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Abstract: We present an overview on existing methods for inc1uding the range of

functions by interval arithmetic tools.

1. Introduction

In this paper we do not try to give a precise definition oE what we mean by an

enclosure method. Instead we first recall that the four basic interval operations

allow to inc1ude the range of values oE rational Eunctions. Using more appropriate

tools also the range oE more general functions can be included. Since all enclosure

methods for the solution of equations which are based on interval arithrnetic tools

are finally enc10sure methods for the range of some function we concentrate our-

selves on rnethods fo~ the inc1usion oE the range oE functions. We limit our dis-

cussion to the case oEfunctions oE one real variable. Most oE the material in the

present paper is weIl known. See [1], Chapter 3 and the books [9], [10] by

Ratschek and Rokne, for example. However, there are also some new results. See

Theorem 2, for example.
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2. Notation

Tbe notation in tbis paper is essentially tbe same as in [1]. We repeat tbe most

irnportant ones in order tbat tbe non-specialist can also read tbis paper. Real

intervals [a1;~]' [b1;b2]'''' are denoted by [a], [b],... . Tbe four arithrnetic

operations for intervals are defined by

[a]*[b] = {a*bla E [a], b E [b]}, * E {+,-,x,j} .

Tbe result is an interval wbose bounds can be computed from tbe bounds of [a]

and [b] . Similarly, vectors witb intervals as components, so-called interval

vectors, are denoted by [a] = ([a].) , [b] = ([b].) ,... . Analogously, [A] = ([a]..)
1 1 IJ

denotes an interval matrix. m[a] is tbe center of [a], d[a] = a2-a1 is tbe

diameter of [a], q([a],[b]) = max{la1-bl' , la2-b2'} denotes tbe distance of

[a] and [b] and q([a],O) = '[a] I is called tbe absolute value of [a]. Tbese

concepts are defined for interval vectors and interval matrices via tbe components.

For additional details we refer to [1].

3. Interval aritbmetic evaluation

The four basic operations for intervals are inclusion monotone:

If [a].c [c] , [b] .c [d] tben [a]*[b] .c [c]*[d] , * E {+,-,x,j} .

From tbis it follows tbat for rational functions (and more generally for all

functions f whicb bave an interval aritbmetic evaluation (see [1], Cbapter 3» tbe

range R(f;[x]) of f over tbe interval [x] is contained in tbe interval aritbmetic

evaluation f([x]):

~,.
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(1) R(f;[x]) ~ f([x]) .

Example 1. Let

fex) = l~x ' x -f 1

and [x] = [2 ; 3] . Then

3
R(f;[xJ) = [-2 ; - 2] ,

f([x]) = ~ = AA = [-3 ; -1] ,

and therefore R(f;[x]) c f([x]) holds.

For x -f 0 we can rewrite fex) as

x 1
fex) = I-x = r-: ' x -f 0 .- - 1x

For the interval arithmetic evaluation of this function over [2;3] we get

1 3
f ([x]) = 1 = [-2 ; - 2] = R(f;[x]).

[2;31 - 1

"

0

The preceding example shows that the overestimation of R(f;[x]) by f([x]) is

strongly dependent on the arithmetic expression which is used for the interval

arithmetic evaluation of the given function.
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Moore [6] has shown that under reasonable assumptions the following inequality

holds für the distance between R(f;[x)) and f([x]):

(2) q(R(f;[x)) , f([x))) ~ I d[x] , [x] ~ [xf , I ~ 0 .

This means that the overestimation of R(f;[x]) by f([x)) goes linearly to zero

with d[x]. We illustrate this using the following example.

Example 2. Let

2
fex) = x - x , x E [xf = [0;1] .

Set
111

[x] = [2 - r ; 2 + r] , 0 ~ r ~ 2 .

A simple discussion gives

121
R(f;[x)) = [4 - r ; 4] .

Für f([x)) we get

1 1 1 1 1 1
f([x]) = [2 - r ; 2 + r] - [2 - r ; 2 + r][2 - r ; 2 + r]

1 2 1 2
= [4 - 2r - r ; 4 + 2r - r ] .

From this we get

1 2121 21
q(R(f;[x)) , f([x])) = max {14 - 2r - r - 4 + r I , 14 + 2r - r - 41}
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2
= max {2r , 2r - r }

= 2r = 1 d[x] , 1 = 1 ,

as predicted by Moore I s result (2). 0

The second part of Example 1 rises the question whether it is possible to rearrange

the variables of the given function in such a mann er tbat the interval arithmetic

evaluation gives higher than linear convergence to the range of values. The answer

is "yes". Before we state tbe general result we consider again an example.

Example 3. The function
2

fex) = x - x x E [0;1] , from the preceding

example can be rewritten as

2 1 1 1 .
fex) = x - x = 4 - (x - 2)(x - 2)' x E [0,1] .

Plugging in intervals we get for the interval aritbmetic evaluation

NIl 1 11 1 1
f([x)) = 4 - ([2 - r ; 2 + r] - 2) ([2 - r ; 2 + r] - 2)

1 1 2 2
= 4 - [- r ; r] [- r ; r] = 4 + [- r ; r ]

1 2 1 2
=[4-r ;4+r].

Hence we get

N 1212121
q(R(f;[x]) , f([x]» = max {14 - r - (4 - r )1 , 14 + r - 41}
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2 1 2
= r = 4(d[x])

which means that the distance goes quadratically to zero with d[x] .

The general result is as follows:

(The centered form). Let the (rational) function f:IR...,1R beTheorem 1.

represented in the form

(3) f(x) = f(z) + (x-z) . h(x)

for some z E [x] . If we define

(4) f([x]) := f(z) + ([x] - z) h([x])

then (under weak conditions on the interval arithmetic evaluation h([x]) , see

Theorem 2) it holds that

a) R(f;[x)) .c f([x])

and

(5) b)
2

q(R(f;[x)) , f([x])) ~ I (d[x]) . 0

Inequality (5) is called "Quadratic approximation property" of the centered form.

(3) was introduced by Moore in [6], where he conjectured that (5) holds. (5) was

first proved by E. Hansen [5].



Enclosure Methods 61

How can one find the centered form?

Consider first the case that fex) is a polynornial

fex) = a + a l x + ... + a xn0 n

Using the Taylorpolynornial (which can be computed by applying the complete

Horner-scheme) we get

f' (z) t<n~(z) nfex) = fez) + 1! (x-z) + ... + n. (x-z)

= fez) + (x-z) hex)

where

hex) = f' (z) + ~!z fl '(z) + ... + t<:~(Z) (x_z)n-l .

If fex) is a general rational function then (see Ratschek [7], [8]) for sex) :{ 0

we can write

fex) = rex} = fez) + rex) - fez) sex)sw sex)

= fez) + (x-z) r(x~ - f(z~ sex)x-z) s x)

= fez) + (x-z) hex)

where



-
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hex) = r(x~ - f(z~ sex)x-z) s x) .

Since r(z) - fez) s(z) = 0 and s(z) f- 0 the term x-z appears both in

the nominator and in the denominator of hex) and therefore can be cancelled

out.

Example 4. Let

2

*f
x x-x

fex) = = ~, x f- 3 .s x X-.J

For 1 1
z = 2 wehave fez) = - 10 and therefore

f(x) ~ - fu + (x - 1) r(x) - (- fu) s(x)2 1
(x - 2) sex)

1_ (
1 1 1

= - 1 + (X 1)
4 x - 2) (x - 2) - (- ~) «x - 1) - 5)

ID -2 1 UY 2 2
(x - 2) «x - i) - ~)

- 1 1 1
- - ID + (x - 1)

10 - (x - )
2 5 2

- 2 + (x - i)

= -k + (x - i) hex)

where

1 1

hex) = ID - (x - 2)5
- 2 + (x - i) .

0
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The quest ion whether there exists a representation of f such that for the

interval arithmetic evaluation of this representation it holds that

q(R(f;[x]), f([x]) ~ J (d[x])m

where m ~ 3 is an open question. However, in special cases this can be

achieved.

Theorem 2. (Generalized centered forms). Let the (rational) function f:IR--71R

be represented in the form

(6) fex) = <p + fex) . hex) ,0 x E [x] ,

where <p E IR . Assume that there exist intervals0 f([x]) and h([x]) such

that

(7) fex) E f([x]), x E ([x]) ,

(8) hex) E h([x]), x E [x] ,

(9) If([x])I ~ T(d[x])n,

(10) d(h([x]) ~ (j d[x] .

If we define
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(11) f([x]) := <Po + R(e;[x]) . h([x])

then

(12) R(f;[x]) ~ f([x]) ,

(13) q(R(f;[x]) , f([x])) ~ ~(d[x])n+1 . 0

A proof of Theorem 2 has been performed in [1J.

Example 5. a) Assume that

(14) fex) = (x-c)n, C E [xJ .

Then

If([xJ)I = I ([xJ - c)n I ~ (d[x])n

and therefore (9) holds.

Für n = 1 in (14) we have the c1assical centered form (see Theorem 1). For

n > 1 in (14) the result of Theorem 2 was al ready proved in [2].

b) Assume that

(15) fex) = (x-x l ) . ... . (x-x), x. E [xJ, i = l(l)n .n 1
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Then again

If([x]) I ~ (d[x])n

and therefore (9) holds.

Whereas R(f;[x]) is easy to compute in case a) this is in general not true in

case b). On the other hand it might be much easier to find a representation of

f(x) of the form (6) with f(x) defined by (15) compared with finding such a

representation using (14). 0

We illustrate the preceding Theorem 2 by a simple example.

Example 6. Consider the real polynomial

3 2 2 2
f(x) = x - 6x + (12 - ( )x- (8 - 2( ), (~O,

which has the zeroes

Xl = 2 - ( , x2 = 2, x3 = 2 + ( .

For [X] = [2-5 ; 2+b), (~5 ~ 2, the zeroes are contained in [X]-

a) If /53 - (2 /5 ~ ~ IJ (3
then

R(f;[x]) = [- /53 + (25; 53 - (2b) .
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b) If b3 - f.2b < ~ .ß f.3
then

2 3
R(f;[x]) = g .ß f. [- 1 ; 1] .

We consider three different cases for the inclusion of

evaluation of interval expressions.

A) f([x]) = f([2-b ; 2+b])

3 2 3 2
=[- {j + bt - 48b ; /j - f. (j + 48b]

from which it follows that

q(R(f;[x]) , f([x]) ~ I d[x] .

This agrees with Moore' s result (2).

B) fex) can be written as

fex) = <p + fex) . hex)0

where 2 2
<Po = 0, fex) = x - 2, hex) = x - 4x + 4 - f. .

From this we get

f([x]) := cp + R(f;[x]) . h([x])0

R(f;[x ])

G. Alefeld

by the
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= [- 0 ; 0] ([2-0 ; 2+0][2-0 ; 2+0] - 4[2-0 ; 2+0] + 4 - (2)

= [- 03 + &2 - 802 ; 03 - &2 + 802]

and therefore

2
q(R(f;[x]) , f([x))) ~ I (d[x])

which agrees with the statement (5) of Theorem 1.

C) If we write fex) as

fex) = <P + fex) . hex)0

where

<Po = 0, fex) = (x-2) (x - (2+t)) , hex) = x - (2-t)

then

(16) f([x]) = <p + R(f;[x)) . h([x])0

2

= [min {- f- (0 + t), - (0 - t)(02 + tO)} ;

2 2
max { ~ (0 - t), (8 + tO)(o + t)}]

and therefore

67
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(17) q(R(f;[x]) , f([x]) ~ I (d[x])3

which agrees with the statement (13) für n=2 of Theorem 2. See Example 5,

case a). It is important to note that (17) is no longer true if we replace . R(f;[x])

by f([x]) (the interval arithmetic evaluation) in (16). 0

Cornelius and Lohner [4] had the idea to consider so-called remainder forms of f

for including the range of f by higher order methods.

Theorem 3. (Remainder form). Let

the form

f:DhlR--!1R have a representation of

f(x) = g(x) + s(x) , x E D .

Assume that

R(s;[x]) h s([x]) , [x] h D .

Define

(18) f([x]) := R(g;[x]) + s([x]) .

Then

a) R(f;[x]) h f([x])
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b) q(R(f;[x]) , f([x]) ~ d(s([x]) ~ 2\ s([x])I 0

0

How can one find a remainder form of f ?

Suppose that f has derivatives of sufficiently high order. Let pa(x)
be the

unique polynornial of degree a ~ 0 solving the Herrnite interpolation problem:

(19) p (j)(x.) = Ij)(x.) 0all j = O(l)m. - 1, m. EIN,1 1

i = O(l)n, n ~ 0 ,

where xO' Xl' 0.. , xn E [x] are pairwise distinct and

n

a + 1 = L mi
1=0

Then it is weIl known that

(20)
la+1) ») n m.

fex) = p (x) + (+ H~x n (x-x.) 1a a o' 1
1=0

= g(x) + sex) , X E [x]

where we have set g(x) = p (x) and sex) is the remainder term. Assumea

now that the derivative I a+ 1) has an interval arithmetic evaluation over [x].

Then, since ~(x) E [x] , we can set

s([x]) = la + 1)~~( rd-l

n m.
n ([x]-x.) 1. 1

1=0
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Using this s([x]) in (18) Lohner and Cornelius [4] have proved that

(21) q(R(f;[x]) , f([x]) ~ i(d[x])o-+1 .

Of course it IDust be stressed that practically only small values of 0- are

possible for finding R(g;[x]) in (18).

Exarnple 7. Take

n = 0, rn =3
0 '

0- = 2 .

Then we have given

p~j)(xo) = Ij)(xo)' j = 0(1)2, Xo E [x] ,

and (20) reads

f' (x ) f' '(x)0
(

0 2 1 3
fex) = fex ) + I' x-x) + 2' (x-x) + "IT flll(~(X»(x-x o)0 - 0 . o.J:

= g(x) + sex)

where

f' (x ) f' I (x )0
)

0 2
g(x) = f(xo) + I' (x-x + 2' (x-x),. 0 . 0

sex) = ~ f'" (~(x»(x-xo)3 .
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R(g;[x]) is easy to compute in this case since

For

g(x) is a quadratic polynornial.

f([x]) := R(g;[x]) + fu f' "([x])([x]-xo)3

we have by (21)

3
q(R(f;[x]) , f([x])) ~ ,(d[x]) . 0

4. Outlook

The discussion in the preceding chapter shows that although it is easy to include

the range of functions using interval arithmetic tools it is in general not obvious

how to find very good inclusions with a reasonable amount of work. Therefore this

problem needs very careful furt her investigations.

We have not considered functions of several variables. From a practical point of

view including the range of such a function is even of much greater importance.

See [10], for example, where optimization algorithms, based on interval arithmetic

tools, are discussed. In principle all results of the present paper hold for the

multidimensional case. However, getting good inclusions is in general much more

laborious than for the one dimensional case.
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