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ABSTRACT

We apply the well-known Cholesky method to bound the solutions of linear
systems with symmetric matrices and right-hand sides both of which are varying
within given intervals. We derive criteria to guarantee the feasibility and the optimal-
ity of the method. Furthermore, we discuss some general properties.

1. INTRODUCTION

It is well known that the formulae of the Gaussian algorithm can be used
to bound the solutions of the linear systems for which the coefficient matrices
and the right-hand sides are varying within given intervals; see [11], or [3] and
[13], where also criteria for the feasibility of this method can be found. A
method which can be used systematically for linear systems with a real
symmetric and positive definite point matrix is the Cholesky method. Com-
pared with Gaussian elimination, it has among others certain advantages with
respect to the amount of work which has to be performed.

The purpose of the present paper is to investigate the Cholesky method
systematically when applied to systems with interval data. To our knowledge
this has not been done before. After repeating some basic facts from interval
analysis and matrix theory (Section 2), we introduce the interval Cholesky
method in Section 3. A series of properties which may hold is illustrated by
examples. In Section 4 we derive several sufficient criteria for the method to
be feasible, and we prove some additional properties.
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2. PRELIMINARIES

By R", R"*" IR, IR", IR"*" we denote the set of real vectors with n
components, the set of real n X n matrices, the set of intervals, the set of
interval vectors with n components, and the set of n X n interval matrices;
respectively. By “interval” we always mean a real compact interval. We write
interval quantities in brackets with the exception of point quantities (i.e.,
degenerate interval quantities), which we identify with the element which
they contain. Examples are the null matrix 0 and the identity matrix I. We
use the notation [A] =[A4, Al = ([¢;;] = ([g;;, 2;;]) € IR"*" simultane-
ously without further reference, and we proceed similarly for the elements of
R", R"*", IR, and IR". We write O S for the tightest interval enclosure of a
given bounded subset S € R" and call it the interval hull of S.

By A >0 we denote a nonnegative n X n matrix, ie., a; >0 for
i,j=1,...,n. We call x € R" positive, writing x >0, if x;> 0, i=
| S

We also mention the standard notation from interval analysis [3, 13]:

I[a]] = max{lal |@ € [a]} = max{|al, |al}

(absolute value), and

{[a]) = min{ldl|a € [a]} = {min[igi,lai; if 0¢[a],
0 otherwise
(minimal absolute value) for intervals [a]. For [A] € IR"*" we obtain

[ All € R"*" by applying | - | entrywise, and we define the comparison matrix
([A]) = (¢;;) € R"™*" by setting

Cij'

{—l[aij]‘ if i #j,
([a:’i]> it e

Since real numbers can be viewed as degenerate intervals, |-| and {( - ) can
also be used for them.

By Z"*" we denote the set of real n X n matrices with nonpositive
off-diagonal entries, by det A we mean the determinant of a matrix A €
R™"*", and by p(A) we denote its spectral radius.

In Section 4 we will consider several classes of matrices A € R**" for
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which we recall the definitions (cf. [5, 8, 17]):
A is an M-matrix if A is nonsingular, A™* > 0, and A € Z"*".
A is a Stieltjes matrix if A is a symmetric M-matrix.
A is an H-matrix if ( A) is an M-matrix.

A is diagonally dominant if

a..| = a.., = ey it 2.1
|a,| j);ll il (2.1)
j#i
A is strictly diagonally dominant if (2.1) holds with strict inequality.
A is irreducibly diagonally dominant if A is irreducible and if (2.1) holds
with strict inequality for at least one index i.
A is totally positive (totally nonnegative) if each minor of A is positive
(nonnegative).
A is an oscillatory matrix if it is totally nonnegative and if at least one of
its powers Ak is totally positive.
_ An interval matrix [A] € IR"*" is termed an M-matrix if each element
A €[A] is an M-matrix. In the same way the term “H-matrix” can be
extended to IR"*". It is easy to verify that

[A]is an M-matrix if and only if A is an M-matrix and a;<0 for i #j, and
that
[Alis an H-matrix if and only if {[ A]) is an M-matrix.

To prove these two statements one can refer to a very useful criterion for
M-matrices due to Fan [6]:

LEMMA 2.1. Let A € Z"*". Then A is an M-matrix if and only if there
exists a positive vector x € R" such that Ax > 0.

We recall now some well-known results for symmetric positive definite
matrices.

LEMMA 2.2. If A € R"™" is a symmetric matrix, then the following
properties are equivalent:

(i) The matrix A is positive definite.
(i) Each principal submatrix of A has a positive determinant.
(iii) Each eigenvalue of A is positive.

LEmMa 2.3 (Cf. [5, p. 141]). A € R"™" is a Stieltjes matrix if and only
if A is a symmetric and positive definite element of Z"*".

LEMMA 2.4 (CE. [7, p. 127D. If A € R™*" is a symmetric and positive
definite tridiagonal matrix, then A is an H-matrix.
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We equip IR, IR", IR"”" with the usual real interval arithmetic as
described e.g. in [3, 11, 13]. We also assume that the reader is familiar with
the properties of this arithmetic. We only mention the formulae (cf. [3], [13])

1 1 _
[t - gl i olal -

[[] £ []] <I[a]l +I[2]|

for intervals [a], [#], and we recall the definitions

\/m = {\/Ela = [a]} for 0<a (2.3)

and
(o] = (@?]a < [al}. (2.4)

Instead of y/[a] we also write [a]'/2.

3. THE INTERVAL CHOLESKY METHOD

We start this section by specifying the problem which we want to attack.

Let [A] € IR™*" be an interval matrix satisfying [ A] = [ A]". Furthermore,
let [b] € IR" be given. We want to bound the solution set

Sym = {x|Ax =b, A€ [A], A= A", b € [b]} (3.1)

by an interval vector [x].

Such a vector can be obtained by using an iterative method as described
in [3] or by applying the interval Gaussian algorithm, which also can be found
in [3]. Since we are only interested in bounds for the solutions of linear
systems with symmetric coefficient matrices A, we can hope to succeed also
with an interval analogue of the Cholesky method which needs approximately
half the operations of the interval Gaussian algorithm. By this analogue, we
mean the construction of an interval vector [x]° = ICh([ A], [b]) by applying
the following algorithm, which we divide into three steps. To formulate them
we require [ A] = [A]", and we assume that all the steps are feasible. This
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means that no division by an interval which contains zero appears, and that all
square roots can be taken. Conditions which guarantee this feasibility will be
derived in Section 4.

INTERVAL CHOLESKY METHOD.
Step 1. i e decomposition”:
forj==1tondo
[lﬂ] S ([aj]] = E{—:ﬁ[ljk]2)1/2;
fori==j+1tont_lo
Step 2. Forward substitution: 3.2)

forz'==ltondo‘
Step 3. Backward substitution:

for i == n downto 1 do
[It-]c A== ([ y,] T EILH_] [ljgl[lec)/[lﬁh
ICh( AL [BD = [x]°.

As usual, sums with an upper bound smaller than the lower one are
defined to be zero. The squares in step 1 are evaluated by applying the
interval square function (2.4), which yields for arbitrary [¢] € IR the inclu-
sion

[a]® c[a]-[a]  with equality if and only if 0 & int([2]). (3.3)

We recall that we only intend to enclose the solutions for the symmetric
matrices contained in [A]. This justifies the use of the squares [lj,,c]2 as
defined in (2.4) in step 1 above.

As can be seen from the formulae in the interval Cholesky method, the
feasibility of this method is independent of the right-hand side [b]. There-
fore, the existence of ICh([ A, [b]) is also independent of [b]. Subsequently,
we will simply write “[x]¢ exists” if we mean that ICh([ A, [b]) exists for any
vector [b] € IR".

The three steps in the interval Cholesky method correspond to the three
steps of the ordinary Cholesky method for a given symmetric matrix A €
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R"*" (provided that the feasibility is guaranteed):

(i) Decompose A into A = LL" with a lower triangular matrix L satisfy-
ingl,;>0,i=1,..., n.

(i) Solve Ly = b.

(iii) Solve L'x =y.

As is well known, the decomposition in (i) is unique.

Define [L] as the lower triangular matrix with [/ j] from step 1 of the
interval Cholesky method. By the inclusion monotonicity of interval arith-
metic it is clear that L from (i) exists and is contained in [ L] for each matrix
A = AT € [ Al This means that A = LL" € [L]L]" holds for symmetric
matrices A € [A]. In particular, A, A € [LILYT, whence [A] c[LILT,
with strict inclusion being possible, as the example

[A]=([1’4] ;] with [L]Z([I’Q] ’ )

2 [1,2] [1,2]
and

(LILT = ([1,4] [1,4])

[1,4] [2,8]

shows. Therefore, the name “LLT decomposition” in step 1 of the interval
Cholesky method is in a certain sense misleading.
By the same reasoning as above, we obtain at once the following theorem.

THEOREM 3.1.  Let [x]° exist for [A] = [A]" € IR"*". Then
Al C
8 -0 el (3.4)

The question arises quite naturally whether equality holds in (3.4) and
whether the set

S:={x|]Ax=b, A€ [A],b € [b]},

in which now A # AT is allowed, is also contained in [x]¢. We answer these
(and some more) questions by the following example.
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ExaMPLE 3.2. Let

4 [-1,1]
[A]:([—l,l] 4 ) [b]:[g)'

Setting

we get

6 -
A-1p (4 a

=—16—aﬁ 4“3] with a,Be[-1,1].

If A=AT €[A] then B =« yields

=)
4+ all)

Ah =

Thus
08, = ([2.2].[£.2])".  ©s=([£.2].[%.2])"
[x]°= (L2l [%.2])".  [«1°=([12].[£.2])"

where [ x]¢ denotes the vector resulting from the interval Gaussian algorithm.
The sets

= {ma - <ee - b0
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* Ssym

Fic. 1. The sets S and S, ,,

and (see [9])

S = convex hull ({(-g—, A2, 2) (i?, :13{7} ,( :%’?’)T})

can be seen in Figure 1.

Example 3.2 illustrates that the following properties can occur:

@ OS,,, # OS (cf. [13).

(ii) IZISS) # [x]C.

Gii) OS # [x]°.

Giv) S g [x]° (but S [x]¢; of Theorem 3.1).
W) [x]¢ c[x]¢ with [x]C %= [x]C.
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We enlarge this list by another property which is also possible:
(i) [x]° € [2]° with [«]® # [«]°.

Our next example illustrates this property.

ExXAaMPLE 3.3. Let

[1,4] [o0,1] [ 2
[A]:([O,l] 3 ) [b] = ([0,2]]'

Then [x]¢ = (0.25,3], [ 1, 1DT c [x]¢ = ([0, 3], [ 1, 1D".

The reason why these two examples above work is best seen by expressing
[x]€ and [x]€ in terms of the input data. One obtains

- vl 1}
[as] - [012]2/[311] [ay]

c _ 1 [b1] L“lzJ .
b=l \/[a“] {\/[a“] \/[“11] : 2]}

[xz]c =

- ! [as]
£ R o o s o P {“’2] TR ]}

[xl] [b,] - [312][932]6}-

e

Hence, by (3.3), we always get [x,]1° C [x,]°. If, however, 0 & int((a,,]),
then [x,1° = [x,], and the subdistributivity of the interval arithmetic causes
[x,]° < [x,]°. Similar phenomena can appear in higher dimensions, too.

We now turn to an alternative representation of [x]C. As with the result of
the interval Gaussian algorithm (cf. e.g. [2] or [15]), the vector ICh([ A], [b])
can be expressed as a product of certain diagonal matrices [D°], s = 1,. .., n,
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and lower triangular matrices [L*], s = 1,..., n — 1, which are defined by

1 if i=j#s,

[d)] ={1/[L,] if i=j=s,
0 otherwise,

(3.5)

1 if i=j,

[L5] = -[L] if i>j=s,
0 otherwise.

By executing the steps 2 and 3 of the interval Cholesky algorithm, one gets
the proof of the following theorem.

THEOREM 3.4. Let the elements of [D°],[L°] € IR"*" be defined as in
(3.5). Then for the vectors [y] and [x]1° of (3.2) we get

[y = Lo ([e ) (tom (= (1T eI e D)) - )

(36)

[x]° -
(e (o2 (=27 ([t 11 (D" M9 D)) - )))
(3.7

Note that the parentheses cannot be omitted in general, since the
multiplication of interval matrices is not associative. For point matrices
[A] = A, the matrices [D*] = D* and [L°] = L’ are point matrices, too.
Hence, for a point vector [b] = b we get

y = DnDn—l{D——(n—l}Ln—an—l}Dn—2
X[D—(n—2)Ln—2Dn—2] 5% D]{D—lLlDl}b

DnDn—l P Dlﬁn—liri—Z i f‘lb

ib (3.8)
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w1th D~ ==(D*)"Y, D=D"D""! .- D*D}, [ == D™*L*D®, and L =
[r= 1 <o 1211, In (3.8) we used the fact that D® commutes with L for r > s
because of the particular shape of D* and L". By the same reasoning, we get

v = Dl(Ll)TDQ(LZ)T Dn—l(Ln—l)TDny
o {DI(LI)TDl} {DR(LQ)TDQ} {Dn—l(Ln—])TDn—l} (D”)gf,b
= ULb, (3.9)

where U = {D(L)TDYD2(L2)TD%} -+ {D" "X (L*~)'D"* "} D")2.

Since L is a lower triangular matrix with ones in its diagonal, the same
holds for its inverse L ™). Thus L™'U"! = A is the LU decomposition of A
resulting from the Gaussian algorithm without permuting rows or columns.
This well-known relation between the Cholesky decomposition and the LU
decomposition of A cannot be generalized to nondegenerate interval matri-
ces [ A], again because the multiplication of interval matrices is not associa-
tive. In addition, inverses of such matrices do not exist in the usual algebraic
sense.

We end this section with a different description of step 1 in the interval
Cholesky method.

DEFINITION 3.5. Let either [A] = ([q;,]) € IR or

_[lan] [T
[A] ([c] [A]

= [A]TemﬂXﬂ) n > l, [C] EIRI‘I—I, [A!] EIR(n—l)X(n~l}_

(@) 34 =[A] - (1/[a},Dlclc]” € IR"D*=D js termed the Schur
complement (of the (1, 1) entry [a},]) provided n > 1 and 0 & [a,,]. In the
product [c][c]" we assume that [¢,][c,] is evaluated as [c,]* [see (2.4)]. Spais
not defined if n = 1 or if 0 € [a,].

(b) We call the pair ([L],[L]") the Choleeky decomposition of [ A] if
0 < @y, and if either n = 1 and [L] = (/[ a},]) or

[‘311] 0
[L] = [[:']] | (3.10)

where ((L],[L'T") is the Cholesky decomposition of %4
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Definition 3.5(a) is a modification of the Schur complement defined in
[13, p. 155], where the square of an interval [¢] is computed as [a] - [a].

THEOREM 3.6. The matrix [L] in (3.2) exists if and only if [L] from
(3.10) exists. In this case, the two matrices are identical.

Proof. We prove the assertion by induction with respect to the number
n of rows or columns of [ Al.

If n = 1, the assertion follows from y/[a,,] y/[4a;,] = [a,,] for 0 < q,,.

Let the assertion be true for some n, and choose [ A] from IR+ DX+ 1)
For ease of argumentation we replace [L], [L'] in Definition 3.5 by [M],
[M']

Assume first that [L] exists, where [L] is computed by the interval
Cholesky method (3.2). We show that [ A] has the Cholesky decomposition
((M1[M]") satisfying [M]=[L]. Since [L] exists, we obtain a,, > 0.
Hence [I,,] = [m,]fori=1,..., n+ 1.

For j > 2, the formulae in the interval Cholesky method can be reformu-
lated as

Il

(] ([%] B [311]2) . };;[Efk]g]

[ ] [aj1]2 ) jgl 2\1/2
- l[aﬂ \/[au] 1/[“11] _k=2[jk]J

- ([a,.1 - [“ﬂ]z) S (311
he [an] fmg it

1

[lt‘j] = [fj}-] (([aij] - [zil][ljl]) - ig;[lik][ljk])

(4] (([ il [a,,] kgg[fsk][ljk] ;

These formulae can be interpreted as the interval Cholesky method applied
to Ly € IR"*", which results in a lower triangular matrix [L']. By the
hypotheses made for this induction, the matrix [M'] of Definition 3.5(b)
exists and equals [ L']. Thus [ M ] exists and satisfies [M] = [L].
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Assume now conversely that [ M ] exists. Then, again, a,, > 0,[[;;] = [m,]
fori=1,..., n + 1, and [L'] = [M'] by the hypotheses and by (3.11). This
finishes the proof. B

We remark that Definition 3.5(b) is a formulation which is an analogue of
the triangular decomposition of [ A] made in [13, p. 155].

4. FEASIBILITY

In this section, we first consider the feasibility of the interval Cholesky
method. We start with an example which shows that the method need not be

feasible for interval matrices [ A] = [ A]" even if it is for any symmetric matrix
A €[ Al

ExaMmpPLE 4.1. Let

1 [a] [a
[Al={[ad 1 [a
[e] [a] 1

]
1| with [a] =0,3].

This matrix and a slightly modified one have already been used to illustrate
that the interval Gaussian algorithm is not feasible although it is for any
matrix A € [ A] (cf. [10, 12, 14)).

Let A € [ A] be symmetric. Then

1 a b
A=1la 1 ¢ with a,b,cE[O,%].
b 1

The determinants D), D,, D; of the leading principal matrices have the
values D, =1>0, D,=1-a*>>0, and D, =1—c®—a(a — bc) +
blac —b) =1 — a* — b*> — ¢* + 2abc. The continuous function D, =
Dy(a,b,c) has a minimum at some point (a,, b,,c,) of the Cartesian
product [a]® == [a] X [a] X [a], since [a]® is compact. If at least one of the
three coordinates a, b, c, is zero, we get D,(a,, by, c,) > 1 — (3)* — (3)?
> 0. If ay= by =c, = %, then Dy(a,, by, c,) = &> 0. If at least one of
the three coordinates a,, b, ¢, is contained in the interior of [0, ], we can
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w.lo.g. assume that ¢, € (0, 3). Then

dD;(ay. by, c,)
de

= —2¢, + 2a4b, = 0,

which implies

Ds(ay, by, Co) =1— ao bo + co(—co + aghy) + agbye,

— g R

Thus, for any choices a, b, ¢ € [a], the matrix A is symmetric and positive
definite by Lemma 2.2, and the ordinary Cholesky method is feasible (cf. [16,
pp- 174-175]). But the interval Cholesky method fails, since [l},]=1,
[ ] = [1y] = 10.2], U] = 5 /3, 1), (1) = [-4/(3/5),2/ V5], and

[a,] — 15, - [l:.,g,]2 [— £, 1] contains zero, i.e., [I;;] does not exist.

We now present a class of matrices for which (3.2) is feasible.

THEOREM 4 2. Let [A]l € IR™" be an H-matrix satisfying [ A] = [ A]"
and 0 < a;, i =1,...,n. Then [x]° exists, and [L] is again an H-matrix.

Proof. By the assumptions, A= ([AD is a Stieltjes matrix; in _particu-
lar, it is symmetric and positive definite by Lemma 2.3. Hence A can be
represented as A = LIF by using the Cholesky method (cf. [16, pp.
174-175]). From the formulae of this method it follows immediately that the
triangular matrix L is contained in Z"*" and has positive diagonal entries.
Therefore, it is an M-matrix. We show by induction with respect to the
column index j that [L] exists and that

L <{[L] (4.1)

holds.
For j =1, [I,;]1= -\f[a“] exists, since we assumed g;, > 0. We get

A1, D = y{an D =1y, ;] = [a,,1/11,,] exists, and it follows from (2.2)
that

[a’i.l] - I[ail]l o f

Il =17 =y =
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Let all columns of [ L] exist which have an index less than j > 1. Assume
that (4.1) holds for all these columns, and define

(4] = [£.5] = Z (4]
and
[t] = [ajj] = [s].

Then using (2.2), ;. > 0, and the induction hypothesis we obtain

’J'J

0 <B;={la,d - T B <la) - T[4l

I
)

_jj_§=t=<[t]> T

[a;] - E: [Ijkr}-
k=1

Hence 0 & [ajj] - ¥} [Ijk . Therefore, [ljj] exists and satisfies ([lﬂ]) > l’;}
For i > j we get

01 < 77 (”a 1)+ zlrz,‘]n[zk]l\

1 * o AR .
?_([[aq]' gllikljk) = _Iij'
This lmphes 3 i 12 ]I
Thus, [x]c emsts and the H-matrix property of [ L] follows from Corollary
3.7.4 in [13]. [ |

Note that an analogue of Theorem 4.2 holds also for the interval Gaussian
algorithm, as was shown in [1].

COROLLARY 4.3. Let [A]l =[A] € IR**" with 0 <ga,, i=1,...,n.
Then in each of the followmg cases, [ A] is an H-matrix and [x]° exists.

@ ([AD is strictly diagonally dominant.

Gi) ([A] is irreducibly diagonally dominant.
Gii) ([ A]) is regular and diagonally dominant.
(iv) ([ A]) is positive definite.
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Proof. By Theorem 2 in [10], [A] is an H-matrix in each of the four
cases; hence [x]€ exists by Theorem 4.2. 3]

ExaMpPLE 4.4. Let [a], [b], and [¢] € IR and

[5.6] [a] [a] [b] [e]
[«] [8.9]1 [p] [b] [a]
[aAl=| [ [6] 6 [e] [d]
[b] [p] [e] [7.8] [b]
] [e]l [a] [p] [7.8]

Thei O <, 1= L. 5 [A]l =[A]%, and

in all of the following cases, for example:

M) [a]l =[5, 1], [b] [L,2], [c]l=1(33

Gi) [el =[-3,1], [B]1 =1[1,2], [c] —[
(iii) [a] =[— % l] [b]=[-1,2] [c] = [i
(v) [el =[-3,1), [b] =[- 12} [cl=[- 53}
W lal=[-1, —3) [b]1=[-2,1] [c] =1 é,i].

Since ([ A]) is strictly diagonally dominant, [x]€ exists in all cases.

}

| 'Jklv—l‘\'-'ll'—'

In our next corollary we consider the particular case of 2 X 2 matrices.

COROLLARY 4.5. If [A] = [A]" € IR**2, then the following properties
are equivalent:

(i) [x]€ exists.

(ii) Any symmetric matrix A € [ A] is positive definite.
(iii) The Cholesky method is feasible for any symmetric matrix A € [ Al
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Proof. (1) = (ii) follows from Lemma 2.2, since a,; = [}, > 0 and
a
det A =aya,, — 0y = |ay, — — |-a;; = 1515 > 0.

(ii) = (iii) follows from Theorem 4.3.3 in [16].
(iii) = (i): Choose A € [ A] such that A = AT and {( A) = {[ A]) holds.
By the hypothesis, [, l,, > 0; hence

e 2
2

= |2 +@>0
%) 22 " :
11

This implies
<["311]) =(ay,) =a;, >0,
det([ AD = la,|la,| _I[al2]|2 = ay8y — afy = 1511 > 0.
Therefore, {[ A]) is symmetric and positive definite, and a,, = a,; > 0,

@9 = g9 > 0. The assertion follows from Corollary 4.3. a

COROLLARY 4.6. If [A] € IR"™" is an M-matrix satisfying [ A] = [ AT,
then [x]° exists.

As the example
(2 1
A‘(l 2]

illustrates, not every symmetric H-matrix is an M-matrix. But symmetric
H-matrices are closely related to positive definite matrices, as the following
theorem shows.

THEOREM 4.7. Let [A] € IR"*" be an H-matrix satisfying [ A] = [ A]"
and 0 <g;, i=1,..., n. Then each symmetric matrix A € [ A] is positive

=ii»

definite.

Proof. Since {[ A]) is an M-matrix, { A) > {[ A]) is an M-matrix, too.
Because a;; > 0, the matrix A has a nonnegative diagonal part D. Split A
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into A=D — B.Then(A) =D — |B|=sI —(sI =D +|B),s € R. Bya
property which is equivalent to the definition of an M-matrix (cf. e.g. [5, (1.2)
and (N)], s can be chosen such that

s>p(sl—D+|B) and sI—D +|Bl>0; (4.2)
hence sI = D, and
sl —Al=|sI — D+ Bl <|sI — D|+ |B|=sI — D + |B|
implies
p(sI —A) <p(s =D +|Bl) <s

by results in [17, §2.1], following from the Perron-Frobenius theorem.
Therefore, all eigenvalues A of A satisfy [s — A| <3, whence_ A > 0. This
proves the assertion by Lemma 2.2. B

Note that the converse of Theorem 4.7 is not true. This is shown by the
matrix of Example 4.1. Every symmetric matrix A € [A] = [A]" is positive
definite, and [ A] satisfies a,;, > 0, i = 1,..., n. But [ A] is not an H-matrix,
since otherwise, [ x]° would exist by Theorem 4.2.

The fact that the interval Cholesky factorization need not exist for an
interval matrix whose symmetric element matrices all are positive definite can
make preconditioning necessary. An algorithm will be investigated in a future
paper.

For tridiagonal matrices we have the following result.

THEOREM 4.8. Let [A] = [A]" € IR"™" be a tridiagonal matrix, and
let A €[A] be any symmetric matrix which satisfies (A) = {[A]) and
which is positive definite. Then [A] is an H-matrix; in particular, all
symmetric matrices A € [ A] are positive definite, and [x]€ exists.

Proof. Since A is assumed to be positive definite, all diagonal entries a;,
are positive. Therefore, (A) = ((A]) and A €[A] imply a; >0, i =

1,...,n. By Lemma 2.4, A is an H-matrix; hence [ A] is an H- matnx too.
Here we have used the equality (A) = ([ A]) once more. The assertion
follows now from Theorems 4.2 and 4.7. |

COROLLARY 4.9. Let [A] = [A]f € IR™™" be a tridiagonal matrix, and
let A € [ A] be any symmetric matrix which satisfies ( Ay = ([ Al). If A can
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be chosen such that it fulfills one of the three properties

(i) A is totally positive,
(i) A _is regular and totally nonnegative,
(iii) A is oscillatory,

then [ A] is an H-matrix; in particular, all symmetric matrices A € [ A] are
positive definite, and [x]€ exists.

) Proof. In the case of (i), the leading principal minors are positive; hence
A is symmetric positive definite, and Theorem 4.8 proves the assertion.

In the case of (ii), the assumptions yield det A > 0. Thus Lemma 2.2
combined with the inequality (116) in [8, p. 443] shows that the assumptions
of Theorem 4. 8 hold. Therefore, the corollary is proved in case (ii).

Since det A¥ > 0 for some integer k implies det A # 0, (iii) is a particu-
lar case of (ii). [ ]

Example 4.1 and Theorems 4.2 and 4.7 show that [x]° does not necessar-
ily exist for interval matrices [A] = [A]" of which all symmetric element
matrices A are positive definite, but that for an important subclass of such
matrices the existence of [x]° is guaranteed.

We will now show that for an M-matrix [A] = [ A]” the bounds of the
matrix [L] in step 1 of (3.2) can be obtained independently of each other
from the Cholesky decomposition of the bounds A, A

THEOREM 4.10. Let [A]l =[A) € IR**" be an M-matrix, and let
A =ILI(LDY, A= L“NL™)" be the Cholesky decompositions of A and A,
respectively. Then LD, I are M-matrices. The matrix [ L] from the Cholesky
decomposition of [ A] can be represented as

[L]=[L?, L¥]; (4.3)

in particular, [L] is an M-matrix.

Proof. Since A, A are Stieltjes matrices, the formulae in (3.2) show at
once that L®, L®) & Z"*", Theorem 4.2, applied to A and to A, respec-
tively, implies that they are M-matrices.

We now prove (4.3) by induction with respect to the column index j.

For j = 1 we get at once

[l,]= an [\/Z‘/Z] - [ggfl),g(u;
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and

[en]  [an @, i . _ .
[1.] = o ol [P, 1], i>1, with 1P <0

where we have taken into account a;; < 0 for i > 1.

Assume now that (4.3) holds for all columns with an index less than j > 1.
Then

j-1 1/2
1] = ([“ﬁ] B k;[(z}f))z’(lﬁ))zl)

— [1 7w
[ 55

and
s (u)](u) 1(DCH - .
[lij] - [aij] - E [Is}: ljf » Lk ljk ’ () ?(*5
k=1 i i
= []D ) : :
[Iij N for 424,
since Z;; < 0 and I{}’ < 0 for i > j. This proves the assertion. B

We now consider the quality of the enclosure of [x]° with respect to S,

from (3.1).

THEOREM 4.11. Let [A]l=[A]" € IR"*" be an M-matrix, and let
[b] € IR" satisfyb > 0 or 0 € [b] or b < 0. Then [x]° = OSy-
Proof. Denote by (D®)*, (L®)* and (D™)*, (L‘™)* the matrices in the
representation (3.7) when the interval Cholesky method is applied to A and

A, respectively. By Theorem 4.10 and by (3.5), these matrices are nonnega-
tive, and

[D]s - [( D(“))S, ( DU))S] : [L]s _ [(L(u))s>(L(I))S] :
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Hence Theorem 3.4 proves

A™'b, A- Z] if 5<0
[x]°={[Aa"'B, 48] if 0e[b], o
[A2, 48] if b>o0

COROLLARY 4.12. Let [A] = [A]f € IR"™" be an M-matrix, and let
[b] € IR" satisfy b > 0 or 0 € [b] orb < 0. Then [x]¢ = OS,,,, = OS =
[x]¢, where [x]° denotes the vector resulting from the mtemal Gaussian

algorithm applied to [ A] and [b].

Proof. The proof follows at once from Theorem 4.11 and from results in
[41 =

The authors thank an anonymous referee for his valuable comments which
improved the paper.
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