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Dedicated to HARROHEuSER, Karlsruhe, on the occasion of his 60th birthday.

Wir betrachtenModifikationen zweier Iterationsverfahrenvon J. W. Schmidt, die unter geeignetenBedingungen mono.
toneEinschließungenfür dieLösungeinernichtlinearenGleichungliefern.Das ersteVerfahrenhat dieKonvergenwrdnung
3, und im skalaren Fall erfordert es zwei Funktions- und eine Ableitungsberechnungpro Iterationsschritt, während das
zweite die Konvergenzordnung 1 + V2hat und nur zwei Funktionsberechmtngen pro Sch1-itt erfordert.

We consider modiJications oJ two iterative procedures oJ J. W. Schrnidt whieh, under appropriate eonditions provide
monotone enelosures Jor the solution oJ a nonlinear equation. The order of eonvergenee of the first method is 3 and in the
scalar case it requires two Junetion- and one derivative-evaluation per iteration step, while the secolld one has the eonvergenee
orrkr equal to 1 + V2and it requires only two J1tnetion-evaluations per step.

PaccMoTpHM MOJJ;HqJlma1UUinBYx MeTOJJ;aHTepalum BBeneHHhIX E. B. IIhmgTa. IIpn IIogxonRIl\HX YCJIO-
BHRX 3TH MeTOnhI 06eCIIeQllBaIOT MOHOTOHHbleBJIOrHeHHRnJIR pcmeHHR HeJIllHellHOro ypaBHeHlIR. IIepBbrD:
lI1eTOn IIMeeT IIOpHJJ;OKCXOJJ;HMOCTIIOT 3, a B cKa.TIRpHOMCJIyqae Tpe6YIOTcffJJ;BaBhI'lHCJIeHHff\PYHKQHHH
OJ];HO BhItJHCJIeHHe npOH3BonHO:Ü Ha mal' HTepa~HH. BTOpofi MeTOn IIMeeT IIOpff)J;OH CXOJJ;lIMOCTHOT 1 + V2
l! Tpe6yeT TOJIbHO nBa BhIQHCJIeHHR \PYHH~HH Ha mal'.

O. Introduction

Supposethat the realfunctionf: IR -> IRis convex and strictly increasing on an inter val [a, b) for whichf(a) < 0 <
~f(b). If fis twice continuously differentiableon [a, b] then it is weIlknown from J. B. FOURIER'sworkfrom 1818
(SCß[1,p. 248])that the Newton-Fourier iterative procedure

Set Yo= a, Zo= b; for n = 0, 1,... compute
z"+l = Z"-1'(z,,)-lf(z,,), Y"+1= y" -1'(z,,)-lf(y,,) (1)

produces two sequences {y,,}:=0, {zn} ::"=0that are monotonically con vergent. from below and from above to the unique
zerox* of fon [a, b] i.e.:

y" < Y"+1 < x* < Zn+1:Sz" , lim Yn= lim Zn= X* .
"-+00 "-+00

(2)

It can be proved that (see [3, p. 70]):

r 12,,+1- Y,,+11=
I

1"(x*)

1

1m
I 2 2:j' *)n-+oo Zn- Ynl (X

whichshows that the diameters of the intervals enclosing the root are Q-quadratica,lly convergent to zero.
We note that the Newton-Fourier method requires the evaluation of two functions and one derivative per

iterationstep. J. W. SCHMIDT[5] has shown that with the same amount of work it is possible to produce enclosing
sequenceswith a higher order of convergence. The two iterative procedures considered by J. W. SCHMIDTin the
abovementioned paper can be described as follows: . '

Choose Yo,Y1E [a, b] such that f(yo):::;;0, f(Y1) < 0; for n = 1,2,... compnte

Zn= Y"- l' (y,,)-1f(y,,) , Yn+1= y" - of(y", Zn)-1f(y,,)

(3)

Or (4)

Zn = y" - O!(y,,-h Yn)-lf(y,,) , Yn+1= y" - Öf(Yn, Zn)-l f(y,,) , (5)

whereOJ(x, y) denotes the divided difference off at the points x and y. The sequences produced by either (4) 01' (5)
Batisfy(2). Moreover, J. W. SCHl\UDThas proved that the sequence {y,,} given by (4) is Q-cubically convergent while

thesequence {y,,} given by (5) has the R-order of convergence 1 + V2.Remarkably enough the iterative procedure
(~) requirestwofunction- and one derivative-evaluations(the sameas the Newton-Fouriermethod),whilethe itera-
hve procedure (5) requires only two function-evaluations per step (with the exception of the first one).

th ~he major inconvenience connected with the iterative procedures (4) and (5) is the fact that in many cases
e pomt 21produced by them may fall outside the inter val (a, b] where fis supposed to be increasing and convex

,and t~en the convergence may break down. In the above quoted paper of J. W. SCHlIUDTthe fact that Zl belongs to
, [a,b] lStaken as a hypothesis of the convergence theorem. The paper [5] contains only results on the order of con-

Vergenceof the sequence {y,,}. The order of convergence of the sequence {z,,} is discussed in (7). As with many
:nclosing methods we would be naturally interested in knowing the order with which the diameters of the enclosing
1I1tervalsconverge to zero.

S In what follows we will try to fix these inconveniences by considering the following modifications of J. W.
ClnrrDT'Siterative procedures:

Set Yo= a, Zo= b; for n = 0, 1,2,... compute
Y,,+l = Yn- oJ(Yn,2n)-1f(y,,) , Zn+1= Yn+1- 1'(y,,+l )-lf(y,,),

&a'
Zn +1 = inf {Zn+!, Zn} (6)

"',
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~"'+1 = y." - bf(y.",~.,,)-1~(Yn), Zn+l ~Y.,,+l ~ bf{y.",Y"'+1)-1f(Yn+l) , Z~+l = inf {zn+h Zn). (7)
We WIllstudy the above Iterative procedures 111partIal1y ordered Banach spaces, In a framework sÜnila.rto

that considered by J. W. SCHMIDT[5). However, for reasons of convenience, we will make some simplifying aSSUll1
tions. Thus we will assume that all divided differences of fon [a, b] are invertible (which ensures the uniquenesaP;
the root) and we will consider a simpler, but more restrictive, Lipschitz condition on of whieh turns out, howe"0
to be satisfied by most examples of interest. (See [4). er,

Also, in order to avoid repetition we will prove most of our convergence results for a "more general" iterati\'e
procedure of the form

Yn+l = Yn - of{Yn,Z.,,)-1f(Y1I), Y1I+1= c.."y."+ (I - c.n) Yn+l , c.." E[0, 1) ,
}ZIl+1 = Yn+1 - bf{Y"'+l' Yn+1)-l f{Yn+l) , Zn+1 = inf {Z"'+l' z.,,} (8)

which reduces to (6) for c.n = 0, n = 0, 1, ...and to (7) for c.n = 1, n = 0, 1, .... .

The paper is organized as follows: in section 1 we review some basic definitions concerning partial ordering and
divided differences of nonlinear operators; sectiOJl2 contains results on the monotonieity and the convergenceof
the iterative method (8); in section 3 we prove some statements about the order of convergence of the encloaing
methods (6) and (7); the last section4 contains a numerical example.

1. Preliminaries

Let us consider a Banach space B partially ordered by a cone K. This means that K is a closed, convex subset of B
which has the property that x E K, x =1=0, impIies <xx E ]( for (X~ ° and(Xx~ K for (X< 0. The partial orderinginB
is then defined by x < y iff y - xE K. The elements of Kare called positive. If u < 11, then the set [u,v) ==:

= {x E B; u < x <v} is called an interval. .

We assume that the cone K is normal, in the sense that there is a constant y > ° such that 0 < x < y impliea :
IIxll< yllVII,with Y independent of x and y.

We also assume that the cone is regular, whieh means that every order bounded increasing sequence is conver.
gent in the norm of B.

Finally weassumethat the coneK is minihedral,whichmeans that each two-elementset {x, y} has a greatest.
lower bonnd z = inf {x, y}.

The definitions listed above can be found in [2, p. 133]. The partial ordering of B induees a natural partial
ordering in the Banaeh space L(B) of all bounded linear operators acting on B. Namely if S, TE L(B) then B ~ T Hf
Bz < Tz for all x ~ O. A linear operator T is called positive iff T ~ 0, where 0 denotes the zero operator.

In what folIows we will consider a non linear mappingf: D ( B -+ B where D is an open convex subset of B.
The mappingfis supposed to have a divided differenceon D which meansthat for every pair of elementsU, 11ED..

. there is a bounded linear operator of(u, 11)E L(B) such that

bf(u, v) (u - v) = f(u) - f(v) , u, v ED. (9) .

We note that, in general, the divided difference is not symmetrie (i.e. of(u, v) =1=of(v, u». However, it ia
easilyseen that (9) implies

of(v, u) (~t - v) = f(u) - f(v) .
We assume that of is increasingwith respect to both arguments i.e.:

(Jf(~t,v) < of{x, y), whenever u < x and v:s y . (11)

Alsowe assumethat bf(~t,v) is boundedlyinvertible for aIlu, v ED and that .

of(U,V)-l~O, u,vED. (12)

Finally we assume that the divided difference is Lipschitz-continuous on D in the sense that there is a constant
ß > ° such that

IIbf(x,y) - bf(u, v)1I< ß(lIx - ull + Ily - vii),

(10)

U, 11,X, Y E D , (13)

where 11.11 denotes both the norm of Band the operator norm of L(B).
We remark that from (13) it folIows that fis Frechet-differentiable on D and that

l' (x) = (Jf{x,x) , z E D

(for a proof see, for example,(4).

(14)

2. lUonotono convergence

In the first part of this section we prove a monotone convergence theorem for the iterative method (8) under tbf
general framework considered in the precedingsecti01l. Thesecondpart of the section contains some refinement5 o. .i

these results for scalar functions. .
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Theorem 1: S-upposethat the Banach space Band the nonlinear mapp.ingf: D ( B -- B sa1isfy all the aB8Ump-

._.~ mad€in section 1. Assume also that them is an interval [a, b1 ( D whiGhcontains a rootx* of the equationf(x) = 0t~Vf~ .f f
" .

anJ that the value OJ at a ~8negatwe ~.e.:
a<x*<b, f(a) <f(x*) =0. (15)

PMn the iterative algorithm (8) is weIl defined for Yo= a, Zo= b, and the sequences{V,,},{z,,}providea monotone
encW8ureof the root x* satisfying property (2).

Proof: We will prove the foIlowing relations:

(i) f(Y,,) < 0 ,

(ii) a) y" < x* ,
iiii) a) y" < y"+1,
(iv) a) lim y" = x* ,,,_00

b) x* < z",

b) Z"+1< z",

b) lim z" = x*.
n-oo

We wiHprove (i)-(iii) by induction. For n = 0 (i) and (ii) reduce to (15). From (12) and (15) we have

VI = Yo - (Jj(yo'ZO)-1f(Yo) 2: Yo,

whilefrom the definition of the greatest lower bound it follows that

ZI = inf {~, zo} < Zo.
Thus (i)-(iii) are true for n = O. Let Ha assurne that they hold up to some fixed n ;;:;;O.

(üa) Using (8) we can write .

x* - y"H = x* - y" + Öf(y",Z,,)-1!(Yn) = Öf(y,., zn) -I {f(y,,) - f(x*) - Öf(Yn,Zn) (y" - x*)} =

= Öf(Yn,Zn)-I {öf(Yn,x*) - Öf(Yn,Zn)}(y,. - x*) .
Thisis positive since öf(y", zn)-1 ~ 0, y" - x* < 0, and Öf(Yn,x*) < tl!(y", zn), Hence YnH < x*.

(üb) Using (8) we deduce in a similar manner that

ZnH - X* = öf(Yn+!,YnH)-l {öf(x*,Yn+d - öfCYn+!,Yn+l)} (X* - Yn+l)

whichshows that x* < Zn+!' By the inductioll hypothesis we have x* < z,.. Therefore x* ~ inf {Zn+1, Zn} = %"+1'

(i) Using the first equation in (8) we have

f(Y,,+1) = f(Yn+1) - f(Yn) - of(y", z,,) (YnH - y,,) = {tlf(y,.,Yn+1) - Öf(y",z,,)} (YnH - V,,).
Since by the induction hypothesis y" < Y"H < x* < Zn+! < z" it follows that Öf(Y",Yn+d < Öf(y",z,,), which
impliesthatf(Y,,+!) < O.

(iii) From the above results it folIows immediately that

Y"+2= YnH - Öf(Y"H,z"H)-1 f(Y,,+1)~ Y"+1,
whilefrom the definition of the infimum we have

Z"+2 = inf {zn+2, Zn+1} < Zn+1 .
According to the induction principle (i)-(iii) hold for a11n ;;:;;O. From the regularity of the COlleKthere exist y*
andz* for whicha < y* < x* < z* < b hold such that

lim y" = y* , lim z" = z* .
"-00 "-00

From (11) it follows that Öf(Yn,z,,) < öf(b, b) = Band then by using (iiia) we obtain

0 ~ f(Y,,) = öf(y",z,,)(y" - Y"+1) ;;:;;B(y" - Yn+1) .
BecauseB is continuousand {V,,}is convergentwehave!im B(y" - y"+1) = 0 whichimp!ies0 ~ f(y*) ;;:;;O.Hence

"-00
I(y*) = O. From the definition of the divided difference we have

0 = f(y*) - f(x*) = bf(y*, x*) (y * - x*) ,

~thatfrom the invertibi!ity of l>f(y*,x*) it follows that y* = x*. In order to prove z* = x* let us note that accord-
lngto (11) we have .

A = öf(a,a) < öf(y",y,,) < of(b,b) = B,

wherefrom by virtue of (12) it follows that

B-I < öfCy",y,,)-I < A -1.

lIecausef(y,,) < 0 we can write

'!J" - ß-lf(y,,) ~z" = y" - ~f(y",y,,)-lf(Yn)<: y" - A-1J(y,,).

~k
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Thc first (wd thc last term above converge to x*. Therefore, using the normality of the eone, we have lim Zn::::~
Fillally from x* < Zn ::;::;Zn we deduce that lim Zn = x*. 0 n-oo :1:.

1I-CO

Re mal' k 1: By inspecting the proof of the above theorem we realize that the Lipschitz eondition (13) has not
been used. In provingf(y*) = 0 we have only used the "continuity from the left" off, which fonows from (10) and(12). Indeed for any h ;S 0 we have

Ah <f(x) -f(x - 11,)= öf(x - h,x) 11,<Bh,

so that for any increasingsequence{xn}whichconvergesto x we have limf(xn) = f(x). However if (13) is not satia.
n-OO

fied thenf may not be Frechet-differentiable at an points of D. At such points of(x, x) has tobe defined in ter11lSof
the "partial derivatives from the left and from the right". For example for scalar convex functions Weean take

of(x, x) = -} {j'(x - 0) + f'(x + O)}. 0

Remark2: Note that we have not assumedf(b) ;:s O. It turns out that if in the hypothesis of Theorem 1,
we replace condition (15) by the condition

a~b, f(a) <O<f(b), (16)

then the existeneeof a point x* E [a, b] such thatf(x*) = 0 follows from a result of SCHMIDTand LEONHARDT[6].
Thus (16) is more restrictive than (15). In fact it is easy to produce examples satisfying the hypothesis of Theore11l1
and for which f(b) ;S 0 does not hold. However if the domain D is "large enough" we ean always find a bwith

f(b) ;:sO.Tndeed we ean prove that if all the assumptions in the hypothesis of Theorem 1, but the existenceof
the root x * E [a, b], are satisfied and if

J = {x E B; x ;:s a} cD,

then there is a e EJ such thatf(c) ;:s O.
1'0 see this we first observe that according to (10) and (11) we have

f(x) - f(a) = of(a,x) (x - a) ;:sA(x - a) , XE J ,

where, as before, A = of(a,a).H we denote c =a - A.-lf(a) then we have clearly cE J and thereforef(e) ;:Sj(a) +
+ A(e - a) = O. 0

The next result shows that if there is an iteration step for which Zk = Zk then the same is true for all subse-
quent steps.

Proposition 1: Unaer the hypothcsis of Theorem 1 assume that Zk= zkfor some k > 1. Then Zn= znfor
all n ;:s k.

Proof: Obviously, it is sufficientto provethat Zn = Zn implies ZnH < Zn' From the definition of the divided
differenee we have

Yn - Yn+1 = of(Yn,Yn+d-l {f(Yn)-j(Yn+d}.

Therefore by using (8) and the hypothesis Zn = Zn we get

Zn - zn+1 = Yn - Yn+l - ofCYn,Yn)-l f(Yn) + ofCiin+I,Yn+1)-l f(y,,+d =

= {of(Yn,Yn+1)-l - oj(Yn, Yn)-l} f(Yn) + {OfCYnH,Yn+I)-l - of(Yn, Yn+1)-l} f(Yn+l) .
The last term above is clearly positive, beeausef(Yn+1) < 0 and OfCYn+l,Yn+1);:sof(y",Y"+1)' . .

Also ofCf}n,Yn) < of(Yn, Yn) < of(y", YnH) which together with f(Yn) < 0 shows that the other term is posItIve,
to~. Hence Zn.!..! ::;:;Zn' 0

Inthe r~mainc1erof this section we give some more precise results for scalar functions. Namely we will show
that in this case Zn = z" for all indices n that are suffieiently large. Also we will prove that Zn= Znfor n = 1,2,...
in case}' is concave. .

Proposition 2: ASS1tmethatin the hypothesis ofTheorem 1 we have B = IR (the set of all real numbera)
enaowea with the natural oracring ana topology. Then there is a positive integer N s1wh that Zn = Znfor all n ~ N.

Proof: According to Proposition 1 it is sufficientto prove that Zn+l < Znfor some n ;:s O.Using (8) and thedefinition of the divided difference Wehave .

Zn+1 - Zn = Ya+l - Zn - oAiin+l, Yn+l)-l f(Yn+d =

= OfCY,,+l,Y,,+l)-l {ofCii,,+l,Yn+l) (Yn+1- Zn)-f(Yn+l)} =

= oAiinH, Yn+l)-l {[ofCiln+1'Y,,+l) - Of(Yn-H,Zn)](Yn+1- Zn)-f(zn)} =

= OfCYn+bYn+l)-l {ofCY"+1' Yn+I) - Of(Yn+l' Zn) + Of(Yn, zn)} (Yn+1 - Zn) .

In deducing the last equality we have used the fact that the first equation in (8) can be rewritten as
Yn+l = Zn- of(Yn,zn)-l f(zn) .

Let us denote

(17)

cl" = (5!Ciinl-J,!/n+d - ')J\YilH,zn) + Cif(y", Zn)' (18)
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~1 der our assumptions we have lim an. = l' (x*) > 0, so that there is an n ~ 0 such that an> O.But then we haveun h t - <- 0 n-oo
fram (17) t a Zn+1 - Zn.~ .

Proposition 3: Under the hypothesis of Proposition 2 assume that l' is concave on [a, b]. Then Zn = Zn for

n::::= '1,2, .

pro of: Let us denote by02f and 03f, resp., the second and the third, resp., divided difference of f.Under our
assumptions we have

of(u, v) ~ 0, 02f(u, V,w) .~ 0,

The Dumber an defined in (18) can be written as
an= Of(Yn+1' Yn+1) + o2f(yn.,Yn+1'zn) (Yn- Yn+1)=

= {o2j(Yn,Yn+1,Zn) - o2f(Yn, Yn+b Yn+1)} (Yn - Yn+1) of(Yn, Yn+1) =

= o3f(Yn, Yn+1, Yn+b zn) (zn - Ynn) (Yn - Yn+1) + of(Yn, Yn+1) .
BecauseYn+1< Zn, Yn < Yn+1it followsthat an ~ O.Hence, according to (17)Zn+1< Zn.The proof is complete.

ö2j(u, v, W,x) < 0, u,v,W,XE [a,b].

3. The order of convcrgcnce

In this section we will prove that the diameters of the enclosing intervals provided by (6) tend to zero Q-cubically,
whilethose produced by (7) have the R-order of convergence 1 + V2.In the onedimensional case we will prove some
results similar to (3). In particular it willfollow that ifJ"(x*) =1=0 then the diameters of the enclosing intervals pro-

videdby (7) converge to zero with Q-order 1 + V2.

Theorem 2: Unaer the hypothesis of Theorem 1 the1'eis a constant fl,> 0 Buchthat

Ilzn+1- Yn+111 < fl,llz" - y;1121Iz" - Ynll , n = 1,2, ...,
Proof: From (8) and (10) it followsthat

0 <: Zn+1- Yn+l < 211.+1- Yn+1= -of(Yn+b Yn+1)-lf(Yn+1) =

= -Of(Yn+b y,,+rJ-1 {f(Yn+1) ~ f(Yn) - of(Yn, zn) (Yn+1- Yn)} =
= -of(!ln+1, Yn+1)-1 {of(Yn,Yn+1) - of(Yn, zn)} (Yn+1- Yn) .

Usingthe fact that 0 < Yn+1- Y" ~ Zn - Yn and

of(Yn+1, Yn+1)-1 < A -1, A = of(a,a) ,

(19)

of(Yn, Yn+1) <: Of(Yn, Zn)
weobtain

0 <Zn+l - Yn-!-l< A -l{Of(Yn, Zn)- of(Y", Yn+1)} (Zn - V,,)

sothat from (13)and the normality of the cone we have

Ilzn+1 - Yn+111< fl,lllz"- Yn+11111zn- Ynll ,

wherefl,1= ßyllA-11/.The first equation in (8)can be rewritten as
Yn+1 = Zn ~ of(Yn, zn) -1 f(z,,) .

Using (11), (12) and the fact that Yn < Yn < Yn+1< Znit follows that

of(Yn,y,,)-l f(z,,) - of(Yn, zn)-lf(zn) = of(Yn,y,,)-l {of(Yn,z,,) - of(Yn, Yn)} of(Yn, zn)-l f(z,,) =

= of(Yn,Yn)-l {of(Yn,z,,) - of(yn, Yn)} (z" - Yn+1)~ o.

(20)

(21)

Wededuce that

0 <Zn - Yn+1 = of(Yn, z,,)~lf(zn) < of(Yn,y,,)-l f(Zn) .
Onthe other hand from the third equation in (8) and the fact that Yn < Zn< Znwe have

0 = -(z" - y,.) - of(Yn,Yn)-l f(Yn) < -(Zn - Yn) - of(Yn,Yn)-l f(Yn) .
Theabove inequalities imply that

0 < Zn - Y"+1 < of(Yn, Yn) -1 {f(Zn) - f(y,,) - of(Yn, Yn) (Zn - Yn)} =

= of(Yn, Yn)-1 {of(zn, Yn) - of(Yn, Yn)} (Zn- Yn) < A -1{Of(zn,y,,) - Öf(Yn,Yn)} (Zn- Yn) .
Dsingagain (13) and thc normality of the cone we get

Ilzn - y"+111<fl,lllz" - y"llllzn - Ynll.

JJ'inally(20) and (22) imply the inequality stated in our theorem. 0

. Corollary 1: UnrIerthe hypothesis of Theorem I, the sequence {llzn - Ynll} of the diametersof the enclosing
Inte1'valsproaucea by the iterative method (6) convergesto ze1'oQ-cubically.

. OorolhHy2i Uml~rUiehypotMSi"of Theorem1, thelSeq~~e.1bve{llzn- Ynll}01thediarMtel'lS01theenollJ6ing
tntC1"va.lsp,'oduced by the iterat1:ve method (7) converges to zero ?vith R-order I + Vi

(22)

i
11.
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Proof: Note that in this case

Ilz" - Ynll = IIzn - Yn-lll< yllz"-l - Yn-lll. 0
Proposition 4: Under the hypothesis of Proposition 2 suppose that f 'is twice continuously diffe?entiable on

[a, b]. Then

1. Iz".<.1- Yn+11

If

"
(X*)

\

2

1m ' -
"-00 Iz" - y"12Iz,, - y,,1 - 21'(x*) .

Pro?f: As in the proof of Proposition 3 we denote by 02f thc second divided difference off. UsiDg (19) and (8)
,ve can wrlte

z"+1 - Yn+1 == -afCYII+I, Y"+1)-1 a2f(y,,!Yn+!, zn) (Yn+l - Zn) (Yn+1 - Yn) =
= Ö!CYn+1,YJI+1)-1 a2f(y", y"+l> Zn) af(Yn, Z,,)-1 f(Y,,) (Y"+1 - Z,,) .

If we denote

ßn = afCfj,,+!,Yn+1)-1ö2J(Y",Y,,+!, Zn)Of(Yn,Zn)-2,

then according to (21) we have

z,,+! - Yn+1 = -ßnf(Yn) f(z,,) .
From Proposition 2 it follows that Zn = Zn. Therefore the third equation in (8) can be rewritten as

Z" = y"- af(Yn, y,,)-1 f(Y,,) .
Consequently

f(z,,) = f(z,,) - f(jjn) - of(y",y,,) (z" - Yn) =

(23)

(24)

= {ofCiin,zn) - (jf(Yn, Yn)} (Zn - Yn) = o2f(y", y", Zn)(z" - Yn) (z" - !in) .
Using again the third equation in (8)and Z"= Znwe get

f(Yn) = -of(jj", y,,) (zn - y,,) .
Substituting these expressions for f(zn),f(Yn) in (23) gives

Z"+1- Yn+1 = ß,/}2J(fj",Yn,zn)af(fj",y,,) (zn- y,,)2(z" - Yn) .
For 10-+ 00 in this relation we ob,tain the desired result. 0

Corollary 3: Under the hypothesis of Proposition 4 8uppose thatj"(x*) =1=O. Tken the sequence {Izn - y"l}01
the diameters of the enclosing intervals produced by (7) converges to zero witk Q-order 1 + V2.

, Proof: For (7) we have y" = Y"-l so that by using (24)and (25)we have

z" - Yn = z" - Y"-1 = -Of(Y,,-I, y,,)-1f(Yn-l) = of(Yn-1>y,,)-l Of(Y,,-2, Yn-l) (Zn-l - Yn-l) .
Thus lim (lz" - y"I/lzll-l - Y,,-ll) = II'(x*)/1'(x*)1= 1 so that by using Proposition 4 we deduce that

_00 .

(25)

I
.

I

I

f
"

( *)

\

2
1. Z"+l - Yn+l X 01m =-
"...00 Iz" - Yn!2Iz"-1 - Yn-ll 21'(x*) > .

Our Corollary follows then from a result of [9]. 0
For the definition of the Q-order and the R-order of convergence and the relation between these two notations

the reader may consult, for example, [8].

4. A numerical example

We will give on1yan example in the onedimensional case (a rather "ilI-conditioned" one) to illustrate the importa~ce
of taking the infimum in (8). We want to find a monotone enclosure for (1/11)1/11E [0.1, 1.0], by using the itera~Ive
procedures (6) and (7). It is easily seen that the functionf(x) = 11x11 - 1 and the points a = 0.1, b - 1.0 satudy
the hypothesis of Theorem 1. The results obtained by applying (6) and (7) are given in tables 1 and 2.
. We note that both methods take the infimum 11 times. Mter that method (6) needs 6 steps to attain fu?
accuracy (18 digits) while method (7) needs 7 steps. (In the tables are only displayed 12 digits of the mantissa.) Tbis

is in accordance with the respective orders of convergence. We also note that without taking the infimum the sj~-
ti~n w~uld have been much slower .(ifno~ impossib~e bec?,~se of th~ ove~low). We hav? worked ou~ several zn .tl~
dImenSIOnalexamples (some of WhlCharlse from dIscretIzmg non1mear mtegral equatIOns or nonlmear two-P::f:boundary value problems) that exhibit the same pattern of behaviour. However, taking the infimum in the zn ta-

dim~nsional case ~as a more dramatic effect .b~cau~ in many cases Z"+1is sensibly closer to the root tha~~o~h j".
snd ~n+l.We COD)ectUl'etha.t thel'e äre mulbdlmenslOnal problems for which the infimummust be taken mfInlte J
many times but we have not been able to find such an example sofar.
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Zn

1037653.16044
22 ]73.4151338

1.36250590216
1.09261792176
0.95721601430
0.87555362586
0.82082455631
0.80474655592
0.80413333036
0.80413309750
0.80413309750
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n y" Zn Zn-
1 0.181818181809 .I 209335.010110

2 0.256198341760 1 6783.69629225

10 0.649855750431 1 1.20601852658
11 0.678883880368 1 1.01459626279
12 0.703896078337 0.916682000648 0.916682000648
13 0.744859870517 0.834351242786 0.843351242789
14 0.79248252277 6 0.805028398613 0.805028398613
15 0.804066504121 0.804133125087 0.804133125087
16 0.804133097492 0.804133097503 0.804133097503
17 0.804133097503 0.804133097503 0.804]33097503

Table 2. Resu1ts for method (7)

n Yn Zn

1 0.181818181809 ]
2 0.256198341760 1

10 0.649855750431 1
11 0.678883880368 1
12 0.703896078337 0.957216014306
13 0.733544662495 0.875553625862
14 0.774865855929 0.820824556317
15 0.80] 021492377 0.804746555927
16 0.804]21155031 0.804133330360
17 0.804133097486 0.804133097503
18 0.804133097503 0.804133097503


