»)s,(D(I»)S], [L]" = [(L(U»)s,(L(l»)S].



CHOLESKY METHOD FüR INTERVAL DATA 181

Hence Theorem 3.4 proves

[ x]c =

[=1-ll?, X-q;]

[=1-ll?, =1-1b]

[X-ll?, =1-1b]

if b < 0,

if 0 E [b], .
if l?> o.

COROLLARY4.12. Let [A] = [A]T E IRnXn be an M-matrix, and let

[b] E IRn satisfy l? > 0 or 0 E [b] or b < O. Then [x]C = OSsym = oS =
[ X]G, where [x]G denotes the vector resulting from the interval Gaussian
algorithm applied to [A] and [b].

Proof. The proof follows at onee from Theorem 4.11 and from results in
[4]. .

The authors thank an anonymous referee for his valuable comments which
improved the paper.
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