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Errorbounds for Quadratic Systems of Nonlinear Equations
Using the Precise Scalar Product

G. Alefeld,Karlsruhe

Abstract - Zusammenfassung

Errorbounds for Quadratic Systems of Nonlinear Equations Using tbe Precise Scalar Product. For
nonlinear systems of quadratic equations we show how the precise scalar product can be used in
order to compute and to improve inclusions for a solution. OUf main interest is the special case
which comes from the generalized eigenvalue problem.

Feblerscbranken für quadratiscbe Systeme nicbtlinearer Gleichungen unter Verwendung des genauen
Skalarprodukts. Für Gleichungssysteme des angegebenen Typs berechnen wir Einschließungen für
eine Lösung und verbessern diese unter Verwendung des genauen Skalarprodukts. Das Hauptinteresse
gilt dem Spezialfall, weIcher dem verallgemeinerten Eigenwertproblem entspricht.

1. Introduction

We consider the quadratic equation

y=u+Sy+ Ty2 (1)

where U=(Ui)is areal vector from JRn,S=(Si) is areal (n, n) matrix and T=(tijk)

is areal bilinear operator from JRnx JRnto JRndefined by TXy=(tl ktl tijk Xkyj)
for X= (Xi),Y=(Yi)EJRn. Ty2 is defined to be Tyy. The unknown vector is y=(yJ
In general a solution of (1) can only be computed approximately by an iterative
method. Furthermore if such a method is performed on a computer one has
to take into account rounding errors. We show how this can be done for the
quadratic (1) using the precise scalar product.

Our main interest is a special case of (1), namely the generalized eigenvalue
problem. Note that quadratic equations have already been considered in [1].
The special case of an eigenvalue problem has been discussed in [2J and [3].

2. The Generalized Eigenvalue Problem as a Quadratic Equation of the Form (1)

We consider the generalized matrix eigenvalue problem

AX=ABx (2)
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where A and B are real (n, n) matriees. We assume in this paper that B is
nonsingular. Under praetieal aspeets this is not very restrietive sinee in real
life problems B is usuaIly even symmetrie and positive definite.

Assume now that after using some weIl known algorithm for eomputing eigen-
pairs (see [9], for example) we have given a real approximation Afor a simple
real eigenvalue and an approximation x for the eorresponding eigenveetor. For
the exaet eigenpair (A+ ji, x + .Y)the equation

A(x+ y)=(}-+ ji) B(x+ y) (3)
holds. Let

IIxll 00=lxsl >0 (4)

where s is some index for whieh the infinity norm is taken on. Sinee x + y
is not unique we normalize x + y by setting

Ys=O

where y=(.Yi). Equation (3) ean be rewritten as

(5)

(A-AB) y-jiBX=(AB-A) x+ jiBy.

Defining the eomponents Yiof the veetor Y=(yi)EJRnby

(6)

Yi=~i,'

i=4=s

i=s

the last equation ean be written as

Cy=r+B(ysY) (7)
where

r=ABx-Ax (8)

and where C is identieal to A - AB with the exeeption of the s-th eolumn whieh
is replaeed by - B x. See [5].

If B is nonsingular - this was our general assumption - and for sufficiently
good approximations A and x it ean be shown that the matrix C is nonsingular
(see [8], for example). Assume now that this is the ease and let L be some
approximation to the inverse of C. Then (7) ean be rewritten as

y=Lr+(I -LC) y+ L(B(ysY)). (9)

This equation has the form (1)where u = L rand S = I - LC. The bilinear operator
T is defined by Ty2 = L(B Ys y)). W e omit to express the elements tijk of T explieitly
by the elements of the matriees Land B beeause this is not important in the
sequel. Note, however, that the last term in (9) eould also be written as

L(B(ysy))=(LB)(ysy)= ys(LB)Y

sinee the assoeiative law holds and sinee Ys is a sealar. The reason why we
use the first one of these equivalent expressions beeomes clear in Chapters 3
and 4.
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3. Computing an Enclosing Interval Vector

We now try to compute an interval vector [y] = ([Y]i) for which

u+Sy+ Ty2E[y] for all YE[y]. (10)

Then by the Brouwer fixed-point theorem the equation (1) has at least one
solution in [y]. We try to fmd [y] in the form

[y]=[ -ß,ß] e . (11)

where ß>O and e=(1, 1, ..., 1)TERn (This approach is motivated by the fact
that y=O is nearly a solution of (1) if u is "small"). By inc1usion monotonicity
(see [4], Chapter 1, Theorem 5) we have for YE[y]

u+Sy+ Ty2EU+S[YJ+ T[yJ2.
Hence

[w]:=u+S[y] + T[yJ2C[y] (12)

is sufficient for (10).

Following the laws of interval arithmetic we have

S[YJ=ctl Sij[ -ß,ß])=[ -ß,ßJCt1ISijl)
and

T[yJ2=
( .t ( t tijkYk)Yj)J-l k-l

=Ctl Ctl tijk[-ß,ßJ)[ -ß,ß])

= [ - ß2,ß2] (tl Ctl Itud))
and therefore

u+Sy+Ty2=u+[ -ß,ß]ISle+[ -ß2,ß2]ITle2

where ISI= (lSijl)and ITI= (ltijkl).

(12)holds ifT
Im[w] -m[Y]I+td[w] <td[YJ (13)

where m denotes the center, d the diameter and 1'1 the absolute value of an
interval vector (see [4], Chapter 10).

We have
m[w]=u, m[y]=O,

d [w ] = 2 ß ISie + 2 ß21 TI e2,

J[y] =2ße.
Hence (13) holds ifT

lul+ßISle+ß2ITle<ße. (14)
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Defining
p=llull<XJ'

K=IISII<XJ,

t=m~x{ti ktiltijkl}

(15)

(16)

(17)

the last vector inequality holds if

p+ßK+ß2t<ß.

(For the bilinear operator T=(tijk) a norm can be defined by

11TII CX)= sup 11 Tx y 11 <XJ'

IIxll",= lIyll",= 1

It is easy to prove that 11TII<XJ<t where-t is defined by (17). However, in general
equality does not hold. See [7], for example).

Hence we have the following result.

Theorem 1. Let p, K,t be definedby (15)- (17).Assume that K< 1,
(1-K)2-4pt>O and let

1-K+«l- K)2_4pt)1/2
ßl/2 = (18)

be the solutions of the quadratic equation

ß2t +(K-1)ß+p=0. (19)

1f ßE[ßi' ß2] then the equation (1) has at least one solution y* in the interval
vector (11). 0

Please note that Theorem 1 gives only sufficient conditions for (10).

In the special case of the equation (9) the preceding theorem holds for

p= IILrl1 <XJ

K= 111-LCII <XJ

t = IIILIIBIII <XJ.

If we choose L:=C-i in (9) then the equation (9) reads

y= C-i r+ C-i(B(ysY))

(20)

(21)

(22)

(23)

and the condition (10) can be written as

C-i (r+ B([y Js [Y)) c [y] (24)

(Note that for a real matrix M and interval vectors [x) and [y] it holds that
M([xJ + [yJ)=M[x] +M[yJ).

If we would have written the equation (9) in the form

y= C-ir+(C-i B)(ysY)
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then we could not rewrite the condition (10) in the form (24) since in the set
of interval vectors and interval matrices the associative law does not hold in
general.

4. Improving an Enclosing Interval Vector Iteratively

After applying the preceding theorem one can try to improve the computed
inclusion using the foIlowing iteration method:

[yJO=[ -ß,ß]e

[yJH 1= g([y Jk), k=0,1,2,..}
(25)

where
g[y] =u+S[y] + T[y]2. (26)

This iteration method computes a sequence {[yJk}f=o of interval vectors for
which the foIlowing result holds.

Theorem 2. Let K<l, (K-l)2-4pt>0 and let ßl, ß2 be defined by (18). Then
if

ßl <ß<ßl +ß2
2

(27)

it holds that

a) Y*E[yJk

and

b) lim [y]k= y*.
k -->oc>

Furthermore y* is unique in [y JO. 0

We omit the details of a proof.

Please note again that the result also holds for

g([y])=Lr+(I -LC)[YJ +L(B([YJs [YJ»

if p, K and t are defined by (20) - (22).

(28)

In the special case L:=C-1 we can rewrite (28) as

g([yJ)= C-1 r+ C-1 (B[YJs [YJ)

=C-1(r+B([yJs [YJ». (29)

At first glance it does not make much sense to set L:=C-1 since normaIly
C-1 can not be represented exactly on a computer. However, there are some
good reasons why this makes sense. In the first place the term (1- LC) [yJ
becomes zero, which means that it has not to be computed in every iteration
step. Furthermore the fact that C-1 can not be represented exactly has not
to bother uso It is weIl known that there exist algorithms using the precise
scalar product which deliver an optimal indusion of C-1. Hence we only have
to care for the accurate computation of r+B([y]s [5'J) in each iteration step.
How this can be done is described in Chapter 6 for the general quadratic (1).
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5. A Heuristic Procedure for Computing an Enclosing Interval Vector

Assurne that the assumptions of Theorem 1 hold such that, using this theorem,
we can compute an inc1uding interval vector for a solution of (1). From a practi-
cal point of view one is interested in a very good inclusion. Therefore the choice
ß:= ß 1 suggests itself. However, as the proof of Theorem 1 shows this choice
is only sufficient for g([yJO)c[yJo. One could try to find [yJo with a smaller
diameter such that g([yJO)C [yJOby the followingiteration method

Set [zJo:=O;

[ZJk+1 :=conv{u+S[zr+ T([zr)2, [ZJk}

until [z]k+ 1C [ZJk;

[yJo:=[zJ\ (30)

where conv {., .} denotes the convex hull of two interval vectors.

By inclusion monotonicity of interval arithmetic we have [zr C [ - ß1> ß1Je
for all k provided Theorem 1 applies.

Practical experience shows that applying Theorem 1 and the iteration method
(30), respectively, nearly needs the same computing time. Using (30), however,
has the advantage that it may still work if Theorem 1 is not applicable.

Of course these remarks hold also in the special case of the equation (9) which
comes from the generalized eigenvalue problem (2).

6. Using the Precise Scalar Product

In order to get inclusions with small diameters on a computer one should try
to keep the rounding errors as small as possible when performing the iteration
method (25).

Our quadratic equation is an exampie for which the so-called precise scalar
product can be applied (see [6J) to achieve this.

We show that the components of the right-hand side of the equation

y=u+Sy+ Ty2

can be computed by a single scalar product.

The only problem which has to be explained is how to reduce Ty2 to one
scalar product. This can be done in the following manner:

We have by definition

Ty2=
( .t ( t tijkYk)Yj).J-1 k-1
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Define now

rijk = f t(tijk Yk)

where f t ( .) denotes the floating point multiplication.

Furthermore let

Pijk =G:~j T.( Ykl)

be the precise scalar product. Then it holds exactly

tijk Yk = rijk + Pijk'

Therefore we can write

Ty2 =
(.t ( t (rijk + Pijk) ) Yj)J-l k-l

=
( i ( i rijk Yj+ i Pijk Yj ))j=l k=l k=l

and OUf problem is solved. Note that when performing the iteration method
(25) we have interval vectors on the right-hand side. In this case a similar idea
can be applied.

If we specialize our quadratic equation (1) to the eigenvalue problem (2) then
u, Sand T are in general not exactly representable on the machine and the
situation becomes much more complicated. We do not discuss the general case
but only the choice L:=C-1. As we have seen at the end of Chapter 4 we
ha ve in this case

g[y] = C-1 (r+ B([Yl [Y])).

Using the same ideas as before the components of the expression r+B([y]s [Y])
can be computed each by one scalar product. We do not repeat the details.

We dose with a final comment. Since it is c1ear that in general we can not
compute C-1 exactly it seems to be möre favourable to perform the iteration
method

[y r+ 1= IGA( C, r + B([y J~ [Yy)),

k=O, 1,2,...

where IGA(', .) denotes the result of the Gaussian algorithm. Note, however,
that for areal (n, n) matrix M and an interval vector [b] one can prove that

M-1[b]cIGA(M, [b]).

See [4J, Chapter 15. If one assumes that this also holds if rounding errors are
taken into account - this has not been proved - then it is c1ear that the
iteration method (25) with g [y] defined by (29) has to be preferred in order
to get narrow inc1usions.
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7. Numerical Examples

Consider the symmetrie matriees

12

1

A=I-1
2

1

1

14

1

-1

1

-1 2 1

1 -1 1

16 -1 1

-1 12 -1

1 -1 11

and

from [9J, p. 313.

As A we ehoose the first six digits of an approximation to an eigenvalue given
in [9J:

A=0.231060 X 10+1.

Analogously we ehoose the eorresponding eigenveetor approximation

x=

- 0.204587

0.931721 x 10-1

0.240022507111 ..

-0.166395

0.630418 x 10-1

(The third eomponent whieh has the largest absolute value is exaetly the approxi-
mation given in [9]. This eomponent is not ehanged by oUf algorithm).

Setting C=L- 1 we get for ß1 from Theorem 1

ß1 =0.4321587418763 x 10-5.

After two iteration steps of method (25)with g definedby (29)we get the follow-
ing inc1usions for the eigenvalue A+ ji and for the eomponents of the eorrespond-
ing eigenveetor x + Y:

A+ J!E[0.231060432134g x 101]

[ -0.204586718184~J

[0.9317209774351 x 10- 1J
X+YE I [0.2400225071110J .

[ -O.166395354479~]

[O.6304176531O6~X 1O-1J

10 2 3 1 1

2 12 1 2 1

B=\ 3
1 11 1 -1

1 2 1 9 1

1 1 -1 1 15
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The computation of ß 1 needs 6063 ms. The overall computing time is 10022ms.
Using (30) we have [ZJk+l C[Z]k after 4 steps. This needs 7630 ms. Mter three
iteration steps of (25) with (29) we get the same final inclusions. The overall
computing time is in this case 10012 ms.

Practical experience shows that for good approximations A and x both
approaches need nearly the same computing time. If, however, Theorem 1 is
not applicable then the second approach still works if the approximations are
not too bad.
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