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Abstract.

In the present paper wepropose three newmethods for computing sequencesofenclosingintervals for
a zero of areal function without convexity assumptions.

The new methods have been tested on aseries ofpublished examples. The numerical experimentsshow
that our methods are comparable in terms of efficiencywith the welJ-knownalgorithms of Dekker and
Brent.
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1. Introduction.

Let f: [a,bJ ~ IR be a continuous function which has a simple zero x* in the

interval Ca,b]. We consider the problem of constructing a sequence of intervals
{[an,bnJ}:=o, such that:

(1) x*e[an+1,bn+1J c [an,bnJc... c [ao,boJ = [a,bJ,

(2) lim (bn- an)= O.
n~GO

In case f is monotone and convex on Ca,bJ this may be accomplished by the
classical Newton-Fourier procedure (see [7, p. 248J). The sequence of diameters
{(bn- an)}:'=oof the enclosing intervals produced by this method converges Q-
quadratically to zero. One step ofthis iterative procedure requires two function and
one derivative evaluation so that its asymptotic efficiency index in the sense of
Ostrowski [7J is 21/3 = 1.2599. . .. J. W. Schmidt [9J has proposed an iterative
algorithm requiring the same amount of work and for which the sequence of
diameters is Q-cubically convergent to zero. The efficiencyindex ofthe procedure is
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equal to 31/3= 1.4422.. ., He also proposed an algorithm with R-convergence
order 1 + J2 = 2.4142. .. requiring only two function evaluations per step and
therefore having the efficiencyindex equal to (1 + J2)1/2 = 1.5537.. .. Alefeldand
Potra [2J suggested some modifications for the above-mentioned methods of J. W.
Schmidt and showed that the Q-convergence order of the second method of J. W.
Schmidt is also equal to 1 + J2.

The convexity assumption required by the above-mentioned procedures is rather
restrictive. Some interval versions of Newton's method and the secant method can

successfully handle the nonconvex case, but the use of interval arithmetic and
interval extensions of derivatives may be quite expensive (see Alefeld-Herzberger
[1], and Alefeld-Potra [3]). Very efficient equation solvers, used in standard soft-
ware packages (among the best known are the methods of Dekker [5J and Brent
[4J), also produce enclosing intervals that satisfy (1). However with most such
solvers (2)is not verified in an asymptotic sense. For example with Dekker's method
[5], the diameters bn - an may remain greater than a relatively large positive
quantity until the last iteration when a "b-step" is taken and the diameter ofthe last
interval is made less than a specified tolerance b.

In the present paper we propose three new methods which produce sequences of
enclosing intervals satisfying both (1) and (2) without any convexity assumptions.
The first method requires asymptotically two function values per step. The diam-
eters of the enclosing intervals are Q-quadratically convergent to zero so that the
efficiency index of the method is J2 = 1.4142....

The second method requires asymptotically three function values per step and the
Q-convergence order of the sequence of diameters is four. Hence its efficiencyindex
is 41/3 = 1.5874 Our third method uses three function values at each step and
has R-convergence order (3 + J13)j2 = 3.3027 The corresponding efficiency
index is 1.4892. . . .

The efficiency index is an asymptotic notion, and in practical applications
methods with lower efficiencyindex may outperform methods with higher efficiency
index. This is due to the fact that in practice we do not produce an infinite sequence
of intervals, but stop the iteration as soon as, let us say, the diameter of the current
enclosing interval becomes less than a prescribed tolerance b.

For a given higher order method and given stopping criterion, examples can be
constructed on which the respective method is outperformed by the classical
bisection method which is only linearly convergent. Therefore it is important to
know the worst case scenario behaviour of a method in case of a practical stopping
criterium. Suppose we use bn - an ~ b as a stopping criterion. In the worst case our
first method produces intervals that staisfy bn+ 1 - an + 1 ~ 0.5(bn- an),the same as
at each step of the bisection method.

Because up to three function values may be needed at each step, our first method
may need three times more function values than the bisection method in the worst
case. In the same sense our second method may use four times more function values
than bisection, while our third method may use three times more function values
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than biseetion in the worst ease. Let us also remark that while the first two methods

take no biseetion steps asymptotieally, our third method always does.

2. Tbe algoritbms.

In what follows we will always assume that

(3) f(a)f(b) < O.

If fis eontinuous on the interval [a, b] this assumption guarantees the existenee of
a zero of f in the interval [a, b]. Suppose that by some proeedure a point c E[a, b] is
produced. Then a new interval [ä, b] c [a, b] eontaining at least one zero off ean be
eonstrueted by ealling the following subroutine:

subroutine bracket(a,b,c, ä, b)

if f(c) = 0 then print c and stop

if f(a)f(c) < 0 then ä = a,b = c

if f(c)f(b) < 0 then ä = c,b = b.

The classieal biseetion method consists in repeated ealls to this subroutine with
c the midpoint of a and b. If the values of f at a and bare known then eaeh call
requires one funetion evaluation. In the algorithms to be described in what folIows,
after obtaining c and ealling bracket(a,b,c, ä,b) one attempts to obtain a better
enclosing interval by means of a point e obtained via a "double length secant step":

{
if If(ä)1 < I[(b) 1 then u = ä else u = b.

e = u - 2f[ä,b]-lf(u)
(4)

In the formula above f[Xt.X2] denotes the divided difference of f at Xt.X2 i.e.

(5) f[Xt.X2](Xl - X2) = f(xd - f(X2)'

The higher order divided differences of f are defined reeursively by

(6) f[Xt.X2,...,XioXi+l](Xi - xi+d = f[xt ,xJ - f[Xt ,Xi-t.Xi+l].

We observe that (5) and (6) uniquely define the divided differenees in the one-
dimensional ease. This is no longer true in several dimensions. Also in the one-
dimensional ease the divided differencesare symmetrie funetions of their arguments,
i.e. f[x,y] = f[y,x], f[x,y,z] = f[y,z,x] = ....

Let us first note that the point e given by (4)always belongs to the interval [ä, b].
In ease If(ä)1= If(b)1it eoineides with one of the endpoints of this interval. Alsofrom
(4) and (5) it follows that
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f(C) = f[c, u](c- u) + f(u)

= (1 - 2f[ä,b]-1f[c,u])f(u).

Suppose that fis continuously differentiable, and that the points ä, b, u, c belong
to a smallneighbourhood ofa simplezero x* of f (i.e.f(x*) = 0, f'(x*) =1=0.)Then
f[ä,b] ~ f'(x*) ~ f[c, u] so that according to (7)f(C) ~ - f(u). This shows that if
[ä, b] is a small enough interval containing a simple zero of f, then formula (4)can be
used to obtain a beUer enclosure of this zero. In our first method we take for Cthe

point obtained by the regula-falsi applied for the interval [a,b]. Then we take
a "double length secant step" followed by a new bracket. If the length of the new
enc10singinterval is greater then JL1(b - a)where JL1 should be chosen equal to 0.25
then we call bracket again. More precisely we have the following.

(7)

Algorithm1.

1.1. Cn= an - f[an,bn]-1f(an)

1.2. call bracket(an, bn, Cn,än, bn)

1.3. if If(än)1 < If(bn)1 then un: = än

else Un:= Ein

1.4. cn: = Un- 2f[än, 6,,] -1 f(un)

1.5. if ICn- uni> 0.5(bn - än) then Cn= O.5(bn+ än)

else cn = cn

1.6. call bracket(än, bm Cn,an, 6n)

1.7. if 6n - an< JL1(bn- an) then an+1 = an,bn+1= 6n

else call bracket( an, 6m0.5(an + 6n), an + 1, bn + 1)

In the next algorithm the first two steps are the same as above. Then we consider

the quadratic polynomial p(an, bmcn)(x) interpolationg f at am bn,cn. Because

f(än)f(Ein)< 0 and {än,Ein}C {an,bn,cn}it followsthat this polynomialhas a change
of sign in [än,bn] and therefore has aunique zero in [ämEin].This zero is used for
a new bracketing and then we proceed similarly to 1.3-1.7. Summing up, we have

Algorithm2.

2.1. Cn= an - f[an, bn] -1 f(an)

2.2. call bracket(am bn,cn,än, bn)
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2.3. cn = the unique zero of p(an,bn,cn)(x}belonging to the interval [än,bnJ

2.4. call bracket(än, bn, Cn, an>bn}

2.5. if If(an}1 < If(bn}1 then Un:= an

else Un:= bn

2.6. cn: = Un- 2f[an, bnJ -1 f(un}

2.7. if len - uni> O.5(bn- an) then cn = O.5(bn+ an)

else cn = cn

2.8. call bracket(an, bn>Cn, iin, b,.)

2.9. if bn - iin < JL2(bn- an} then an+1 = iin>bn+1= b,.

else call bracket(iin,iin, 0.5(iin + b,.),an+ 1> bn + 1)

In our third algorithm the first new bracketing point Cnis chosen to be simply the
midpoint of the interval [an>bnl This results in a slight degradation of the asym-
ptotic order of convergence, from 4 to 0.5(3 + .J 13}= 3.3027. . .. However, as
mentioned in the introduction our third algorithm requires at each step three
function values so that it can be only 3 times slower than bisection while Algorithm
2 can be four times slower than bisection in the worst case.

Algorithm 3.

3.1. cn:= 0.5(an+ bn}

3.2.-3.6. the same as 2.2.-2.6.

call bracket(dn, bm Cn,an+ 1, bn+ I}

3. Convergence.

In what follows we study some convergence properties of the algorithms 1,2 and
3 described in the previous section. The first theorem shows that under rather
general conditions the sequence ofintervals produced by these algorithms satisfy (1)
and (2).

THEOREM1. Let f be areal function of a real variable which is continuous on an
interval Ca,bJ and satisfies (3). Consider any of the algorithms 1,2 or 3. Then either
a zero off isfound in afinite numberof steps, or the sequenceofintervals {[an,bnJ}:=0
produced by this algorithm satisfies (1)and (2),where x* is a zero of f
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The proof ofthe theorem is straightforward and will be omitted. We note however

that at each step the intervals produced by algorithms 1 and 2 will satisfy
bn+ 1 - an+ 1 ~ 0.5(bn- an), while in the case of algorithm 3 we have
bn+ 1 - an+ 1 < 0.25(bn- an),This showsat least linear convergence.In what fol-
lows we will show that uilder appropriate smoothness assumptions the algorithms
1 and 2 have Q-convergence orders 2 and 4 respectively, while algorithm 3 has the
R-convergence order equal to 0.5(3 + .J13).We conjecture that the Q-convergence
order ofalgorithm 3is alsoequal to 0.5(3+ .J13).-For arecent discussionofQ-and
R-convergence orders see Potra [8].

THEOREM2. Under the hypothesis ofTheorem 1 assume that algorithm 1 does not

terminate after a finite number of steps. Suppose also that f is twice continuously

differentiable on [a, b] and that x* is a simple zero off Then the sequence of diameters

{(bn- an)}:=o converges Q-quadratically to zero, i.e. there is a constant Ysuch that

(8) bn+l - an+l ~ y(bn - anf, n = 0, 1,....

Moreover, there is a positive integer nl such that for all n ~ nl we have an+1 = an,
bn+l = 6n so thatfor n ~ nl algorithm 1 requires only twofunction values per step.

PROOF.From (5),(6) and 1.1. of algorithm 1 we deduce that

f(cn) = f(cn) - f(an) - f[ambn](cn - an)

= (f[Cn,an] - f[an,bn])(cn - an)

= (f[an, cn] - f[an, bn])(cn-an)

= f[an,cn,bn](cn- bn)(cn - an),

Denoting

Y2 = 0.5 max If"(x)I
xe[a,b)

it follows that

(9) If(cn)1 ~ Y2lcn- bnllcn - anl ~ 0.25Y2(bn - an)2.

Because lim an = lim b" = x* and f'(x*) =1=0 there is a positive integer nl such that
n- Ct) " ->Ct)

(10) max If[x,yJ-ll ~ Yl for n ~ nl'
x,ye[an,bn)

If nl is large enough then according to (7)we may assume that

f(cn)f(un) < 0 for n ~ nl'

Then from 1.4.-1.6. of algorithm 1 and the fact that un,cnE[än,bnJwe deduce that

(11) 6" - an < ICn- uni.
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On the other hand CnE {än, bn} implies If(cn)1> If(un)1so that from 1.4,(9),(10)and
(11) it follows that

(12) bn - an :s;;Y3(bn - an)2,

with Y3 = 0.5Y1Y2.IfnI is large enough then

bn - an < 111(bn - an),

This proves that for n:;:::n1 we have an+! = an, bn+1= bn. By taking
Y:;:::max{Y3,(bi+1 - ai+1)/(bi - aY} for i = 0, 1,...,n1 - 1 and using (12) we ob-
tain (8). 11

THEOREM3. Under the hypothesis ofTheorem 1 assurne that algorithm 2 does not

terminate in a finite number of steps. Suppose also that f is three times continuously

differentiable on [a, b] and that x* is a simple zero off Then the sequence of diameters

{(bn - an)}:=o converges to zero with Q-order 4, i.~. there is a constant j such that

(13) bn+1 - an+l :s;;j(bn - an)4, n = 0, 1,....

M oreover there is a positive integer n2 such that for all n:;:::n2 we have

an+ 1 = iin, bn+ 1 = bn so thatfor n :;:::n2 algorithm 2 requires only threefunction va lues
per step.

PROOF.As in the proof of Theorem 2 we may assume that (10) is satisfied, and
that, corresponding to (11),we have

(14) bn - iin:S;; ICn -uni, n:;::: n1'

From 2.3.-2.6. it follows that

(15) ICn - uni :s;;2ydf(cn)l.

Let

(16)
1

Y4 = max 3f1f'II(x)l.xE[a,b) .

Using the error formula for Lagrange interpolation (see e.g. Brent [4]) we obtain

(17) If(cn)1 :s;;Y41cn- anllcn - bnllcn - cnl

< 0.25Y4(bn - an)2lcn - cnl,

ICn- cnl = If[cn,cn]-1(f(cn) - f(cn))1

:s;;Y1(lf(cn)1 + If(cn)l.

(18)

Inequalities (17) and (18) imply that

(19) If(cn)1 :s;;Ys(bn - an)2 (lf(cn)1 + If(cn)1)
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where)'5 = 0.25)'1)'4' Because lim (bn- an)= 0 we may assumethat
n -+ <X>

(20) 15(bn - an)Z :::;;0.5 for n > nz ~ n1'

Finally from (19) and (20) it follows that

(21) If(cn)1 :::;;2)'5(bn - an)zlf(cn)l, n > nz.

If nz is large enough then from (14),(15) and'(21) it follows that

6n - än< Jlz(bn- an), n ~ nz,

so that an+1 = iin>bn+1 = 6n and from (9), (14), (15), (21) we deduce that (13) holds
with

y > max{)'11z1'5,(bj+1- aj+d/(bj - af} for i = O,...,nz - 1. .

THEOREM4. Under the hypothesis ofTheorem 1 assume that algorithm 3 does not
terminate in afinite number of steps. Suppose also that f is three times continuously
differentiable on [a, b] and that x* is a simplezero of f Then the sequenceof diameters
{(bn- an)},%o converges to zero with R-convergence order equal to
0.5(3 + ~13) = 3.3027....

PRooF. Inequalities (15) and (21) do not depend on a particular choice of
CnE[an>bnl For any such point we have

(22) ICn - uni < 1'6(bn- an)Zlf(cn)1

with 1'6= 41'1)'5' Using Theorem 1 and the fact that Cn,UnE[tln,bn] c [an,bn] to-
gether with (7)we may assume that

f(cn)f(un) < 0 for n ~ n3 ~ nz.

Then according to 3.5. and 3.6. of algorithm 3 we have

(23) {an+1,bn+d = {un>cn}for n > n3'

Then Cn+1= 0.5(an+1 + bn+d = 0.5(un+ cn)so that

(24) Cn+l - Un= 0.5(cn - un).

Using 3.6. and (5) it follows that

(25) 2f(cn+d = 2f(cn+l) - 2f(un) - f[lin,bb](Cn- un)

= (f[Cn+bUn] - f[lin,bn])(Cn- un).

From standard mean value theorems it follows that

(26) If[cn+bUn] - f[lin,6n]1 :$;21'z(bn- an)

and from (22),(25) and (26) weget
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If(cn+ 1)1< 17(bn - an)3If(cn)1

with 17 = 1216'

Let us denote

(28) Gn= bn - an, 1'Jn= f(cn).

From (22),(23) and (27) we deduce that
2 3

Gn+l ::;; Y6En1'Jn, 1'Jn+l::;; 17En1'Jm n 2 n3'

According to a theorem of J. W. Schmidt [10] the R-order of the sequences

{Gn}:'=o,{1'Jn}:'=ois the spectral radius of the matrix [~ ~] which is
0.5(3 + .J13) = 3.3027.... 11

4. Numerical results.

In what follows we present our numerical experiments comparing the three
methods here in this paper with two recognized efficientequation solvers, Dekker's
method [5] and Brent's method [4].

The machine used was Encore-multimax. Double precision was used. The test
problems are listed in Table 1. For AIgorithm 1 and AIgorithm 2 of this paper we
chose /11 = /12 = 0.5. For Dekker's method we picked up the ALGOL 60 routine
Zeroin presented in [5] and translated it into Fortran, while for Brent's method we
simply used the Fortran routine Zero presented in the Appendix of [4]. The
termination criterion used for all five methods was the one used by Brent in the
above-mentioned routine Zero. Namely, we terminate when

b - a ::;;2. tole(a,b)

where [a, b] is the current enclosing interval, and

tole(a,b) = 2 -macheps 'Iul + tol

where macheps is the relative machine precision which in our case is
2.2204460492504 x 10-16, UE{a,b} such that If(u)I = min{lf(a)l, If(b)l}, and tol is
a user-given non-negative tolerance which should be chosen positive if the given
initial interval [ao, bo] contains Zero. (However, in our experiments we also tried
tol = 0, and all methods worked properly). According to the above termination
criterion, a natural modification was employed in our implementation of all three
methods of this paper. That is, every time before we call the subroutine
bracket(a, b,c,ä, 5), we do the following first:

if b - a ::;;4, ).. tole(a,b) then c: = Ha + b)
else if c < a + 2,)., tole(a,b) then c:= a + 2,)., tole(a,b)
else if c > b - 2. ).. tole(a,b) thenc:= b - 2. ).. tole(a,b)
endif. -
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Table 1. Test problems:(n is a positive integer).

After calling the subroutine bracket(a,b, c,ä,5), we do this:

if 5 - ä < 2. tole(ä,5) then terminate.

In the modification above, Ä is a user-given parameter such that 0 < Ä < 1. In OUf
experiments, we take Ä = 0.7.

We used all the test problems listed in Table 1(for problem # 5to # 11,we tested
them with n = 5,10,20) with different user-given tol (tol = 10-2,10-5,10-7,10-10,
10-15, and 0).

Since the structures of the algorithms are quite different, the number of iterations
used does not mean much in the comparison. Hence they are not listed here. Instead
in Table 2 we list the total number of function evaluations used byeachindividual
method in solving all the testing problems. .

From Table 2 we see that in the sense ofthe number offunction evaluations used,
AIgorithm 2 works the best from our three methods, especially when tol is small
(tol = 10 -15,0). This reconfirms the fact that AIgorithm 2 has the highest asym-

ptotic efficiencyindex of the three. It is encouraging that the practical behaviour of
our AIgorithm 2 and AIgorithm 3 are elose to those ofDekker and Brent. With some
problems in our experiments such as problem # 1, # 6, and # 10, our AIgorithm
2 and AIgorithm 3 always work quicker than Dekker's and Brent's

Table 2. Total number of function evaluations

Function f(x) Initial interval [a,b]

#1 x3 -1 [0.5, 1.5]
#2 X2(x2/3+ J2sinx) - J3/18 [0.1,1]
Z#3 11Xll - 1 [0.1,1]
#4 x3 + 1 [-1.8,0]
#5 ae-n + 1 - 2e-nx [0,1]
#6 [1 + (1 - n)2]x2 - (1 - nx)2 [0,1]
#7 X2- (1 - x)" [0,1]
#8 [1 + (1 - n)4]x - (1 - nx)4 [0,1]
#9 e-nX(x - 1) + x" [0,1]
# 10 x2 + sin(x/n) - 1/4 [0,1]
#11 (nx - 1)/«n - l)x) [0.01,1]

tol Alg. 1 Alg.2 Alg.3 Dekker Brent

10-2 185 174 175 163 166
10-5 278 250 246 222 221
10-7 309 273 265 244 237
10-10 337 285 279 259 252
10-15 355 298 311 279 265

0 360 302 318 287 266
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Table 3. Total number oJJunction evaluationsJor problems # 1, # 6, # 10.

Table 4. Total number oJJunction evaluationsJor problems # 3, # 7, # 9, # 11.

method, while for some other problems like # 3, # 7, # 9 and # 11 the reuslts are
just opposite. The total number of function evaluations for these two groups are
given in Table 3 and Table 4, respectively. The second group simply supports the fact
indicated in Section 1 of this paper, that is, the efficiency index is an asymptotic
notion and in practical applications methods with high efficiency index like our
AIgorithm 2 may sometimes very likely be outperformed by other efficient solvers.
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