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Rigorous error bounds for singu~ar va lues o( a matrix using

the precise scalar product

G. Ale(eld

Summarv. Assume that there are given a real approximation 0

to a simple singular value and real vectors u E Rn and

v E Rm as approximations to the corresponding right and left

singular vectors of areal (m.n) matrix A . Then we consid-

er the problemo( computing rigorous errorbounds for these ap-

proximations. Furthermore we consider an iteration method

which improves these bounds iterative~y.

o. Introduction,

It is weIl known (see [3J.[5J. for example) that i( A is a

real (m.n) matrix with rank(A) = r then there is an or-

thogonal (m.m) matrix' V and an orthogonal (n.n) matrix

u such that

VTAU = r ( 1 )

where (in the case m 2 n )
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with 0, ~ °z ~...~ °r > °r+1 =...= on = O. The °i" i= 1(1)n.
are called the sinQular values o~ the matrix A. The columns

u.. i = 1(1)n . o~ the matrix U are called the right singu-~

lar vectors of A. Correspondingly the vi' i = 1(1)m . are
called the le~t singular vectors o~ A. The representation

A = V r UT of A . which follows ~rom (1) is called the sin-

gUlar value decomposition o~ A. I~ °i is a singular value
~ 2.. T E A

T
o. Athen 0. ~s an e~genvalue both of A A and o. A

~ T
Furthermore the vectors u. and v. are eigenvectors of A A

T 1 ~
and AA . respectively. A singular value

ple if O~1. is a simple eigenvalue ofboth

o. is called sim-
1.T T

AA and A A

The singular value decomposition has aseries of important

applications in numerical analysis. See [5). for example.

Assume now that there are Qiven a real approximation 0 ~
. . E

n E R
m

s1.mcles1.nQularvalue and real vectQrs u R and v

as aDDroximations to the correspondinQ riQht and left sinQular

vectors of areal (m.n) matrix A . Then we consider the

Droblem of comDutinQ riQQ.LQ..-;~i...~.L~~ for th~se aDDrox-

imations.

The problem of improv~ng approximations which have been

delivered by one of the well known algorithms for computing

the singular value decomposition (see [5].

already treated in [~].

for e)(ample) .was

In this paper we first present a nonlinear system of m"n"Z

unknowns whose solution delivers an exact singular value and

the e)(act components of the right and le~t singular vectors

belonging to this singular value. This system was already

considered in [~].

We then sh.OW that for sUfficiently accurate approximations we

can compute intervals in which the exact singular value and

the components of the singular vectors are contained.
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Starting with these inclusions we present an iterative method

which improves these intervals repeatedly and which Itheoreti-

cally. that is if no rounding errors are involved) is

convergent to the exact values.

Finally we per form a detailed analysis of the proposed method

i1 it is performed 00 a computer usiog a floating point sys-

tem. For this discussion we assume that the so-called precise

scalar product introduced by U. Kulisch and W. Miranker is

available. See (6] and (7]. for example. The precise scalar

product exists as apart of the programming language PASCAl-

sc. See [6]. for example. This programming language i5 mean-

while impl.emented on aseries of microcomputers like the APPlE

IIe and the IBM personal computers. The precise scalar product

can nowadays also be used worldwide on all IBM machines. See

(6] for details.

In the last chapter we present some numerical examples. The

presentation of the material assumes that the reader has a

certain basic knowledge of interval analysis. See (1]. for ex-

ampl,~ .

1. ComputinQ bounds and their improvement

let there be given areal Im,n) Matrix A. let °1 and

be approximations to the same simple singular value of A

assume that u E Rn and v E Rm are approximations to the

°2
and

co~responding right and left singular vectors. IUsually 01
::

02 but we do not necessarily assume equality.) Then we con-

sider the nonlinear system

consisting of m.n.2 equations for the unknown real scalars

u and u ~nd the unknown vectors y E Rn and Z E Rm.1 2

Alu . y) ::
101

.
UJ) Iv . z) (1)

ATIv . z) ::
(02

.
1-12)(u . y) (2)

T
y) ( 3 )(u . y) (u . :: 1

I v
T. z) Iv . z) :: 1 (I.)
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then it fo1-

From this it fo11ows that

° is a singu1ar vector

> y V + z are the corresponding right and

1eft singu1ar vectors of A .

In order to so1ve the equations (11-(~) we rewrite them as

Ay - o,z - U1v = °1v - Au + U1z

T

-ozy + A Z - UZu
= ° u - AT v +- Z uzy

T
Zu Y = 1

T T
- u u - y y

zvTZ
T T

- v v - z z.

and the vectors w and r by

°1v - Au

and r =

T
°zu - A v

T
- u u

E Rm+n+2 ( 6 )

T
- v v

If this system has a so1ution
1J"I-IZ'y

and z

10ws that

(v + z)TA Cu + y) = °1 +
U1

and

(u
T T

zl+ yl A (v + =
°z

+
I-IZ

and therefore °1
+

I-IZ
=

°z
+

I-IZ

if 0: =
_°1

+
1.11

=
°z

+
Uz

0 then

of A and u .

Defining the (m+n+Z,m+n+Z) matrix B by

A -0
,Im -v 0 l) m

-0 1 AT 0 -u } n
Z n

B = I T (51
Zu 0 0 O }

0 2vT 0 o }
'-r-I "--r-'"--r--'
n m

y

z

w = I
I

E Rm+n+2

U1

Uz
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then these equations can be written as

Bw = r + f(w ) (7)

where
m+n+2 m+n+2

f: R .. 11 and

flw) =

11l' Z

]

U2'Y

T
-y Y

T
-Z Z

( 8 )

We now show that the matrix B is non singular provided

0,,02 u and v are sUfficiently accurate approximations
to a simple singular value and to the corresponding right and

left singular vectors. By continuity arguments this follows

from the following Theorem 1.

Theorem 1. Assume that 0 is a simole sinQular value of the

real Im,n) matrix A and let u .2.lli1 v be the corresoond-

belonQinq to 0inQ riQht and left sinQular vectors of

Then 'the matrix

A

is nonsinQular. IThis matrix is obtained from B by replacing

the approximations by the exact values.)

fIQQ~. We have to show that the linear system

Ay - oz - vU,
= 0 ( 10)

T
-oy + A z - UU2 = 0 ( 1 1 )

T
2u y = 0 ( 12 )

T
2v z = 0 ( 13)

A -01 -v 0
m

-01 AT 0 -u
n

T I 19 )
2u 0 0 0

T
0 2v 0 0
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has only the trivial solution ~1 = ~2 = 0, Y = 0, z = D. By
definition of O,U and v we have the additional equations

Au = ov (H)

T
A v = ou (15)

T
u u = 1 (16)

T
v v = 1 (11 )

Hultiplying (10) by
T

v from the left, using (15) and (11)

and finally taking into account (12) and (13) we obtain

T T T
0 = v Ay - ov Z - v v~1 =

T T
= ou Y - ov Z - U,

= - ~1.

Similarly it follows that ~2 = 0 . Therefore (10) and (11)
read

Ay - OZ = 0

T
A Z - oy = 0

from which it follows that

ATAy OATZ T 2
A Ay - 0 y = 0 (18)

If y * 0 then either y = t.u t * 0 . which because of

(12) contradicts (16), QL

from (18) that the matrix

y * t.u . In this ca se it follows

ATA has two linearly independent

eigenvectors u and y

02 of ATA. Therefore

z = 0

belonging to the simple eigenvalue

y = 0 . Similarly it follows that

[]
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The equation (7) is the starting point ~or computing bounds

~or the unknown terms in the equations ( , ) - ( ~ ) . Assume that

°" °2' Y and Z are su~~iciently good appro~imations such
that the matrix 8 de~ined by (5) i5 nonsingular. Assume that

L 15 an approximation to the inverse o~ B or the exact in-

verse of B itself. Then the equation (7) can be rewritten as

w = Lr .. (I-LBlw + L f(wl. (19 I

We now determine an interval vector [w] ([w}.I1
for which

L r .. (I-LBlw" L f(wl E [w] (20 )

for all w E (w] holds. Using Brouwel" 5 fixed point theorem
)

it then follows that the equation (191 has at least one solu-

ti.cn w* in [w] (The application o~ Brouwer' s ~i)(ed point

ttH~orem can in this and similar ca se s te avoidl~d. I t j,!) plan-

ned to discu5s this in a more general settingI.

In order to compute an interval vector [w] for which (20)

holds we try to ~ind [w) in the ~orm

[w] [ - ß . ßJ e (21 I

where 0 < ß E 11 and e = (1, ,)T E I1m-n+2

ß.ecause of the inclusion monotony o~ interval arithmetic (see

[1J ' Chapter '. Theorem 51 it holds ~or w E [w] that

Lr - (I-LBlw-L'~(wl E Lr+(I-LBI[w)-L'f([w)1 - . [k]

Therefore (20I hold5 if

[k] = Lr - (I-LBI(w] .. L . f([w]) ~ [w] (22 )

This inclusion holds iff for the centers m[w] and m[k] and

the diametei:s d[W] and d[k] of [w] and [k] the in-

equality
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1 1
Jm[w] - m[k] J + 2" d [k] ~ "2 d [w]

ho1ds. The definition of

Chapter 10. for examp1e.

m and

From (21) it fo11ows that

Furthermore

and

m[w] = 0 .

m[k] = Lr

d [w] = 2f! . e .

Fina11y using (21) it fo11ows that

where

Defining

d can be found in [1].

d[k] = d[Lr + (I - LB)[w] + L . f[W])

2
= 2f!II - LBle . 2ß ILI .

i
e

T i
(1 1) E IR . i = m.n Hence (23) ho1ds iff

2
ILrl +ß 11 - LBle . ß ILI

Q = 11 Lr 11-

I( = 1\ I - LB 11-

f em 1
I n

II e
I I

l

n I

n J

r em

1
I an I

I n I

l m J

~ ße .

(23 )

(21,)

125 )

(26 )

(21 )

(28 )

( 29)

130 )
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R = 11 IL I

[ ~:) "-

( 31)

then (28) c1ear1y i5 va1id i~

Z
Q + I(ß . ß R ~ ß

or

.2ßZ . (I( - 1)ß + Q ~ 0 ( 3 Z )

holds. Assurne that

Quadratic

I( < 1 and
Z

(x-1) - ~Q.2 ~ 0 . Then the

.2ß2 . (I( - I)ß + Q = 0

has the positive zeros

ß1/Z=
J Z .1 - x; (1-1<) - ~DR
ZR

(JJ)

Hence we have the proof for the following result.

Theorem 2. !..tl Q. I( and .2 be defined bv (29). (JO) and
2

(31). Assurne that I( < 1 and that (1-1<) - ~QR ~ 0 . If then

ß E [ß,.ßZ] where ß, and ßz (ß, ~ ßZ) are defined
Qy' (33) then the eQuation (19) has at least one solution w"

in the interval vector (w] = ((w]. )1. ~ [W]i = [-fLß]. 0

A solution w" of the equation (19) is of course a solution

of (7) if l is nonsingular. Under the assumption IC < 1 of

the preceding Theorem Z this is al~ays the case since it

follows from
111 - LBII- = I< < 1 that the inverse of

1-(1 - LB) = LB e)(ists.

We now consider the following iteration method:
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(101]0 ::: (- ß , ß] e

k+ 1 k
(101] ::: h «(101] ), k::: 0,1,2,... . )

( 3 t. )

where

h«(w)) ::: Lr + (1 - LB)[w] + L . f([w]) (35 )

This method computes a sequence

-
k

{[w] }k:::O
of interval

vectors.

The fOllowing result concerning (34) holds.

Theorem 3. Assume that " < 1, (K - 1) 2 - t.Q.2 > 0 and let

ß"ß2 be defined bv (33). II then ß satisfies ß, ~ ß <

< (ß, + ß2)/2 then (3t.) delivers a seauence of interval

vectors
-

k
{[w] }k:::O

with the DroDerties

w* E (w]k . k ::: 0,1,2.... (36 )

Mill

lim[w] k ::: w*
k-+-

(37)

~w*

(w]o .

1s the uniaue solution of the eauation (19) in

fLQQf. By Theorem 2 there exists at least one solution

101*E [101]0 of (19). If w. E [w]k which is the case for

k ::: 0 then it follows by the inclusion monotony of interval

arithmetic (see [1], Chapter " Theorem 5) that

w* ::: Lr + (I - LB)w* + L . f(w*)

k k k+1
E lr + (I - LB) [101] + l . f ([101] ) ::: [101]

Hence (36) holds.
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In the proof of Theorem 2 we have shown that [w] 1 = hl[w]ol C

~ [w]o holds. Assume now that

0 1 k-1 k
[w] ~ [wJ ~...~ [w] ~ [wJ

holds for some k ~ 1 which is the case for k = Then

using inclusion monotonicity aga in it follows that

k k-1 k
[w] = h ( [w] ) ~ h «(w] 1 [W] k .1

Therefore

-
{[w]k}k=O forms a nested sequence of interval

vectors. Hence there exists an interval vector (wJ" for

which [wJ* = lim[w]k . We show that
k"-

d[w]" = 0 holds.

Because of
k

w* E [w] it then follows that (311 holds and

that w* is unique in [wJo

In order to prove d[wJ* = 0 we use the notation

COk = I'd[w] kll-

and take into account that for two intervals [aJ and [b]

the inequality

d I Ca] [b] 1 ~ I Ca] I . d[b] + dCa] I [b] I

holds where I. I denotes the absolute value of an interval.

See [1], Chapter 2. Then by the definition of

that

f(wl we get

d I [ ] k . [z] k 11

k
I d([tJ2Jk . [y] k 1

d(fl[w] 11 =

dl-l[y]kIT. [yJ k 1

d ( - ( [z] k 1T . [z] k)
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k I< I< I<

I [u ,] Id [Z] + d (U ,] I (z] I
k I< k k

l(uZ] Id[Z] + d(UZ] I[y] I

~
n I< k

Z r I [y] . I d [yJ .
i=1 ~ ~

m k k
Z r I [z] . I d (z] .

i=1 ~ ~

Since (w] I< ~ [w] 0 it follows that

Using this inequality we get from 13~). (35) that

1<+1 I< I<
d[W] = 11 - LBI 0 d[W] + ILI 0 d(-f([w] »

~ d 11 - LBI e + Zoflod olLloI< k

[ ~: ]

Using the definition of

equality that

I( and .2 it follows from this in-

dl<+1 ~ (I( + Zß.2) d\( .
(] 8)

Since ß 1 + ß 2 - .L.:: K
ß < 2 - 2.2

it follows that I( + 2f1.2 < 1

Hence from (38) we have lim dl[w]l<, = dl[w]*) = 0
k-+-

and the

Theorem is proved. 0

d -ßoem+ßod -em

r :: 1

k k

dkoßoe
n

+ßodkoe
n

d I f I (w] k » I =
Zoflod\(o

l: j
2nßd\(

Zmfld\(
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2. RoundinQ error analvsis

In order to make the discussion ~ollowing more easy to under-

stand we start with some general remarks:

1. From the basic properties o~ interval arithmetic it ~ollows

that ~or areal nonsingular Matrix B and an interval vector

[z) it holds that

- 1
{B zl z E [z)} C B-1 [z] (1)

where on the right-hand side the product B-1 [z] is -formed

See (1]. Chap-by following the rules of interval arithmetic.

ter 10:

If on the other hand IGA(B. [z]) denotes an interval vector

which results if Gaussian elimination is applied to a system

with B as coefficient matrix and with (z] as right-hand

side then it also holds that

- 1
{B zl z E (z]} E IGA (B.[z]). (2)

(Note that IGA{B.[Z) is not unique even i~ no rounding

errors occur. It is strongly dependent on the fashion how

pivoting is performed.}

In [2]. Lemma it was shown that always

- 1
B [z] ~ IGAIB.[z]) (J)

where in general the proper inclusion sign holds. The computa-

tion of B-1 . (z] requires approximately three times the

amount of work which is necessary to obtain I GA 1 B . [z] ) . On

the other hand (3) shows that the set of real vectors

{B-1zlz E [z]} is in the set theoretic sense usually better
- 1

included by B [z] then by IGAIB.[z]).

Consider now the ca se that we are choosing L := B-1 in

(1.35). Since B-1 is a point matrix the distributive law
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holds (see [1J. Chapter 10) and therefore

-1 - 1
h([w]) = B r + 8 f([w])

- 1
= 8 {r . fl[w])}

Because of (3) we then have

h ( [w]) = B - 1 [zJ E I GA I B . [zJ )

where [z] : = r + f ([w] ) . In other words: The inelusion (1.22)

which guarantees the existenee of a solution surely holds for

hl[wJ) = B-1{r + f([W])} if it holds for IGA(B,r' fl[w]»

but not neeessarily vice versa.

Furthermore using (3) it follows by eomplete induelion that

for an interval vector [wJo = [-ß.ßJe determined by Theorem

'.3 the iteration method

[wJo = [-ß.ß]e

k.'
[w] = IGA(B.r . f ( [wJ k ) ). k = O. 1 . 2 . . .. }

(I.)

delivers a sequence of interval vectors which in each step

gives a cruder inclusion of w* than (1.3~). (1.35) with

L := 8-1 . Since we are interested in computing close bounds

in as few steps as possible we use (1.3~), 11.35) with

L := 8-1 linstead of I~) which with respect to lhe eomputa-

tional amount would be favourable.)

We are now going lo discuss how the method 11.3~), (1.35) be-

haves if it is performed using a floating point system.

Let b > 1 be the basis of the number system and let t, be

the mantissa length of a single length floating point number.

For the discussion following we make the assumptions (a)-(e):

(a) For two machine intervals [a] and [b] it holds that

H( [a]-[b]) = [( '-E,) I [a]-[b]) l' (1+(:2) ([a]-[b] )2]
(S)
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where

* E {+.-,x.!}.

(a]*(b] :: ((a]*(b]II' ( (a] * (b] ) 2] .

lEI 1 , I E21

1- t

S; E :: b 1

7

~ Jl ( , 1 denotes the result o~ a machine interval operation

taking into account rounding of the bounds outwards to the

next machine number. (5) states that the lower bound

«(a]*(b]11 of the exact result is rounded downwards to the
next machine number (if rounding is necessary at all I. The

analogue holds for the upper bound. Note that (51 (and also

(61 belowl do not hold in general in the underflow range.

(bI We assume that the so-called precise scalar product pro-

posed by U. Kulisch and W.L. Hiranker (see (6]. [1]) i s avail-

able on the computer:

For two interval vectors (x]:: ([x]. land [y) = ([y]. I1 1

which have machine intervals as components it holds that

n

H( r [x],'[y].):: [(1 - EI)OI'i=1 1 1
(1 + E2'02]

(6 )

where

n

t: [x)..[y]. ::[°1'°2]
i=1 1 1

is the exact scalar product and again

lEI 1

l-t

IE21 ~ b 1

Normally the precision of the precise scalar product is compa-

rable to double length accumulation and rounding to single

length a~ter completion. If, however severe cancellation of

terms occurs (which is usually the case if one has to compute

residualsl then it is much more accurate.
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From (6) it follows that

n n
f! ( r [x]. [y]. ~ r

i=1 ~ 1 i=1

n

[x].o[y].+E[-1,1]1 r [x].o[y).\1 1 .111=1

where aga in

1-t
e = b 1

(cl We assume that the given matrix A is exactly represent-

able on the machine. The same we assume for o"o2'u and v

If we have a binary machine then the matrix e (see (1.5» is
. . T

also exactly representable. If th1S 15 not the case then 2u
T . .

and 2v can 1n general not be computed exactly and round1ng

errors have to be taken into account. This means that on the

machine we have a matrix B which differs from 8 in the

elements where the vectors 2uT and 2vT are located.

We aS5ume that there i5 known an interval matrix [BIJ which

is exactly representable on the machine such that

8-1 E [BIJ ~ B-1 + eO[-1,1Jo\B-1\ + [-1.1)o"E (8)

1-t
where e = b '. If 8-1 is well conditioned with respect

to small changes of the vectors 2uT and 2vT in the matrix

8 then E is areal nonnegative matrix whose elements are

exactly representable on the machine. If it is even true that

e = B then E = 0 . The relation (8) then states that the

inverse of B can be included on the machine by an interval

matrix [BI) whose elements have bounds which differ by

at most the distance of two neighbouring machine numbers.

Using the precise scalar product (6) such a close inclusion of

the inverse of B can be computed even for very badly condi-

tioned matrices B . See [e]. If 8 is not exactly represent-

able (B = B) then using the precise sCalar product one can

compute an interval matrix [8IJ for which (8) holds with

irEn~ eoUB-1noURBII.
one obtains from B

1-t
1 . ..

E = b . RB ~s the matr~x Wh1Ch

by setting all elements equal to zero
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with the exception o~
T

Zu and ZvT.

With - we denote terms which are computed by 11.J~) and

11.35) on the machine. For example [w)k is the interval

The components of

-
[x] k are computed using the precise

scalar product. for example. in order to compute the first
-k

componentsof [x] we form the vectors

m

Ca1 . ai1"" ,ain' (U1]k)T

and

I v 1 . - u l' . . . -Uno (z] ~ ) T

each with n + 2 components and compute the precise scalar

product. Analogously we proceed for the remaining
-k

ponents of {x) . Because of (1) we then have

n + Z com-

(9 )

[W]k+1 fRC[BI] [x] k)

where the right hand side is aga in computed by using the pre-

eise scalar product. Using (1) and (9) we then have ~or the

actually computed iterates

[W]k+1 = f.2 I[BI] . [x]k)

c f.2 ( (B - 1 + E' [- 1 . 1) . IB - 1 I + [ -1 , 1] . E) . I (x) k+E' ( -1 . 1] . I [x] k I ) )

vector actually computed on the machine.. Furthermore we deine

(x] k
-k. - r + fl [w] ).

[X]k .s [x]k . E' [- 1 . 1] . I [x] k I

The interval vector [w] k+ 1 is computed by
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-1 -1 k k
c (8 +(;'[-1.1]018 '+[-1.1]."n.([x] +Eo[-1,1]0I[x] 11+

- , - ,
+ (;0[-',']'18 +Eo[-1.1]018 1+[-1,t]'EI"

k k
"I[x] +Eo[-1.t]01[x] 11

-1 k 2 3 -1 k
C B '[x] +[-,.,]013E+3E: +E: )-IB I"[x] 1+

+ [-1,1]oEO('+E)'E"'I[)(]kl

+ [-1,1]'('+E:)'E"'I[X)kl.

From this we obtain

-k + 1 - 1 I< 2:3 - 1 k
d(W] ~ 18 "d(x] +2(3E+3E +E )olB ,ot[x] 1+

2 -
[ )

k. 2It.E\ 'E-' x I.

We now assume Iwithout serious restrictionl that the interval

vector [w)o = [-ß"ß,)e computed by using Theorem 1.3 is

exactly representable on the machine. Itf this is not the case

then it is su~~icient to round upwards a11 operations when

~puting ß, by ~ormula 11.33).) It therefore h01ds that

[w]o = [w]o . By ~orming intersections a~ter each iteration

step in (1.3~) it is guaranteed that all iterates are contain-

ed in [w)o = [w)o . Oefining

dk = Ud [w] kll-

ö = 2ß R = 1 -jt-~eR < 1,

E

1 - t
= b '

,.,
E = IIE"II-

5
z - t

= 212 . JE + E )ollB "_oU l[xJol U-

,.,
s

2
2(1 . E) °U I [xJo, "-
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we get

d k., ~ öd" ES .. ~
k

( 10 )

from the last inequality. for the proof of ( 10) it is suffi-

cient to note that similarly as in the proof of Theorem 1.3 it

follows that

- 1 k
16 Id[X] ~ dk 2 . ß 1 18- 1 I e

Oefining 1:
"""'"'

ES . ES we get from (10) that

Cik. , ~ ök+1do ..{ök + ök-1
+ . . ." Ö .

1 J.1:,

and therefore

d
k.. 1

1:
k'" d .. I-ö~ Ö 0

~k'" - ES" ESud"
0 1 - ö

This inequality can be interpreted as fol10ws:

Since by assumption ö < the first term tends to zero for

k .. - The reachable precision on the computer is therefore

determined by the second term. For sUfficient1y accurate ap-

we have ö (

°" °2' u and v and if 116-111- is not 1arge
See the definition of Ö in dependence of Q

proximations

and 2 . Therefore under these circumstances the denominator

of the second term is not much sma11er th~n one. Under the

same assumptions I [x] 0 I has sma11 components. If finally the

inverse of 6 i5 we11 conditioned with respect to small

1-t
,1,

changes 1n B of order E = b 1n those elements where

the vectors 2uT and 2vT are located then also E will be

small. Under these assumptions it i5 therefore guaranteed that

we get sma~l diameters for the components cf the interval

vectors computed on the machine.
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3. Numerica~ examp~e

We consider the (5.3) matrix

1 1

12

13

H

15

for which the matrix r from 10.1) reads

We want to inc1ude the 1argest singu1ar va1ue and the corre-

sponding right and 1eft singu1ar vector. We assume that we

have given approximations which have re1ative precision of
-9

10 :

0 = 0 ~ 0.351 212 233 x 102 ;
1 2

u ~

[

0.201

0.516

0.831

6610 911

]

830 501

996 092

V Al

0.531 1 H 309

6

2 1

A = I 3 8

10 9

5 10

35.121 .,. 0 0

0 2.1065 .., 0

0 0 0

0 0 0

0 0 0

0.3510 551 057

0.398 696 370

0.1042 835 683

0.1,86 971. 996
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Using these values we get for ß, defined by (1.331:

ß = 0.335 7~6 3~~ 331 x, 10-9

After one step of (1 .3~) (1.351 with
- 1

L = 8 we get the

fo11owing inc1usions:

0 = 0 E [ 0.35' 272 233 3356 ]1 2

U E [

2
193]

392]3

59']2 1

7
([0... XXe]

denotes an interval with lower bound 0 ... xx7

and upper bound 0...)<x81

In all eomputed examples the bounds were similar1y elose. The

example has been computed using an IBH~PC . In PASCAL-SC a

floating point number has 12 decimal digits in the mantissa.

[0.201 66 91 1

[0.516 830 501

[0.e3' 996 091

[0.]5 557 057 037]8

[0.398 696
]69 99:]

v E I [0. H2 835 682 9]

[0.1,8& 914. 995 92]

j[0.531 " I, ]08 88]
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