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1. Introduction. In this paper we discuss the use of inter-

val analysis in order to prove the existence of solutions of

an equation. In Chapter 2 we repeat the generalization of

the bisection process using interval arithmetic tools. The

use of the Brouwer fixed-point theorem is demonstrated in

Chapter 3. We show in Example 1 that by using interval

arithmetic it is sometimes possible to improve known

existence statements. since the proof of the Brouwer fixed-

point theorem is nontrivial it seems worthwhile to investi-

gate if one can prove the existence of fixed points by using

interval arithmetic tools alone. Some ideas in this direc-

tion are described in Chapter 4. In the final Chapter 5 the

Interval-Newton-Method is reconsidered again and a new

statement concerning the order of convergence is given. The

terminology used in this paper is the same as in [5].

2. Bisection. It is well-known that if for areal continuous

function f : ffi ~ ffi there exist reals a and b , a < b ,

such that f(a)f(b) ~ 0 , then there exists an
*

X E [a,b]

such that
*

fex ) = 0 . Furthermore
*

x can be computed by
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the weIl known bisection process. If, however, the condition

f(a)f(b) ~ 0 does not hold, then there is no statement

possible whether there is a zero in [a,b] or not.

f over (x] which we denote by R(f;[x]) is contained in

f«(x])

f([x])

. If, however, the interval arithmetic evaluation

contains zero, then no statement is possible whether

there is a zero in (a,b] or not. The reason for this

conclusion is the fact that in general f([x]) is a proper

super set of R(f;(x]) . In this case we bisect the given

interval into two equal parts and then proceed by computing

the interval arithmetic evaluations for both subintervals.

Now the same conclusions can be drawn as for the original

interval. By repeating this process we can find subsets of

the original interval which do not contain zeroes of f and

subsets wh ich possibly contain zeroes of f , respectively.

since with decreasing diameters the interval arithmetic

evaluation is converging to the range we can locate the

zeroes of f in arbitrarily close subintervals of [a,b] .

For more details and references see the introductory part of

Chapter 7 in [5].

The procedure described can in principle also be applied to

mappings f : !Rn --+ !Rn in order to locate zeroes of the

system f(x) = 0 in n-dimensional intervals, so-called

interval vectors. It is obvious that for larger n the
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Let f have an interval arithmetic evaluation f([x])

where [x] = [a,b] . If 0 flf([x]) then f has no zero in

[x] . This follows from the fact that the range of values of



computing time increases exponentially with n and that the

data organization becomes a nontrivial problem. On the other

hand the advantage of this procedure is that besides the

existence of the interval arithmetic evaluation no further

assumptions - like differentiability - have to be imposed

on f .

3. Brouwer Fixed-Point Theorem. This theorem is a very old

result from 1912. A systematic application in Numerical

Analysis in connection with interval arithmetic tools

started after the publication of R.E. Moore's paper [12] in

which he used the so-called Krawczyk-operator in order to

prove the existence of fixed points of a mapping

f : ffin~ ffin. Nearly ten years earlier one can already find

an application of the Brouwer fixed-point theorem in a note

by Hansen [7], p. 23. See also Stetter [18], page 43,

Satz 6.5.

Theorem 1. (Brouwer) Let f : S C ffin~ ffin be continuous on

the compact, convex, nonemptvset S , and suppose that

fex) E S for all x ES. Then f has a fixed point in

S . 0

A proof of this fundamental result can be found, for

example, in [15]. The details of the proof are far from

being obvious.

If one tries to apply the Brouwer fixed-point theorem it is
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usually not an easy task to verify that f (x) E S for all

X ES. The reason for this is the fact that (besides being

continuous) the mapping f and the (compact, convex,

nonempty) set S can be very general. If, however, f has

an interval arithmetic evaluation then it is easy to give

sufficient conditions for f (x) E S for all X E S if S

is an n-dimensional interval vector [x] . This is the

content of the following well-known result.

Theorem 2. Let f : 0 ~ !Rn ~ !Rn be continuous and suppose

that for some interval vector [x]~ D the interval

arithmetic evaluation f([x» of f exists. If

f([x]) ~ [x] then f has a fixed point in [x] .

.Proof. By the inclusion property of interval arithmetic we

have fex) E f([x» for x E [x] . Therefore the assumption

f([x» ~ [x] implies that fex) E [x] for all x E [x] .

since [x] is compact, convex and nonempty the assertion

follows by applying the Brouwer theorem. 0

We note that under practical aspects the requirement that

the interval arithmetic evaluation exists is not very

restrictive. Most mappings which appear in numerical

computation are composed of the four algebraic operations

and of the elementary functions (trigonometrie functions,

exponential functions etc.) for which interval arithmetic

evaluations can be defined in a natural manner. The great
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advantage of Theorem 2 is the fact that f{[x) can be

computed systematically by following the rules of interval

arithmetic. No sophisticated considerations or estimations

are necessary in order to prove that fex) E[x) for all

X E[x) . We will now explain this in some detail on a

special problem. The discussion will even show that using

interval arithmetic directly (which means to try to apply

Theorem 2) gives in a precisely defined sense better results

compared with verifying the hypothesis of the Brouwer

theorem without interval analysis.

Example 1. (Error bounds for polvnomial root approximations)

Let there be given the complex polynomial

n n-1
p(z) = z + a 1z + ... + a1z + an- 0

where
ai E ~ I

i =O(1)n-1 I and furthermore pairwise

different complex numbers w . I i = 1 (1) n I as1

approximations to the zeroes of p :

w. # w. ;
1 J

P (w.) # 01

i # j

i = 1(1)n

Consider now the n-th degree polynomial
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n n

[
n Z-Wk

]
f(z) = IT (z-w.) + \ IT 'p(w.). 1 L k

. W.-W, J1=1 . k=l t-J
~ ~

J=l '

This polynomial has leading coefficient one and furthermore

f(w.) = p(w.) , j = l(l)n . From this it follows thatJ J

f(z) = p(z) . Using this representation of p(z) we get

p(z) = ~ (z-w) .
{

I + ~ ~
}k=l k L z-w. '

j=l J

z t- w.
J

where

s. = p(w.)
J n J

IT
k

(w.-w )
=l,kt-j J k

j = l(l)n .

Since the
wk are by assumption not zeroes of p it

follows that p(z) = 0 iff

or iff

1
s.

z = w. - s. - (z - w.) . 1- = : T. (z )1 1 1 z-w. 1 .

j=l,jt-i J

n

Hence the existence of a fixed point of T in a certain set

guarantees the existence of a zero of p in this same set.
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Theorem 3 (J.W. Schmidt [17]) Assume that n circular discs

Kj = < Wj,rj> , j = l(l)n , are qiven and that for some

{1,2,...,n}

i E

n
. min Iw.-w.1 > r..
1 " 1. J 1.

J= ,J;i1.

and

hold. Then

i

n Is.1

h. (r.) := Is.1 + r. . I 11 ~ r.1. 1. 1. 1. W. -w. -r. 1.
.
1 0.1.) 1.

J= , J;i1.

P has a zero z. for which1.

I z .-w. I < h. (r.) .1.1.-1.1.
0

The proof is performed by verifying the hypothesis of the

Brouwer fixed-point theorem.

We now apply interval arithmetic in order to verify

T. (z) E K. = < w.,r. > for all z E K. . We have1. 1. 1.1. 1.

T. (z) E K. = < w., r. > ~ I T.(z)-w. I < r. .1. 1. 1.1. 1. 1.-1.

The last inequality holds if ITi(Ki)-Wil .~ ri where

T. (K.)1. 1. is obtained by replacing z by the complex circular

disc K.
1. and computing T. (K.)1. 1. following the laws of

circular disc arithmetic. See [5], Chapter 4,for example.

We obtain

'"

i

s.

I T. (K.)-w. I = I s.+ (K .-w.) . K J I =: g. (r.) .1. 1. 1. 1. 1. 1. .-w . 1. 1

j=l,j;ii 1. J

n

213



The following result holds.

Theorem 4 (Frommer and Straub [6], Straub [19J).

If

n
min \w.-w.1 > r..
1 . . 1 J 1

J= ,J;tl

then

g.(r.) < h.(r.)1 1 - 1 1

Equalitv holds iff the centers of the circular discs

s.j (K. -w.) ,J 1 J j = 1(1)n , j ;t i , are all located in the

same quadrant of the complex plane and are all lvinq on a

line which passes throuqh the oriqin.

0

From this theorem it follows that for given circular discs

K. = < w.,r. > it is in general easier to bound a zero of pJ J J

by using T.(K.) compared with trying to apply Theorem 3.1 1

Furthermore note that if

zero T. (K.)1 1

T. (K.) C K.
11- 1

which means that

then there exists a

Z.
1

in
I z . -w. I < g. (r. )1 1 - 1 1

Hence if both approaches work then the interval arithmetic

approach gives the better inclusion. 0

without going into details we mention that there are known a

series of further classical results which can be improved or

which lead at least to the same results if one uses interval

arithmetic tools directly.

4. Avoidinq the Brouwer Fixed-Point Theorem. We have already
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mentioned that the details of the proof of the Brouwer

fixed-point theorem are not very obvious. since furthermore

we are considering here only mappings which have an interval

arithmetic evaluation the question naturally arises if the

content of Theorem 2 could be proved without referring to

the Brouwer fixed-point theorem. We will see that this is

possible for certain simple mappings. For the general case

of a nonlinear mapping we have to modify the interval

arithmetic laws in order to perform the same proof.

Nevertheless it turns out that same weIl known existence

statements can be proved in this manner. Finally we note

that in [14] the inverse function theorem was used in order

to prove the existence of a fixed point for a special

mapplng.

We start by repeating same weIl known facts. The midpoint

operator or simply midpoint of areal interval

[a] = [a1,a2]
is defined to be the center of [a] :

1
m[a] = 2 (al + a2) .

If [a] and [b] are real intervals then

m([a] ~ [b]) = m[a] ~ m[b]

m(a- [b]) = a . m[b]

m( [a] :b) = m[a] : b

a E IR ,

b E IR I
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but, in general,

m([a][b]) # m[a] m[b]

m([a]:[b]) # m[a]:m[b] .

For interval vectors and interval matrices the midpoint is

defined via the components and elements, respectively.

similar rules as for intervals hold. For example, for areal

matrix A and an interval vector [x] it holds that

m(A[x]) = A m[x] . For two interval vectors (x] and (y]

we have m([x]+[y]) = m(x] + m[y] .

Consider now the real system

x = Ax + b

where the matrix A and the vector b are given. Assume

that for some interval vector [X]o we have f([X]O) !; [x]o

for fex) = Ax + b . We consider then the iteration method

[X]k+1= f([X]k), k = 0,1,2,... . Using inclusion

monotonicity of interval arithmetic it follows by complete

induction that [X]k+1 !; [X]k lim
k--+<x>

is a continuous mapping from the set

and therefore

k * .

[x] = [X] . Slnce f

of interval vectors into itself it follows that

* *
[x] = f([x] ) . Applying the midpoint operator to this

equation we get
* * * *

m[x] = m(f([x] » = m(A[x] +b) = Am[x] +b

which means that the center of
*

[x] is a solution of the
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equation x = Ax + b .

The preceding result holds under more general conditions.

Theorem 5. (See [16]). Let f : mn ~ mn be an inclusion

monotone mappinq wh ich has an interval arithmetic evaluation

f([X]o} for some interval vector [X]o with

f([x]o} ~ [X]o . Assume that the mappinq with domain

consistinq of the interval vectors [x] contained in [X]o

and with ranqe consistinq of {f([x)} I [x] ~ [X]o} is

continuous. Assume furthermore that for the midpoint

operator m(f([x]}) = f(m[x]} for all 0
[x] ~ [x] . Then

f : mn ~ mn has a fixed point
*

x in [X]o . 0

The details of a proof proceed exactly as in the preceding

special case.

Under practical aspects Theorem 5 is not very far reaching

slnce the mapping f is not allowed to contain any

multiplication andjor division. Tf this would be the case

the equation m(f([x]}} = f(m[x]} would not hold in

general, as we have seen above. Therefore the question

arises if it is possible to modify the multiplication and

division of intervals in such a manner that also for these

operations the midpoint of the operation can be obtained by

performing the operation with the midpoints. Furthermore in

order that the preceding Theorem 5 can be applied the new

operations have to be inclusion monotone. We introduce these

new operations simultaneously for real intervals and for
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eireular dise intervals in the eomplex plane. By

< m[a],r[a] > we either denote areal interval

Ca] = [r[a]-m[a] , r[a]+m[a]] or a eireular dise in the

eomplex plane where m[a] E ~ is the center and r[a] lS

the radius. We now define:

Let Ca] = < m[a] , r[a] > , [b] = < m[b] , r[b] > . Then

Ca] ~ [b] = < m[a] m[b], Im(a]lr[b]+lm(b]lr[a]+r(a]r(b] >

and (for 0 ([ [b»

(a] ~ [b] = < m[a] r(a] > ~ <~
m[b] ,

I

1 m(b]

m[b] - Im[b]12_(r[b])2

+ r[b] >
2 2'

Im[b] I -(r[b»

Note that in the ease of eireular dise intervals the

multiplieation "x" is identieal to the usual one.

See [5], Chapter 5.

The following result holds (see (16]).

Theorem 6. Assume that [a], (b], [e] and (d] are real

intervals or eireular dise intervals. Then

(1) a) [a]-(b] ~ Ca] ~ (b]

Ca] : [b] ~ Ca] ~ [b] (0 #- [b»b)

(2) Ca] ~ [e] and (b] ~ (d] ~

a) Ca] ~ [b] ~ [e] ~ Cd]

b) Ca] ~ [b] ~ [e] ~ Cd]

(Inelusion monotonieity)

(0 #- [d» -
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(3) a) m([a] ~ [b]) = m[a] . m[b]

m([a] ~ [b]) = m[a] : m[b]b)

(4) m[a] = m[b] = 0 ~ [a] . [b] = [a] ~ [b] . 0

Proofs can be found in [16]. Multiplication of an interval

matrix by an interval vector can be defined by using the

introduced operation "x" for intervals. In this case we

write [A] ~ [x] for the product.

We consider now two examples which show that using the new

operations more or less weIl known existence statements can

be proven by applying Theorem 5.

Example 2 Suppose that

n n-1
p(x) = a x + a 1

x + ... + al x + a
n n- 0

is areal polynomial. Let

. n-l n-2
p (x) = n a x + (n-1)a I x + ... + aln n-

and define for a given interval [x]

n-1 n-2
p' ([xJ) = n a [x] + (n-l)a l[X] + ... + a1n n-

where
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k
[x] = [x] ~ [x] ~ ... ~ [x] , (k factars) .

Furthermore let the real numbers C. I i = 1(I)n , be1

defined by

, i = l(l)n I

where X E IR , and let

n

öp([x],x) = ( 2
i=1

i-I
Ci-l[X] )H/~

be the interval arithmetic evaluation of the slope of p .

The index "H" means that the Horner-scheme has to be used

to compute the sum and "x" indicates that all multi-

plications have to be performed by the new definition.

Obviously

n

m(op([x],X» = 2 c .
i-l(m[x)l-1

i=1

Furthermore it is easy to show that for X E [x] it holds

that 0p ([x) ,x) ~ p' ( [x]) (see [1]).

Theorem 7. Let the real polvnomial p(x) be qiven and

assume that for same ~ 0
x E [x] and areal number r f. 0 we

have
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- ~ 0 0 ~ 0
X - r . p (X) + (1 - r . p' ([X] » ~ ([x] - x) ~ [x] .

h
. 0

T en p has a zero ln [x] .

Proof. Since op([X]o,x) ~ p' ([X]o) we also have

0 ~ 0 ~ 0

x - r . p(x) + (l-r.op([x] ,x) ~ «(x] -x) ~ (x] .

Define the real function f:IR~1R as

fex) = x - r . p(x) + (1 - r . op(x,x» (x-x)

and its interval arithmetic evaluation as

f([x]) = x - r . p(x) + (1 - r . op([x],x» ~ ([x]-x)

Then all assumptions of Theorem 5 hold which means that

has a fixed point
*

x in [X]o :

* ~ ~ *~ *~

x = x - r . p(x) + (1- r.op(x ,x) (x -x)
* *

= x - r . p(x )

where we have used the fact that for the slope
* ~

op (x , x)

the equation
* ~ *~ *~

p(x )-p(x) = op(x ,x) (x -x) holds. since

r #- 0 we have
*

p(x ) = 0 . 0

The proof of Theorem 7 can be generalized to functions

different from polynomials without any complications. In
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order to do this one has to explain how to compute

of([x],x) if f is not a polynomial. This was done by

R. Krawczyk and A. Neumaier in [9]. Furthermore Theorem 7

can be generalized to mappings from ffin to ffin . 0

Example 3 (Alefeld [3]). Consider the eigenvalue problem for

the real matrix A . Assume that (i\,x) is an approximation

to an eigenpair of A - In order to find bounds for i\ and

x it is sufficient to find bounds for JL and y for which

A(x + y) = (i\ + JL)(x + y) . (*)

since x + y is not unique we set y = 0 where s iss

defined by the equation 11xII = Ix I . Let the vector
00 s

y = (y.)1 be defined by

{

yi '
y. =1

JL

Furthermore set

i #- s

i = s

r = i\x - Ax

and

B = «(A-i\I) l,...,(A-i\I) l ,-x,(A-i\I) .1,...,(A-i\I) )s- s+ . n

Then equation (*) can be rewritten as

By = r + ysy

or as

y = Lr + (I-LB)y + L(y y)s

where L is some approximation of the inverse of B . It

has been shown in [3] that in dependence of r , L and B

one can find an interval vector [y]o = - [y]o

0 0 ~ 0 0
Lr + (I-LB) [y] + L([y]s[y] ) ~ [y] .

such that
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By Theorem 6, (4) we have
0 ~ 0 0 ~ 0

[y]s[y] = [y]s ~ [y]

and therefore

0 0 ~ 0 0

Lr + (1- LB) [y] + L ([ y] s ~ [y l ) ~ [y] .

Now define.

f(y) = Lr + (I-LB)y + L(y y)s

and

f([y]) = Lr + (I-LB) [y] + L([y]s ~ [y])

Then all assumptions of Theorem 5 hold. Hence f has a

fixed point
*

y in [y]o which is a solution of the

equation By = r + y y .s

5. Iteration methods. In the preceding chapters we have

already repeatedly used iteration methods

k+1 k
[x] = f([x] ), k = 0,1,... . (See the proof of Theorem 5,

for example.) We cannot give a survey of all iteration

methods which are based on interval arithmetic tools.

Instead we refer to [5] and to the other contributions of

this volume. We concentrate our discussion on the Interval-

Newton-Method for a single equation (see [5], Chapter 7):

Let f : D ~ IR1 --,) IR1 have an interval arithmetic evaluation

of the derivative for all
0

[x] ~ [x] where [X]o contains

*
a zero x of f. Then

[X]k+l = N[X)k n [X]k k - 0,1,2,...,

where

- f(m[x])
N[x] - m[x) - f' ([x])

is called the Interval-Newton-Method. If 0 ~ f' ([X]o) then

the sequence {[X)k} is weIl defined and lim [X]k = x* .
k-><x>
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Furthermore if d(f' «(x))) ~ 'Y d[x) , 'Y L 0 , (x) ~ (X)o ,

d
k+ 1

) < (
k 2 h

. .
then ([x) - e d[x)) w leh means that the dlameters

are eonverging quadratieally to zero.

It is well-known that the elassieal Newton-Method is

eubieally eonvergent if besides
* *

fex ) = 0 , f' (x ) -F- 0 ,

the equation
*

f"(x ) = 0 holds. In [4) we have

demonstrated by a simple example that this is not true for

the Interval-Newton-Method. However the following theorem

shows that we ean get eubie eonvergenee if we replaee

f'«(x)) by the eentered form or by the mean value form of

the derivative, respeetively.

Theorem 8. Let f : D ~ 1R1 ~ 1R1 have a eontinuous seeond

derivative in D and suppose 0 ([ f' ([X)o) , [X)o CD.

Define

f (m[x])

NM[x] = m[x] - f' ([ x]) n f' ([ x] 0)M

where
fM ([x))

denotes the mean value form of the

derivative (see [5]) and

[X]k+l = NM[X]k n [X]k .

* *
If f(x) = f"(x ) = 0 for some * o.

X E [x]

then

d[X]k+l ~ 'Y(d[X]k)3
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provided

0
d(f"([x])} ~ a d[x] , a > 0 , [x] ~ [x] .

The same result holds if the mean value form

fM([x]) of. f' is replaced bv the centered

form of f' . []

Details of the proof can be found in [4]. In concluding we

remark that the content of this theorem can be generalized

to systems of equations.
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