BIT 32 (1992). 335344,

SOME EFFICIENT METHODS FOR ENCLOSING
SIMPLE ZEROS OF NONLINEAR EQUATIONS

GOTZ E. ALEFELD and FLORIAN A. POTRA'

Institut fiir Angewandte Mathematik Department of Mathematics
Universitdar Karlsruhe University of lowa
Kaiserstrasse 12, Postfach 6380 Towa City, 1A 52242
D-W-7500 Karlsruhe, Germany USA
Abstract.

In the present paper we propose three new methods for computing sequences of enclosing intervals for
a zero of a real function without convexity assumptions.

The new methods have been tested on a series of published examples. The numerical experiments show
that our methods are comparable in terms of efficiency with the well-known algorithms of Dekker and
Brent.

AMS Subject Classifications: 65HO0S.

Keywords: Nonlinear equation, iteration method, high order of convergence.

1. Introduction.

Let f:[a,b] — R be a continuous function which has a simple zero x* in the
interval [a,b]. We consider the problem of constructing a sequence of intervals
{[a, b,]} o, such that:

(1) X*E[an+labn+l] < [am bn] c...c [al')’ b()] = [a: b],
?) lim (b, — a,) = O.

In case f is monotone and convex on [a,b] this may be accomplished by the
classical Newton-Fourier procedure (see [7, p. 248]). The sequence of diameters
{(by — a,)} o of the enclosing intervals produced by this method converges Q-
quadratically to zero. One step of this iterative procedure requires two function and
one derivative evaluation so that its asymptotic efficiency index in the sense of
Ostrowski [7] is 21/ ='1.2599.... J. W. Schmidt [9] has proposed an iterative
algorithm requiring the same amount of work and for which the sequence of
diameters is Q-cubically convergent to zero. The efficiency index of the procedure is

! The present paper was written when this author was visiting the University of Karlsruhe. He would
like to acknowledge the support provided by the University of Karlsruhe.
Received March 1991. Revised September 1991.

SOME EFFICIENT METHODS FOR ENCLOSING SIMPLE ZEROS. . . 335

equal to 3'/3 = 1.4422..., He also proposed an algorithm with R-convergence
order 1 + /2 =2.4142... requiring only two function evaluations per step and
therefore having the efficiency index equal to (1 + ,/2)"/? = 1.5537.. .. Alefeld and
Potra [2] suggested some modifications for the above-mentioned methods of J. W.
Schmidt and showed that the Q-convergence order of the second method of J. W.
Schmidt is also equal to 1 + /2.

The convexity assumption required by the above-mentioned procedures is rather
restrictive. Some interval versions of Newton’s method and the secant method can
successfully handle the nonconvex case, but the use of interval arithmetic and
interval extensions of derivatives may be quite expensive (see Alefeld-Herzberger
[1], and Alefeld-Potra [3]). Very efficient equation solvers, used in standard soft-
ware packages (among the best known are the methods of Dekker [5] and Brent
[4]), also produce enclosing intervals that satisfy (1). However with most such
solvers (2) is not verified in an asymptotic sense. For example with Dekker’s method
[5], the diameters b, — a, may remain greater than a relatively large positive
quantity until the last iteration when a “é-step” is taken and the diameter of the last
interval is made less than a specified tolerance J.

In the present paper we propose three new methods which produce sequences of
enclosing intervals satisfying both (1) and (2) without any convexity assumptions.
The first method requires asymptotically two function values per step. The diam-
eters of the enclosing intervals are Q-quadratically convergent to zero so that the
efficiency index of the method is \/2 =1.4142....

The second method requires asymptotically three function values per step and the
Q-convergence order of the sequence of diameters is four. Hence its efficiency index
is 417 = 1.5874. ... Our third method uses three function values at each step and
has R-convergence order (3 + ,/13)/2 = 3.3027.... The corresponding efficiency
index is 1.4892. ...

The efficiency index is an asymptotic notion, and in practical applications
methods with lower efficiency index may outperform methods with higher efficiency
index. This is due to the fact that in practice we do not produce an infinite sequence
of intervals, but stop the iteration as soon as, let us say, the diameter of the current
enclosing interval becomes less than a prescribed tolerance §.

For a given higher order method and given stopping criterion, examples can be
constructed on which the respective method is outperformed by the classical
bisection method which is only linearly convergent. Therefore it is important to
know the worst case scenario behaviour of a method in case of a practical stopping
criterium. Suppose we use b, — a, < J as a stopping criterion. In the worst case our
first method produces intervals that staisfy b, , ; — a,+; < 0.5(b, — a,), the same as
at each step of the bisection method.

Because up to three function values may be needed at each step, our first method
may need three times more function values than the bisection method in the worst
case. In the same sense our second method may use four times more function values
than bisection, while our third method may use three times more function values

336 GOTZ E. ALEFELD AND FLORIAN A. POTRA

than bisection in the worst case. Let us also remark that while the first two methods
take no bisection steps asymptotically, our third method always does.

2. The algorithms.

In what follows we will always assume that

3) f@f(b) <0,

If f is continuous on the interval [a, b] this assumption guarantees the existence of
a zero of f in the interval [a, b]. Suppose that by some procedure a point c € [a, b] 1s
produced. Then a new interval [d,b] < [a, b] containing at least one zero of f can be
constructed by calling the following subroutine:

subroutine bracket(a, b, c, a,b)

if f(c) = 0 then print ¢ and stop
if f(a)f(c) <Othena=ab=c
if f(c)f(b) <O then @ = ¢, = b.

The classical bisection method consists in repeated calls to this subroutine with
¢ the midpoint of a and b. If the values of f at a and b are known then each call
requires one function evaluation. In the algorithms to be described in what follows,
after obtaining ¢ and calling bracket(a, b, c, a, b) one attempts to obtain a better
enclosing interval by means of a point ¢ obtained via a “double length secant step™

if |f(@) < |f() then u=aelse u=b
{5=u—2f[5,5]_'f(u) '

In the formula above f[x,,x,] denotes the divided difference of f at x, x, i.e.

©) ST, %2)(x1 — Xx2) = f(x1) — flx2).
The higher order divided differences of f are defined recursively by

4)

(6) SIxpsXgs.vos XasXaeg W% = Xi9:1) = FIXppevesXd = fDbpsmices X gs Xien)

We observe that (5) and (6) uniquely define the divided differences in the one-
dimensional case. This is no longer true in several dimensions. Also in the one-
dimensional case the divided differences are symmetric functions of their arguments,
ie. fIx,y1= fly.x], fIx,y,2] = fDy,z,x] =....)

Let us first note that the point ¢ given by (4) always belongs to the interval [a,b].
Incase|f(a@)] = |f(b)|it coincides with one of the endpoints of this interval. Also from
(4) and (5) it follows that

SOME EFFICIENT METHODS FOR ENCLOSING SIMPLE ZEROS. .. 337
(7 \ f@) = fl¢,ul(€ — u) + f(u)

= (1 — 2f[a,b]""f[¢,ul)f(u).

Suppose that f is continuously differentiable, and that the points @, b, u, ¢ belong
to a small neighbourhood of a simple zero x* of f (i.e. f(x*) =0, f'(x*) # 0.) Then
fl[a,b] = f'(x*) ~ f[¢,u] so that according to (7) f(¢) & — f(u). This shows that if
[a,b]is a small enough interval containing a simple zero of f, then formula (4) can be
used to obtain a better enclosure of this zero. In our first method we take for ¢ the
point obtained by the regula-falsi applied for the interval [a,b]. Then we take
a “double length secant step” followed by a new bracket. If the length of the new
enclosing interval is greater then yu,(b — a) where y, should be chosen equal to 0.25
then we call bracket again. More precisely we have the following.

Algorithm 1.

1.1 ¢, =a, — fla.. b1 " f(a,)
1.2. call bracket(a,, b,,c,, a,, b,)
1.3. if |f(@,)] < |f(b,)l then u,:= g,
else u,:= b,
14. &y:=uy — 2f[a, b, f(us)
1.5. if |&, — u,| > 0.5(b, — a,) then é, = 0.5(b, + a,)
else é, = ¢,
1.6. call bracket(a,, b, ¢,,d,,b,)
1.7. ifb, — &, < uy(b, — a,) then a,, = 4,,b,+, = b,
else call bracket(a,, b,,0.5(a, + b,), ay+1,b,+1)

In the next algorithm the first two steps are the same as above. Then we consider
the quzidratic polynorzlial p(a,, b,,c,)x) interpolationg f at a,,b,,c,. Because
f(a,)f(b,) < 0and {a,,b,} < {a,,b,,c,} it follows that this polynomial has a change

of sign in [d,, b,] and therefore has a unique zero in [a,, b,]. This zero is used for
a new bracketing and then we proceed similarly to 1.3-1.7. Summing up, we have

Algorithm 2.

21 é=a, — T4, b))

2.2. call bracket(ay, b,, c,, a,, b,)

338 GOTZ E. ALEFELD AND FLORIAN A. POTRA
2.3. ¢, = the unique zero of p(a,, b,, c,)x) belonging to the interval [a,, b,]
2.4. call bracket(a,,b,, ¢,, d,, b,)
2.5. if |f(a,) < |f(B,)) then u,:= d,

else u,:= b,
2.6. &y:= tty — 2f [y, bp] "' f(11n)
2.7. if |é, — u,| > 0.5(b, — a,) then &, = 0.5(b, + a,)

giseé . =¢,
2.8. call bracket(a,, b,,¢,, d,, b,)
29. if b, — a@, < p,(b, — a,) then a, 4+, = G,,by4, = b,
else call bracket(a,,, 5,,, 0.5(a, + 5,,), Quaishysi)

In our third algorithm the first new bracketing point ¢, is chosen to be simply the
midpoint of the interval [a,,b,]. This results in a slight degradation of the asym-
ptotic order of convergence, from 4 to 0.5(3 + \/ 13) = 3.3027.... However, as
mentioned in the introduction our third algorithm requires at each step three

function values so that it can be only 3 times slower than bisection while Algorithm
2 can be four times slower than bisection in the worst case.

Algorithm 3.

3.1. ¢,:=0.5a, + b,)
3.2-3.6. the same as 2.2.-2.6.

call bracket(ay,, by, ¢n, @n+ 1, bns+1)

3. Convergence.

In what follows we study some convergence properties of the algorithms 1, 2 and
3 described in the previous section. The first theorem shows that under rather
general conditions the sequence of intervals produced by these algorithms satisfy (1)
and (2).

THEOREM 1. Let f be a real function of a real variable which is continuous on an
interval [a, b] and satisfies (3). Consider any of the algorithms 1, 2 or 3. Then either
a zero of f is found in a finite number of steps, or the sequence of intervals {[a,,b,1}s> o
produced by this algorithm satisfies (1) and (2), where x* is a zero of f.

SOME EFFICIENT METHODS FOR ENCLOSING SIMPLE ZEROS. . . 339

The proof of the theorem is straightforward and will be omitted. We note however
that at each step the intervals produced by algorithms 1 and 2 will satisfy
bpyy —a,+y <0.5(b, —a,), while in the case of algorithm 3 we have
b,sy — a4+, <025, — a,). This shows at least linear convergence. In what fol-
lows we will show that under appropriate smoothness assumptions the algorithms
1 and 2 have Q-convergence orders 2 and 4 respectively, while algorithm 3 has the
R-convergence order equal to 0.5(3 + \/ 13). We conjecture that the Q-convergence
order of algorithm 3 is also equal to 0.5(3 + \/ 13). For a recent discussion of Q- and
R-convergence orders see Potra [8].

THEOREM 2. Under the hypothesis of Theorem 1 assume that algorithm 1 does not
terminate after a finite number of steps. Suppose also that f is twice continuously
differentiable on [a, b] and that x* is a simple zero of f. Then the sequence of diameters
{(b, — a,)} - converges Q-quadratically to zero, i.e. there is a constant y such that

(8) bl’l‘l’l —Qpyy S}"(bn—-ﬂn)z, n=03 1)*'”
Moreover, there is a positive integer n, such that for all n > n, we have a, ., = a,,

b,+1 = b, so that for n > n, algorithm 1 requires only two function values per step.

PrOOF. From (5), (6) and 1.1. of algorithm 1 we deduce that
f(ca) = flen) — f(an) — fTan, bad(c, — a,)
= (fl¢n @] — S, balNcn — 1)
= (flan ca] — fLan, ba1Ncn — @n)
= 1w b, 1(6n — boXes — a).

Denoting
y2 = 0.5 max |f"(x)|
xe[a,b]
it follows that
) [f(ea)l < 72len — ballic, — a,] < 0.25y,(b, — a,)*

Because lim a, = lim b, = x* and f'(x*) # O there is a positive integer n, such that

- (10) max |f[x,y] | <y, forn>n,.

x,yelan,b,)
If n, is large enough then according to (7) we may assume that

f()f(u,) <O0forn>n,.
Then from 1.4.-1.6. of algorithm 1 and the fact that u,, ¢, € [a,, b,] we deduce that

(1}-) Bn_'ans |Er| _unl-

340 GOTZ E. ALEFELD AND FLORIAN A. POTRA

On the other hand ¢, € {a,, b,} implies | f(c,)| > | f(u,)| so that from 1.4, (9), (10) and
(11) it follows that

(12) Bn - &rs = }'3(bn - an)z’
with y3 = 0.5y,7y,. If n is large enough then
En - &n < Ju'l(bn R au)'

This proves that for n>n, we have a,,, =@, b,.;=>5, By taking
Y = max{ys,(bis+; — a;4)/(b; — a;)*} for i =0,1,...,n, — 1 and using (12) we ob-
tain (8). 5]

THEOREM 3. Under the hypothesis of Theorem 1 assume that algorithm 2 does not
terminate in a finite number of steps. Suppose also that f is three times continuously
differentiable on [a, b] and that x* is a simple zero of f. Then the sequence of diameters
{(b, — a,)}=, converges to zero with Q-order 4, i.e. there is a constant 7 such that

{13) bn+1 — Ay S)T(bﬂ—au)4, nzo, 1,....

Moreover there is a positive integer n, such that for all n>n, we have
Aty = Gy, b,y 1 = b, so that for n > n, algorithm 2 requires only three function values
per step.

PROOF. As in the proof of Theorem 2 we may assume that (10) is satisfied, and
that, corresponding to (11), we have
(14) 5':: = &.n = {éu gz unL nz= ny.

From 2.3.-2.6. it follows that

(15) Ién S=h unl < 2}’1|f(6u)i
Let
1 e
(16) ya = max ——|f"(x)].
xela, b} 3I

Using the error formula for Lagrange interpolation (see e.g. Brent [4]) we obtain

(17) If @l < yalCn — aullC, — bullc, — cal
< 0.2574(bs — a,)%1C, — ¢4,
(18) Cn — C_,.,l = lf[cm Er!:] _l(f(cn] - I(Eu))l

< 71 f(e)l + 1@
Inequalities (17) and (18) imply that

(19) [/l < y5(ba — @) *(1flea)l + 1f(E))

SOME EFFICIENT METHODS FOR ENCLOSING SIMPLE ZEROS. .. 341

where ys = 0.25y,74. Because lim (b, — a,) = 0 we may assume that

n—+a

(20) vs(b, — a,)* < 0.5for n > n, > n,.
Finally from (19) and (20) it follows that
(21) [fCal < 2y5(bn — @,)*If(ca)l, 1 = 1.
If n, is large enough then from (14), (15) and '(2 1) it follows that
by — G, < pa(by — @), n2=my,
so that a, ., = d,, b,+, = b, and from (9), (14), (15), (21) we deduce that (13) holds
with
7 > max{y,727s,(bi+1 — i+)/(bi — a;)*} fori=0,...,n, — 1. B

THEOREM 4. Under the hypothesis of Theorem 1 assume that algorithm 3 does not

terminate in a finite number of steps. Suppose also that f is three times continuously

differentiable on [a,b] and that x* is a simple zero of f. Then the sequence of diameters
{(b, — an)}>o converges to zero with R-convergence order equal to

0.53 + /13) = 3.3027.....

PrOOF. Inequalities (15) and (21) do not depend on a particular choice of
c,€la,,b,]). For any such point we have

(22) |6n — ual < y6(ba — a,)?1f(c,)

with y¢ = 4y,7s. Using Theorem 1 and the fact that é,, u,€[a,,5,] < [a,,b,] to-
gether with (7) we may assume that

f(é)f(u,) <O0forn=n;s = n,.
Then according to 3.5. and 3.6. of algorithm 3 we have
(23) {au+1?bn+ 1} = {um én} forn> ns.

Then c,+; = 0.5(a,+1 + bn+1) = 0.5(u, + ¢,) so that

(24) Cn+1 — Uy = 05(611 = un]'
Using 3.6. and (5) it follows that
(25) 2f(ca+1) = 2f(cav1) — 2f(un) — f18p, b5 1(En — 1n)

= (f[cn+l: urx] e f[&m B,,])(é,, == un)'

From standard mean value theorems it follows that

(26) If[cn+ l’uu] T f[dm Eu:" < 2]’2(bn - an)
and from (22), (25) and (26) we get

342 GOTZ E. ALEFELD AND FLORIAN A. POTRA
(27) (s 1)l < v7(bn — a)*|f(ca)l

with y; = y,76-
Let us denote

(28) &n = bn — 4y M= f(cn)'
From (22), (23) and (27) we deduce that

2 3
Env1 S V6EnMn> Mn+1 = V7€, Mns N = Na.

According to a theorem of J. W. Schmidt [10] the R-order of the sequences

2 1 s
{en} 0, {Mn} =0 is the spectral radius of the matrix [3 1j| which is
0.5(3 + /13) = 3.3027.... 2]

4. Numerical results.

In what follows we present our numerical experiments comparing the three
methods here in this paper with two recognized efficient equation solvers, Dekker’s
method [5] and Brent’s method [4].

The machine used was Encore-multimax. Double precision was used. The test
problems are listed in Table 1. For Algorithm 1 and Algorithm 2 of this paper we
chose p; = p, = 0.5. For Dekker’s method we picked up the ALGOL 60 routine
Zeroin presented in [5] and translated it into Fortran, while for Brent’s method we
simply used the Fortran routine Zero presented in the Appendix of [4]. The
termination criterion used for all five methods was the one used by Brent in the
above-mentioned routine Zero. Namely, we terminate when

b —a < 2-tole(a,b)
where [a, b] is the current enclosing interval, and
tole(a,b) = 2-macheps - u| + tol

where macheps 1s the relative machine precision which in our case is
2.2204460492504 x 107 '®, ue {a,b} such that |f(u)| = min{|f(a)|,|f(b)|}, and tol is
a user-given non-negative tolerance which should be chosen positive if the given
initial interval [a,, bo] contains Zero. (However, in our experiments we also tried
tol = 0, and all methods worked properly). According to the above termination
criterion, a natural modification was employed in our implementation of all three
methods of this paper. That is, every time before we call the subroutine
bracket(a, b, c,a,b), we do the following first:

if b—a<4-i-tole(a,b) thenc:=1(a+b)
elseifc <a+ 2-A-tole(a,b) thenc:=a+ 2-4-tole(a,b)
elseif c > b — 2+ A-tole(a,b) thenc:=b — 2-1-tole(a,b)
endif. ‘

SOME EFFICIENT METHODS FOR ENCLOSING SIMPLE ZEROS. . . 343

Table 1. Test problems: (n is a positive integer).

Function f(x) Initial interval [a,b]
#1 x> —1 ' [0.5,1.5]
#2 x}(x%/3 + {/2sinx) — \/3/18 [0.1,1]
#3 1ix't — 1 [o.1,13
4 c ! [—18,0]
#5 2xe™™ +1—2e7™ [0,1]
6 [1+(1—n?]x?— (1 —nx)? [0,1]
#7 x*—(1—x)" [o,1]
#8 [1+(1—n*x—(1-nx)* [o,1]
#9 e (x—-1)+x" [0, 1]
10 x% + sin{x/n) — 1/4 (0,11
11 (nx — DA(n — 1) x) [0.01,1]

After calling the subroutine bracket(a, b, c, a, b), we do this:
if b — @ < 2-tole(a, b) then terminate.

In the modification above, 4 1s a user-given parameter such that 0 < 4 < 1. In our
experiments, we take 4 = 0.7.

We used all the test problems listed in Table 1 (for problem # 5Sto # 11, we tested
them with n = 5, 10, 20) with different user-given tol (tol = 1072,1075,107,1071¢,
10713, and 0).

Since the structures of the algorithms are quite different, the number of iterations
used does not mean much in the comparison. Hence they are not listed here. Instead
in Table 2 we list the total number of function evaluations used by each individual
method in solving all the testing problems.

From Table 2 we see that in the sense of the number of function evaluations used,
Algorithm 2 works the best from our three methods, especially when tol is small
(tol = 10713,0). This reconfirms the fact that Algorithm 2 has the highest asym-
ptotic efficiency index of the three. It is encouraging that the practical behaviour of
our Algorithm 2 and Algorithm 3 are close to those of Dekker and Brent. With some
problems in our experiments such as problem # 1, # 6, and # 10, our Algorithm
2 and Algorithm 3 always work quicker than Dekker’s and Brent’s

Table 2. Total number of function evaluations

tol Alg. 1 Alg. 2 Alg. 3 Dekker Brent
1072 185 174 175 163 166
1073 278 250 246 222 221
1077 309 2713 265 244 237
jo e 337 285 279 259 252
10=* 355 298 31 279 265
0 360 302 318 287 266

344

GOTZ E. ALEFELD AND FLORIAN A. POTRA

Table 3. Total number of function evaluations for problems # 1, # 6, # 10.

tol Alg. 1 Alg. 2 Alg. 3 Dekker Brent
1072 46 35 32 46 46
103 68 40 34 59 56
1077 70 43 37 66 63
10-1° 82 44 39 70 67
10743 83 45 39 76 70
0 86 45 39 7 70
Table 4. Total number of function evaluations for problems # 3, # 7, # 9, # 11.
tol Alg. 1 Alg. 2 Alg. 3 Dekker Brent
1072 98 90 92 68 71
1073 140 141 140 97 98
1077 155 155 147 105 104
10=1¢ 159 160 153 111 110
10713 175 168 174 120 116
0 175 169 175 123 116

method, while for some other problems like # 3, # 7, # 9 and # 11 the reuslts are
just opposite. The total number of function evaluations for these two groups are
givenin Table 3 and Table 4, respectively. The second group simply supports the fact
indicated in Section 1 of this paper, that is, the efficiency index is an asymptotic
notion and in practical applications methods with high efficiency index like our
Algorithm 2 may sometimes very likely be outperformed by other efficient solvers.

Acknowledgement.

We would like to thank our students Armin Gienger and Yixun Shi for helping us

with a number of numerical experiments.

—t

o o= on

10.

REFERENCES

Alefeld G., Herzberger J.: Introduction to Interval Computations. Academic Press (1983).

Alefeld G., Potra F.: On two higher order enclosing methods of J. W. Schmidt. Z. angew. Math. Mech.
68 (1988) 8, 331-337.

Alefeld G., Potra F.: A new class of interval methods with higher order of convergence. Computing 42,
(1989) 69-80.

Brent R. P.: Algorithms for Minimization without Derivatives. Prentice-Hall. Englewood Cliffs, New
Jersey, 1972.

Dekker, T. 1.: Finding a zero by means of successive linear interpolation. In Constructive Aspects of the
Fundamental Theorem of Algebra. Edited by B. Dejon and P. Henrici. Wiley Interscience (1969).
King, R. F.: Methods without secant steps for finding a bracketed root. Computing 17, (1976), 49-57.
Ostrowski A. M.: Solution of Equations in Banach Spaces. Academic Press, New York 1973.

Potra F.: On Q-order and R-order of convergence. JOTA, 63 (1989), 415-431.

Schmidt J. W.: Eingrenzung der Lésungen nichtlinearer Gleichungen mit héherer Konvergenz-
geschwindigkeit. Computing 8 (1971), 208-215.

Schmidt J. W.: On the R-order of coupled sequences. Computing 26 (1981), 333-342.

