Rigorous error bounds for singular wvalues of a matrix using

the preclise scalar product

G. Alefeld

Summary. Assume that there are given a real approximation o
to a simple singular value and real vectors u € Rn and

v E Rm a; approximations to the corresponding right and left
singular vectors of a real (m.,n) matrix A . Then we consid-
er the problem of computing rigorous errorbounds for these ap-
proximations. Furthermore we consider an iteration method

which improves these bounds iteratively.

0. Lnt?oduction
It is well known (see [3],[5]; for example) that if A is a
real (m,n) matrix with rank(A) = r then there is an or-
thogonal (m,m) matrix V and an orthogonal (n.,n) matrix
u such that

viay = 1 (1

where (in the case m 2 n )

e
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with o 2 O &...2 O > o Feo.F O = 0. The o., i= 1{1)n,
1 2 g r+1 n X

are called the singular values of the matrix A . The columns

ug. i = 1(1)n , of the matrix U are called the right singu-

lar vectors of A . Correspondingly the vy i = 1(1)m , are

called the left singular vectors of A . The representation

A =V I uT of A , which follows from (1) is called the sin-
gular value decomposition of A . If 0i is a singular value
of A then ci is an eigenvalue both of A A and of AAT =

Furthermore the vectors u, and v; are eigenvectors of A A
and AAT , respectively. A singular value Ui is called sim-

< 2 2 p x T 23
ple if oi is a simple eigenvalue of both AA and A A

The singular value decomposition has a series of important

applications in numerical analysis. See [5]. for example.

Assuyme now that there are given a real approximatjon o to a
simple singular value and real vectors u € r" and v € g

as approximatjons to the corresponding right and left sjingular
vectors of a real (m,n) matrix A . Then we consider the
problem of computing riqoross eriorbounds for these appyrox-
imations,

The problem of improving approximations which have been
delivered by one of the well known algorithms for computing
the singular value decomposition (see [5]. for example) was

already treated in [4].

In this paper we first present a nonlinear system of m+n+2
unknowns whose solution delivers an exact singular value and
the exact components of the right and left singular vectors
belonging to this singular value. This system was already

considered in [4].

We then show that for sufficiently accurate approximations we
can compute intervals in which the exact singular value and

the components of the singular vectors are contained.



Starting with these inclusions we present an iterative method
which improves these intervals repeatedly and which (theoreti-
cally, that is if no rounding errors are involwved) is

convergent to the exact values.

Finally we perform a detailed analysis of the proposed method
if it is performed on a computer using a floating point sys-
tem. For this discussion we assume that the so-called precise
scalar product introduced by U. Kulisch and W. Miranker is
available. See [6] and [7]. for example. The precise scalar
product exists as a part of the programming language PASCAL-
SC. See [6]. for example. This programming language is mean-
while implemented on a series of microcomputers like the APPLE
Ile and the IBM personal computers. The precise scalar product
can nowadays also be used worldwide on 511 IBM machines. See

[6] for details.

In the last chapter we present some numerical examples. The
presentation of the material assumes that the reader has a
certain basic knowledge of interval analysis. See [1]. for ex-

ample .

1. Computing bounds and their improvement

Let there be given a real {m,n) Matrix A, let 01 and 02

be approximations to the same simple singular value of A and
n . .
assume that u € R and v € R" are approximations to the

corresponding right and left singular vectors. (Usually oT =

02 but we do not necessarily assume equality.) Then we con-

sider the nonlinear system

Alu + y) = lo‘ - u‘! (v + z) (1)
AT{V + z) = laz B uzl (u + vy) (2)
(u o y) (u o y) =1 (3)
(v & 27V o Z) =i (4)

consisting of m+n+2 equations for the unknown real scalars

u, and uz and the unknown vectors y € " and z € Em.



If this system has a solution
lows that

(v + ZJTA {u
and

fu + y)TAT(v

and therefore o + = 0, +
1" % 2
if ag:= .01 + u1 = 02 + uz 2 0
of A and u + y and v + Z
left singular vectors of A .
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then it fol-

From this it follows that

o

is a singular vector

are the corresponding right and

In order to solve the equations (1)-(4) we rewrite them as

Ay - 0,2 - u,Vv = O
-0,y ¢ Az - uu =0
2u' vy = 1
T:
2v Z =
Defining the (m+n+2 ,m+n+2) matrix
i -0
A 1Im
-
-a
Zln A
B =
2u 0
0 2w’
L \wnJ
n m
and the vectors w and r by
[y ]
z
m+n+2
w = Sf el and r =
Y
L u

Au +
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u,z
+ uzy
Yy y
Z Z.
o 1} m
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then these equations can be written as
Bw = r + f(w) (7)

m+n+2 m+n+2
where f: R - R and

flw) = . (8)

We now show that the matrix B is nonsingular provided

01,02 P U and v are sufficiently accurate approximations
to a simple singular value and to the corresponding right and
left singular vectors. By continuity arguments this follows

from the following Theorem 1.

Theorem 1. Assume that o is a simple sjngular value of the

rea (m.n) matrix A and let u and v be the correspond-

ing right and left singular vectors of A belonging to o .

Then the matrix

[ A -ol -v 0
m
-al AT 0 -u
n
T (9)
2u o 0 0
T
L © 2v 0 o |
is _nponsingular. (This matrix is obtained from B by replacing

the approximations by the exact values.)

Proof. We have to show that the linear system

Ay - 0z - vu, =0 {10)
T
~-gy + A z -~ up, =0 (11
T
2u y =0 (12)

T
2N = U 13}



has only the trivial soclution u1 = u, = o, y = 0, z = 0. By

definition of o,u and v we have the additional equations

Au = ov (14)
ATV = ou (151}
uTu = 1 (18)
VTV =, (17)

Multiplying (10) by vT from the left, using (15) and (17)

and finally taking into account (12) and (13) we obtain

T T T
0 = v Ay - av Z - Vv vu‘ =
T T
=ouy-ovz-u =
:—u‘_
Similarly it follows that u2 = 0 . Therefore (10) and (11)
read
Ay - 0Oz = 0
T

from which it follows that

T
A Ay - oATz = ATAy - ozy = 0 . (18)
If y # 0 then either vy = t+u : t 0 ., which because of

(12) contradicts (16), or y #* teu . In this case it follows

from (18) that the matrix ATA has two linearly independent

eigenvectors u and vy beloﬁging to the simple eigenvalue
2 T .. .

of A A . Therefore y = 0 . Similarly it follows that

o
z = 0 .



The equation (7) is the starting point for computing bounds
for the unknown terms in the equations (1)-{4). Assume that
o S T

1 2
that the matrix B8 defined by (5} is nansingular. Assume that

y and 2z are sufficiently good approximations:  such

L 1s an approximation to the inverse of B or the exact in-

verse of B itself. Then the equation (7T} can be rewritten as

w=Lr + (I-LB)w + L = flw). {(19)
We now determine an interval vector [w] = [[w}i) for which
Lr + (I-LBlw « L + fi{w) € [w] (20)

for all w € [w] holds. Using Brouwer's fixed point theorem
it then follows that the’equation {19) has at least one solu-
ticn  w* in [w] . (The application of Brouwer's fixed point
theorem can in this and similar cases ke avoided. It s plan-

ned to discuss this in a more general setting).

In order to compute an interval vector [w] for which (20)

holds we try to find [w] in the form
(wl = [-B.B]e (21)
where 0 ¢ B € R and e = (1,..., 1) € R

Because of the inclusion monotony of interwval arithmetic (see

[1]. Chapter 1. Theérem 5) it holds for w € [w] that
Lr + (I-LB)w+Lflw) € Lre(I-LB)[wlsL-F({w]) =: (k]
Therefore (20) holds if
(k] = tr « (1-tB)[w] +» L = f((w]) € [w] . 122)
This inclusion holds iff for the centers m{w] and m[k] and

the diameters d[w] and d[k] of [w] and [kx] the in-

equality



Im{w] - m{kI1 » 3 alk] ¢ 5 dalw] (23)

holds. The definition of m and d can be found in [1].

Chapter 10, for example.

From (21) it follows that

m[{w] = O {2%)
Furthermore
m[k] = Lrx {25)
and
dlw] = 28 * e . (28)
Finally using (21) it follows that
alk] = oftr « (1 - LBI[wW] « L + ¢[w]) (27)
m
<]
|
2 1En|
= 2BI1 - LBle + 2B ILI - | |
| n |
Lo ]
i 1 i : .
where e = (1,....1]) € R, i = m.n . Hence (23) holds 1i1ff
m
I e
2 n
itr] +8 |1 - LBle + BT ILI] - e | s Be . (28)
1] n |
[ |
Defining
e = Il tr Il (29)

x = I T -8 |l : (30)



2w ey @ e Il (31)

then (28) clearly is wvalid if

g + KB + 822 £ B

or

282 « (x - 1)B + @ 5 O (32)

2
holds. Assume that wx < 1 and (x-1) - 4p2 2 0 . Then the

quadratic

282 ¢ (x - 118 + o = ©
has the positive zeros
0
8 o LI BT /{t-x}z - 4p2 (33)
/2 22 :

Hence we have the proof for the following result.

Theorem 2. Let ¢, x and 2 Dbe defined by (29), (30) and
2
{31). Assume that « < 1 and that {1-x) - 4pf 2 0 . 1f then

. h .
8 € (B,.8,] wnere B, ana B, (B, < B,) are defined
by (33) then the eguation (19) has at least one solution w*

in the interval vector [w] = l[w]i] where [w]; = [-8.8]. o

A solution w* of the equation (19) is of course a solution
of (7) if L is nonsingular. Under the assumption « < 1 of

the preceding Theorem 2 this is always the case since it

follows from [II - LBH_ = ¥ ¢ 1 that the inverse of

I-(I - LB) = L8 exists.

We now consider the following jteration method:



[w] = [-B.Ble
et B (34)
"
fw] = hifwl ), &k =90,1,2,... .
where
hi[wl) = Lr +« (I - LB)[w] + L - f([w]) . (35)
N o _
This method computes a sequence {[w] }k—o of interval
vectors.
The following result concerning (34) holds.
Theorem 3. Assume that wx < 1, {w - 1]2 - 4pf2 > 0 and let
Bt'Bz be defined by (33). 1f then B satisfies B1 s B <
< (B, B,)/2 then (34) delivers a sequence of interval
et : :
vectors {[w] }k-ﬂ with the properties
k
wr € [Ww]® ., k=0,1,2,... (386)
and
11m[w]k = Wt
(37)
Koo
where w* 1is the unigue solution of the equation (19) in
o
[w]
Proof. By Theorem 2 there exists at least one solution
wt € [w]® of (19). If w* € [w]k which is the case for
k = 0 then 1t follows by the inclusion monotony of interwval

arithmetic (see [1]. Chapter 1, Theorem 5) that
wt = Lr + (I - LB)w* + L + flwtr)

k k k+1

€ Lr » (I - LB)[w]" » L - #([w]) = [w]™©"

Hence (36) holds.
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1

In the proof of Theorem 2 we have shown that [w] = hl{w]ol c

c [w]® holds. Assume now that

o k

1 =
(w1® 2wl 2...2 W¥ " 2 [w]
holds for some k 2 ' which is the case for k = 1 . Then

using inclusion monotonicity again it follows that

k

w1 = ned® N 2 netwd™r = o ™t!

5
k F

Therefore {[w] }k—n forms a nested sequence of interval

vectors. Hence there exists an interval vector [w]* for

which [w]* = 1im[w]k . We show that d[w]l* = 0 holds.

Kk *oe
k =
Because of w* € [w] it then follows that (37) holds and
that w* is unique in [w}o

In order to prove d{w]l* = 0 we use the notation
Kk
e = talw] i

and take into account that for two intervals [3] and [b]

the i1nequality
af{fal « [bl) £ 1[alt - da[b] + d[a]l - t[b]I

holds where l*1 denotes the absolute value of an interwval.
See [1]. Chapter 2. Then by the definition of flw) we get
that

'd([ug“ - [21%) :

K

atlu,1 + v

atfifw)®n)
K. T K
al-([yl")y - [yl

! dt—t[z]le . [z]k) d
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1w, 116023 « alw,1"10y1%)

2
< i

[T g s

RISl

m k K
i 215‘1[2]116[2]i |

since [w]® € [W]® it follows tnat

S e i el ) a0
d. B.e +f d,-e e
n n n
g, "Bce «B-a e e
atf(wlk)) < = 2-B-d . .
Znﬁdk _ n
i Zdek J L m J

Using this inequality we get from (34), (35) that

ke 1 K K
dlwl "' = )1 - B - awl® ¢ IL] - dtF([w]™N)
m
e
el"l
s d, T - LBl & ¢ Z'B'dk'lLl' )
m

Using the definition of x and 2 it follows from this

equality that

d < (x + 282) dk

B
. 1 3
Since B < = - it follows that «x + 2B2 < 1

"

Hence from (38) we have 1lim dt[w]k] = dl[w]l*)
bt

Theorem is proved.

(38)

o and the



2z

2. Roupding error analysis

In order to make the discussion following more easy to under-

stand we start with some general remarks:

1. From the basic properties of interval arithmetic it follows
that for a real nonsingular Matrix B and an interval vector

[z] it nolds that

(8 'z1 z € [z2]} c 8" - [z] (1)

where on the right-hand side the product B s {z] is formed
by following the rules of interval arithmetic. See [1]., Chap-

ter 10.

If on the other hand 1GAa(B,.[2]) denotes an interval wvector
which results if Gaussian elimination is applied to a system
with B as coefficient matrix and with [z] as right-hand

side then it also holds that
(s"zl z € [2]} < 16A (B.[2]). (2)

{Nate that 1IGA(B,[z]) 1is not unique even if no rounding
errors occur. It is strongly dependent on the fashion how

pivoting is performed.)

In [2]. Lemma 1 it was shown that always

-1
8 - [2]) € 16at8B,[2]) (3)

where in general the proper inclusion sign holds. The computa-
tion of B ' [z] requires approximately three times the
amount of work which is necessary to obtain IGA(8.[z]) . oOn
the other hand (3) shows that the set of real vectors

{B_1ztz € [z]}] 1is in the set theoretic sense usually better

i -1
included by 8 [z] then by 1GA(B,[z]).

Consider fiow the case that we are choosing L := B

in

; =1 . . : % i
(1.35). Since B 1s a point matrix the distributive law
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holds (see [1]. Chapter 10) and therefore

HEEGRTE oo B e B0 S0

= 8 {r » Filw])}

Because of (3) we then have

hi[wl) = B"' - [z] < 16A(B.[2])

where [2] := r + f([w]). In other words: The inclusion (1.22)
which guarantees the existence of a solution surely holds for
hi[w]) = a"'{r + F([w])} if it holds for IGA(B,r + f{[w]))

but not necessarily vice versa.

Furthermore using (3) it follows by complete induction that
= [+] .
for an interval vector [w] = [-B.Ble determined by Theorem

1.3 the iteration method

o
wl1® = [-8.8]e
(&)
1 K

wi**? = 16A(B.r o FIWI")), Kk = 0.1,2,...
delivers a sequence of interval vectors which in each step
gives a cruder inclusion of w* than (1.34), (1.35) with
L := B" . Since we are interested in computing close bounds
in as few steps as possible we use (1.34), {(1.35) with
L := 3_1 {instead of (4) which with respect to the computa-

tional amount would be favourable.)

We arée now going to discuss how the method (1.34), (1.35) be-

haves if it is performed using a floating point system.

Let b > 1 be the basis of the number system and let t1 be
the mantissa length of a single length floating point number.

For the discussion following we make the assumptions (a)-({c):

la) For two machine intervals [a] and [b] it holds that

"

f2([al=[bv]) [l1‘€11[[a]*[b]l‘.(1+czl{[a]'[b])23 (s)
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where
€ {+ -,%x,/}.
[a1*[b] = [([al+(b]),. ([al*[v]),].
i—t‘
le 1. le,l s e = b
7
f2(-) denotes the result of a machine interval operation

taking into account rounding of the bounds outwards to the
next machine number. (S) states that the lower bound
t{a]*[b]l1 of the exact result is rounded downwards to the
next machine number (if rounding is necessary at all). The
analogue holds for the upper bound. Note that (5) (and also

{6) below) do not hold in general in the underflow range.

(b) We assume that the so-called precise scalar product pro-
posed by U. Kulisch and W.L. Miranker (see [6]. [7]) is avail-

able on the computer:

For two interval vectors [x] = ([x]il ana [y] = ([y]i}

which have machine intervals as components it holds that

n
fﬂtif,[XJi'[y]i) = fty - % L c21023 (6)

where

.
(g
-
—

1
~
Q

-

a
N
(-]

'[ [x]
1=

is the exact scalar product and again
fegl » Bl 5

Normally the precision of the precise scalar product is compa-
rable to double length accumulation and rounding to single
length after completion. If, however severe cancellation of
terms occurs (which 1is usually the case i1f one has to compute

residuals) then it is much more accurate.
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From (6) it follows that

n
(x1; [yl oel-1.101 € [x1 - [y,

1 i=1

n M

n
fo( € [x];[0v], €
i=1 i

where again € = b -

{c) Wwe assume that the given matrix A 1is exactly represent-
able on the machine. The same we assume for a‘.pz.u and v

1f we have a binary machine then the matrix B (see (1.5)) 1is
also exactly representable. If this is not the case then 2u
and ZUT can in general not be computed exactly and rounding
errors have to be taken into account. This means that on the
machine we have a matrix B which differs from B in the

3 8 T
elements where the vectors 2u and 2v are located.

We assume that there is known an interval matrix [BI] which

is exactly representable on the machine such that

8! € [(BI1] < 2 s e-[-1.1]-la"| « [-1,1]-E (8)
1-t1
where € = b . If ! is well conditioned with respect
to small changes of the vectors 2uT and ZVT in the matrix

B then E is a real nonnegative matrix whose elements are
exactly representable on the machine. If it is even true that
B =B then € = 0 . The relation (8) then states that the

inverse of B can be included on the machine by an interval

matrix [BI] whose elements have bounds which differ by

at most the distance of two neighbouring machine numbers.
Using the precise scalar product (6) such a close inclusion of
the inverse of B8 can be computed even for very badly condi-
tioned matrices B . See [8]. If B is not exactly represent-
able (B = B) then using tns_giecise scalar product one can

compute an interval matrix [BI] for which (8) holds with

1-t
-1 1 . . .
NENl = e-liB H-HRBH. € = b . Ry is the matrix which

one obtains from B8 by setting all elements equal to zero



. : T T
with the exception of 2u and 2v

With . we denote terms which are computed by (1.34) and

k e 2
{1.35) on the machine. For example [w] is the interval

vector actually computed on the machine. Furthermore we define

[(x1% := r » f{E;ikl.

The components of [x]k are computed using the precise
scalar product. For example, in order to compute the first m

k
components of [x] we form the vectors
k,T
SRR T
and

K, T
! R -un. [2]3)

each with n + 2 components and compute the preclise scalar

product. Analogously we proceed for the remaining n + 2 com-

ponents of [x}k . Because of (7) we then have

0<% € 3% « er[-1.17-10x3%1 . (9)

The interval wvector [w]'“1 is computed by

: (w1 5 eorBE] 5 x1%)

where the right hand side 1is again computed by using the pre-
cise scalar product. Using (7) and (9) we then have for the

actually computed iterates
[wlk*' = ¢2 ([BI] + [x]K)

S fFRUB Teee[-1,13 18 "o [-1, 1T B+ ([x]%ve-[-1.171[x]1¥1))
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c (8 Teer[-1.13-18" "1e[-1. 17 Er e ([x) e [0 13- 1 DxD 500 e

evl=t. 4118 Yses[=r.ado 18" Yal=1.11Fl %

-

IIx)%ee[-1.13- 1[x3%1 1

»

8 Ve xd¥ e -1.11  13es3e2¢e?) et V1 1 ] 1

In

[_1.1]-3-{!+EI'?‘|["]RI

+

-

[—1,!]-(1»:}-?-I[x}kf-

From this we obtain

atwl™* ! ¢ 187 1eaDg s 203es3e e 1 g s

2 — K
+ 20r+e) B ] L.

We now assume (without serious restriction) that the interval
vector ([w]° = [-31.ﬁ1]e computed by using Theorem 1.3 1is
exactly representable on the machine. (If this is not the case
then it is sufficient to round upwards all operations when
EETpUti"g 8‘ by formula (1.33).) It therefore holds that
[w]° = [w]o . By forming intersections after each iteration
step in (1.34) it is guaranteed that all iterates are contain-
ed in [w]® = [w]® . Defining

— k
d, = Nalwl™n

5 = 28,2 = 1 -J1-5p02 < 1

1-t
€ = b !
E =aEn
Z -1
s = 202 + 3¢ » )-8 M <0 1Dx1% 1

w?
"
~
g
£
*
m
i
~N
s
(o |
x
e
o
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we get

£ &d + e€s + Es (10}

from the last inequality. For the proof of (10) it is suffi-

cient to note that similarly as in the proof of Theorem 1.3 it

follows that

-1 i =
I8 |u[x}k £d, v 2" ﬂ1 + |8 1] - e
Defining T := €S + TS we get from (10) that
Ek” . 6ko‘l—60 ‘{Bk ¢ BN 4 cus & 1.}__1_

and therefore

k+1 = T
d d
ket 0 o * 1-8
z 6k01 5 , £s5 + €5
o 1 - b

This inequality can be interpreted as follows:
Since by assumption & < 1t the first term tends to zero for
k + = . The reachable precision on the computer is therefore

determined by the second term. For sufficliently accurate ap-
1

‘proximations ,. ©,. u and v and if s~ I_ is not large
we have 5 ¢ 1 . See the definition of ] in dependence of e
and £ . Therefore under these circumstances the denominator

of the second term is not much smaller than one. Under the

3 o 3
same assumptions 1Ix]71 has small components. If finally the
inverse of B is well conditioned with respect to small

1-t
1

changes in B of order s b in those elements where

E
T T ~ -

the vectors 2u and 2v are located then also € will be
small. Under these assumptions it is therefore guaranteed that
we get small diameters for the components of the interval

vectors computed on the machine.
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3. Numerjca xample

We consider the (5.3) matrix

1 6 11
2 i 12
A = 3 8 13
& 9 14
5 10 15

for which the matrix I from (0.1} reads

AN 120 L 0 0
0 ZohBD o 4]
0 o 0
0 0 0
0 0 0

We want to include the largest singular value and the corre-
sponding right and left singular vector. We assume that we
have given approximations which have relative precision of
1079,

2

(:‘."l = 02 # 0.351 272 233 x 10 z

0.201 664 911

c
Q

0.516 B30 501 3
0.831 996 082

0.354 557 057
0.398 6396 370

v 8 D.442 B35 683 -
0.486 974 996
0.531 114 309
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Using these values we get for B1 defined by (1.33):

B, = 0.335 748 344 331 x 1072

z |
After one step of {1.3&4), (1.35}) with L = B we get the

following inclusions:

9. = 8, e [ 0.351 272 233 33_]

[o.201 8B4 911 19§]
u € [o.516 B30 501 33_]

[0.831 936 091 592]

[o.354 ss7 o571 03_]1 1
[o.398 696 369 93 _]
v € (0.442 835 682 9__]

[0.486 97¢ 995 9213

| [0.S531 114 308 aai}

o .. xx;] denotes an interval with lower bound 0 ... xx7
and upper bound 0 ... %xxB8)

In all computed examples the bounds were similarly close. The
example has been computed using an IBM-PC . In PASCAL-SC a

floating point number has 12 decimal digits in the mantissa.
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