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1. Introduction

In [1] we have considered the nonlinear equation f(x) =0 where f isa continuous
differentiable real function of a real variable. We suppose that f is strictly monotone
on an interval X° . Without loss of generality we may assume that f is strictly
increasing on X° . We assume that by using interval arithmetic methods it is possible
to compute two positive numbers £, , £, such that 0 < El £ (x) < £2 for all x € X°.
Let us denote by L the interval [l I,Ez} . We suppose that the derivative f'(x) e R,

xeX” , has an interval extension f'(X), XC x° , satisfying the following conditions
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f'(x) € £'(X) , x e XCX°
f1(X) ¢ £'(Y) , XEYEX’
d(f' (X)) < cd(X), Xcx®

m

where c¢ is a constant independent of X and where d denotes the diameter of an
interval. Furthermore we assume that these three relations also hold for the second

derivative of f. Together with f and its derivatives we consider its divided differences

[ f(x)-f .
X <y if 2%
f[X,Y} = 3
f'(x) if x=y ,
x,z|-f[y,z .
X -y if x4%
f[xsy’Z]:‘ £
3 it x=y

Then for any nonnegative integer p we can define the following iterative procedure.

Algorithm Sp: For k =0,1,... DO through ES

K = m(x¥)

if k=0 then Q¥=L,Y¥=X° & GOTO EI
else

M* = {fix*, X P+ LemexRol) k- K LRy 3oL

k

YE = (KK MKy YK

Q¥ = ¢k, K1y Dokl (YK - 1k LPyy
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E1 x5! = (X - 5xK)/Qk ) n xK

k

if p=0 then x°P =xX & GOTO ES

else

ol gngly

MR = gk, <0+ Doy ool -y
yil _ kil gkl gkl y o gkl

Q5! = (", KOl e (VST 3L

_ bl gkl gkl vkl

¢
|

1 then GOTO ES

-
o
Il

else for 1 =23,.,p DO through E2

x! = m(xkl)

Mk,i = f[xk,i—l ’ xk’i] N %f”(Xk) (xk,i ~ xk,i-l) ynL
B2 xKitl_g .- f(xk,i)/Mk,i 1 o

ES Xk+1 _ Xk,p+1

For Sp we have the following result.

Theorem. Assume that f(x) =0 hasazero x* in X° . Moreover assume that the
assumptions mentioned before hold. Then the sequence { Xk } generated by Sp is
convergent to x* . Moreover the sequence of diameters { d(Xk) } converges to zero

with R-order w_  defined as

ok = +2f+2—1+,/12f§+2+9f2—20ff

1
b p D P pp+2—4fp+2+2fp+1)/2
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where fj denotes the j-th Fibonacci number, i.e.

f =0, f =1, f° f‘+fj_1,

1 ]+1= J j=12..

A proof can be foundin [1].

Under the assumption that the cost of an interval evaluation of the second derivative is
about the same as a function evaluation, the efficiency index of the algorithm in the

sense of Ostrowski is given by

CH(S,) = FﬁJTp .

In tablel we give the values of wp and (wp)l/(p+2) for p=012..,10.

Table I.  Order and efficiency index of S p
+2

p @ p—»/mT,

0 2.00000000000 E+00 1.41421356237 E+00
1 3.73205087570 E+00 1.55113351807 E+00
2 6.46410161514 E+00 1.59450925267 E+00
3 1.10000000000 E+01 1.61539426620 E+00
4 1.82736184955 E+01 1.62294608383 E+00
5 3.00996688705 E+01 1.62638403519 E+00
6 4.92032386541 E+01 1.62741835990 E+00
7 8.01372644808 E+01 1.62756060099 E +00
8 1.30176682947 E+02 1.62724640258 E+00
9 2.11151549918 E+02 1.62677223759 E+00
10 3.42166585524 E+02 1.62624684244 E+00
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It can be proved that

p-00 P &
mz;g p_+_2‘/ W, = 2\/ wy = 1.627
P2

2. The Method for Systems

13

In the present paper we show how the method repeated in the introduction can be

generalized to systems of equations and give some applications to the algebraic

eigenvalue problem. For the formulation of the method we need some definitions.

Assume that f: D CR™ = R" is a mapping which has continuous partial derivatives.

Then for every pair x,y € D we define an nxn matrix f[x,y] by

1
xj_yj { fi(xl,...,xl- ,}’j+1,_ ._,yn) =
- f(x RETER SR L0 R TRIRTS | )}
(eY) f{x:Y]i]' = i1 j=17] n
afi
Wj (Xl, -,Xj,)’j_l_l,. ,yn)

fi 5 .
or x}#yl

The matrix f[x,y] is called a "Steigung" or a divided difference operator. It was used

by J.W. Schmidt in [ 3] where the generalization of the Regula falsi to systems of

equations was investigated.
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For a given mapping f:D CR" - R" and afixed ze D we define v, :DC R™ - L®R™)
by

o (x) = flxz]

and similarly % :DCR"-L®") by

() = flxz] .

We define the divided difference operator of the second order f[x,y,z]1 by applying (1)
to the columns of by - f{x,y,z]3 is defined similarly. The divided difference operators
of the second order are bilinear operators.

For a mapping f: D C R™ - R™ which has second order partial derivatives with an
interval arithmetic evaluation for an interval vector [u] C D , we define three

dimensional arrays of intervals AS([u]) = (as([u])i]-k), s = 1,2,3, as follows:

| P () AR
iy ———m—  for =
2 asz. )
P
By = —?é%;—li—) for k> j
j
0 otherwise s
[ Pt (uD) i
> or j =
17 52 ]
j
AZ([U])ijk =9 0 for k> j
7t ([ul) ,
W for k < [
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L PEi([)) 5
A3([u])ijk = 7—&]‘—3)—(; for i,j,k =1(1)n

Using these arrays it can be shown that
(fx,y.2l (y-2))j; € (a)(x Uy U2(y-2); .
(fly.2xP(y-2))j5 € (ay(x Uy U2)(y-2));
((xy2al! + fly.axD)y-2); € (5 Uy U2-2);
where x UyUz denotes the smallest interval vector containing x,y and z .

Now we set

f[x,u] for s =1
§s(x,u) = § f[u,x] for s =2
%{f{x,u] +flux]) for s =3

Assume that the mapping f:D C R"=R™ has partial derivatives of second order which
can be evaluated in the interval arithmetic sense. Assume that [L] is an interval matrix
with f'(x) € [L] forall x € [x]0 and that Gaussian elimination can be performed with
[L] and an arbitrary interval vector [u] . (The result is denoted by IGA ([L],[u]) .)
For a given interval vector [x] we denote by m[x] the centerof [x]. Let p>0

be some fixed integer. Then we consider the following iteration methods for s = 1,23 .
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Algorithm s;: For k =0,1,.. DO through ES

Eil

E2

X< = m()

if k=0 then [QF =[], =K & GOTO E1
else

M = (5,65 1P) + 2 D - P )
¥ = (- 1GAMIN M) n [k

Q1 = {6,65x Py 4 o (1 - PPy )

S . k_IGAmmﬁﬂﬁﬁ}ﬂbﬁ

k

[x] {x

if p=0 then x*P =x* & GOTO ES

else

xk’ 1 k,1

= m(x]
M = (5,600 + 2 (M@ - Ky n )
el = 61 - AL )y n gl
(1! = (5,615 + o ) @1F! - Ky n L)
°2 = o1 1caqa LR )y o !

if p=1 then GOTO ES else

for i=23,..,p DO through E2
ol - ek
M = 6L - a @ ETS - ST )

xS = oA iRy n

G. Alf:feld et al.
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k

3

If f(x*) =0 for some x* € [x]0 (under our assumptions x* is unique) then x* € [x]

k>0.

Furthermore it has been proved under appropriate assumptions that the R-order of

convergence of S; is the same as in the one dimensional case.

4. Applications

In general the method S; seems not to be very attractive for systems in n unknowns

3

since one needs approximately n~ interval arithmetic evaluations for the second order

partial derivatives. However, there are some important cases in which one needs less

work.

a) Consider the nonlinear integral equation

1
f K(t,s,x(t))dt = x(s) , se[0,1]
(4]

for the unknown function x(s) . For the numerical solution of this equation we choose

equidistant points 5 = :—1 , 1 =0(1)n , and use one of the well known numerical

integration formulas. Omitting the discretization error, we get a nonlinear system

f(x) =0 with

n
f(x X)) = X - ) W, K(%,%,xj) , i=0(n ,
=0
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; . ; @ : 1
for the unknowns x. , i.= 0(I)n, which are considered as approximations to  x(5) ,

i =0(1)n . It follows that

of.

m§=%‘%ﬁﬁ%w,i:WWM j=0(I)n

and

25 ﬂ%Kw%%ﬁ) for j=k
,i=01)n,j=01)n,k=0(1)n.

0 otherwise

(51.3- denotes the Landau-symbol, Ku and Kuu denote the first and second order
partial derivative with respect to the third variable of K ). Hence in this case f" has

only (n+1)2 elements different from zero.

b) A similar result as in a) holds if a solution of the boundary value problem

y" = f(ty)
y(@ =a, yb) =25

is approximated by the usual method of differences.

c) Even more spectacular than in the two proceeding examples is the saving of
arithmetic operations for the algebraic eigenvalue problem. Consider the eigenvalue

problem for the matrix A . If we define the vector x = (zT,,\)T then
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is equivalent to the nonlinear system

f(x) =0
where
n
G0 = @-xp )%+ ) ayx 0=
i=1
J#i
n
i 2
fe1® = E 2 =2
i=1
In this case we get
ij ~ % Xn+1 , 1< <
of ; (x) =% = 1
j 2)(] . i=n+1
0 , =] =
0 ; <1 € o4 1
‘(5i- 3 S i SI} 5 1
&1, (x) j
;0% " ik » 1€1 Sa )
25jk ; =n+1 w3
0 ; =] =n+l
G “GjYaer 0 A5E S
-xi ) I S i S
f[",)’]i}' = ]
Xj + y. 5 1 =n+1
0 4 i :j —

1(1)n

p—
(Fat
_—

-
—
FAN

-
—
™

, k=n+1

<k <n+1
<k <n+l

<k <n+l1

3

19
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Hence the second derivative is constant and many of its elements are equal to zero.
Similarly f[x,y] can be formed nearly without arithmetical work. Hence S; can be

performed with simple available operators.

4. Numerical Examples

a) The matrix

33 16 72
Aw=| 94 <10 =57
< ) el A

has an eigenpair x = (zT,A)T which is contained in the intervalvector

[ [-0.765, -0.764 ]
[ 0.611, 0.612]
[ 0203, 0.204]
| [ 0991, 1.001] |

[x]°

The following table II contains the numerical results obtained by applying Sg for
different values of p. Forafixed p theinteger k denotes the number of iteration
steps until the lower and upper bounds of the iterates [x}k differ by at most one unit
of the last digit in the mantissa. ( We are using a computer with 12 decimal digits in
the mantissa.) f denotes the number of function evaluations and IGA is the number

of applications of Gaussian elimination.
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Table 1I
p k f IGA
0 2 3 4
] 1 3 4
2 1 3 4
3 0 3 4
4 0 3 4
5 0 3 4
6 0 3. 4

b) The matrix

A T
8 4 0 54 -36 -12
8 45 6 81 =54 <18
B 6T S8
8 45 46120 <78 ~30

| 8 -5 -6 129 -60 -48 |

has an eigenpair x = (zT,)\)T , which is contained in the intervalvector

([0127,0.128 ] )
[ 0254, 0.255 ]

[ 0.508, 0.509]

| [11.991, 12.01 ] |
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The values in table IIl have the analogous meaning as in table II .

(1]

2]

3]

| Table Il

lans]

IGA

QoL AW N R OoT
coc o o O = = N
W W W W W W W W
S O N U SO SO N N
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