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Abstract — Zusammenfassung

Iterative Improvement of Componentwise Errorbounds for Invariant Subspaces Belonging to a Double or
Nearly Double Eigenvalue. In this paper we present a systematic method which computes bounds for
invariant subspaces belonging to a double or nearly double eigenvalue. Furthermore an algorithm based
on interval arithmetic tools is introduced which improves these bounds systematically.
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Iterative Verbesserung von komponentenweisen Fehlerschranken fiir invariante Teilriume, die zu einem
doppelten oder fast doppelten Eigenwert gehoren. In dieser Arbeit bringen wir eine systematische
Methode zur Berechnung von Schranken fiir invariante Teilraume, die zu einem doppelten oder fast
doppelten Eigenwert gehoren. AuBlerdem wird ein auf intervallarithmetischen Hilfsmitteln aufgebauter
Algorithmus angegeben, der diese Schranken systematisch verbessert.

0. Introduction

In this paper we consider the eigenvalue problem for a real (n, n) matrix which has a
real double eigenvalue or a real pair of nearly equal eigenvalues.

Starting with sufficiently good approximations we construct bounds for the
elements of a two by two matrix whose eigenvalues are eigenvalues of the given (n, n)
matrix. Furthermore using the Jordan normal form of this (2,2) matrix the
generators of the invariant subspace belonging to these eigenvalues can be enclosed.

The first section contains a careful description of the problem and a reformulation
which was already discussed in [3]. See also [6]. In Section 2 we construct bounds
for the unknown terms. Furthermore we introduce an iterative method which
improves these bounds and which has the property that these bounds are
converging to the exact values.
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The computation of these bounds and the iterative improvement is based on the
contents of Theorem 1 from Section 1. This theorem was implicitly already used

in [3].

In Section 3 we list some numerical examples. These examples were computed on
an APPLE Ile using the programming language PASCAL SC which has available
the exact scalar product. See [4], [5].

In concluding we note that in principle it is not difficult to discuss the more general
case in which the matrix and the eigenpairs are complex. Furthermore we also could
consider the case of an eigenvalue which has multiplicity larger than two or a set of
more than two eigenvalues which are nearly equal. These problems will be discussed
in a future paper.

1. Formulation of the Problem

Assume that A=(a;;) is a real (n, n)-matrix which has the real eigenvalues y, and y,.
We assume either that
a) y, ¥7v, and y,,y, are both simple eigenvalues or that

b) y, =y, =y holds and that y is double eigenvalue. Then y either has two linear
elementary divisors or one quadratic elementary divisor.

From a numerical point of view we are in case a) especially interested in the situation
that y, is close to y,.

Under our assumptions there exist two linearly independent real vectors & and o
from R” such that

A, 0)=(a,0) A (1.1)
where .
= (}:1 E) 5
A= , beR (1.2)
0 7

and where (4, 0) is an (n, 2)-matrix which has # and v as its columns.

We now assume that approximations x' =(x}) and x*=(x}) to # and 7 are given.
Furthermore m,,, m,, and m,, are given real numbers which are considered as
approximations to y,, b and y,. In [3] it is described in detail how to find such
approximations using the QR-algorithm. See also [6].

We are now looking for vectors y' =(jy}) and j*=(y?) and furthermore for real
numbers g, ,, 4y, 4>y and p,, such that

myy+ g m12+#1z) (1.3)

AR +7, X +P)=("+7", X’ +57) (
Ha21 Myy+ Haa

holds.
Defining the (n,2) matrix X by
X=(x'+j, X2 +7) (1.4)



Iterative Improvement of Componentwise Errorbounds 323

and the (2,2) matrix D by

my;+ my,+

Dz( 11 T Hyq 12 #12) (1.5)
Hay Maz + U2

then (1.3) can be written as

AX=XD. (1.6)

If the (2, 2)-matrix Y =(y;;) transforms D by a similarity transformation to upper
Jordan normal form then

AXY=XYY DY,

or
Au,v)=(u,v) A
where
b
A:Y—IDY:(}’1 ) (1.7)
0 7
and
(u,v)=XY. (1.8)

If y; 5y, or if y; =y, =7y and if there are linear elementary divisors belonging to y
then b=0. The vectors u and v are then eigenvectors of 4 correspondmg to the
eigenvalues y; and y,.

If, however, y, =y, =7y is a double eigenvalue with a quadratic elementary divisor
then b= 1. The vector u then is an eigenvector of 4 belonging to the eigenvalue y and
v is a principal vector of grade two belonging to the eigenvalue y.

In every case the linearly independent vectors u and v span a linear space called the
invariant subspace belonging to the eigenvalues y, and y, or y, respectively, u and v
are called generators of the subspace.

After having solved (1.3) the computation of y; and y, and of the generators u and v
is, because of (1.7) and (1.8), essentially reduced to the eigenvalue problem for the
(2,2)-matrix D, defined by (1.5).

The system (1.3) is a nonlinear system of 2n equations and 2n+4 unknowns. In
order to compute a unique solution we perform the same normalization as in [3].
(See also [6]):

If x!=(x]) and x*=(x?) are sufficiently good approximations for the (linearly
mdependent) vectors #7and # then they are also linearly independent. Therefore, if we
define the integers p and q such that

oz E-ma.x |23 (1.9
1<i<n
and
O RN O, L | LU, L T
Xy X —Xg Xy | = max | x, x5 —x; X3 (1.10)
1<i=zn

then p+g4.
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The vectors y' =(j}) and j*=(j7) are now determined in such a manner that
Vo=F2=74=7:=0. (1.11)

If we also define vectors y' =(y!) and y*=(y?) by

i, i*¥p.q
yi=9 1, i=p (1.12)
M2y, 1=q
and
yi, i*p.q
yi=1 Mz, i=p (1.13)
U2z, 1=4q,

respectively, then (1.3) can be written as

{Bi V'=r'typ- ¥ 4y, 7 (1.14)
Byy'=r’+my, -y +y, - § +y; - 7
where
{rlzmuxl—/lx1 (1.15)
rP=m, x" +my, x*— Ax? '

and where B;,i=1,2, is A—m;,; I with columns p and q replaced by —x! and —x?
respectively. The rewriting of the original system (1.3) into (1.14) was already
performed in [3]. See also [6].

This rewriting has two important advantages:

1. The right-hand sides of (1.14) can be computed by computing 2 n scalar products.
This has a tremendous impact on the numerical precision if one is computing the

unknowns ', 7, f11, f12, Ha1 and piy;.

2. For sufficiently good approximations x', x*, m;;, m,, and m,, the matrices B,
and B, are nonsingular. By continuity arguments this follows from the next
theorem which was implicitly already used in [3].

Theorem 1.1: Assume that the real (n, n) matrix A=(a;;) has the eigenvalues y, and y,
and that u and v are the generators of the invariant subspace belonging toy, and y,. Let
the integers p and q be defined analogously to (1.9) and (1.10).

If y, %7y, then assume that y, and y, are both simple eigenvalues. If y, =y, =y then
assume that y is a double eigenvalue with two linear elementary divisors or one
quadratic elementary divisor. Then the matrices B;, i=1,2, where B; is A—7v;I with
columns p and q replaced by —u and —v, respectively, are nonsingular.

The preceding Theorem 1 is the basis for a method which computes bounds for ',
¥, B115 Hi25 21 and gy, and for a method which improves these bounds. This is the
topic of the next section.
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2. Computing Bounds and Their Iterative Improvement

Assume that L; and L, are approximations to the inverses of B, and B, (or the
inverses themselves). Then the equations (1.14) can be written as

{y‘=gl o' @1
y'=g,(0",5)
where
g1 (}’la}’l):Ll r1+K1 y'+L, {J’;l: -F)+L, (}’; -7),
g2 (V) =Ly P + Ky Y2+ Ly (mys - G 01, ) + Lo (07 - 5 + Ly (07 - 77)
and
KIZI”L].B].S KZZI“"Lsz. (2.2)
Furthermore g, (y*, y?) is g, (y*, y*) with components p and g set equal to zero. By
gl (y19y2}
gt y)= (2.3
2()’1,}’2) )

1,%

3 *) e R?"is a solution

a mapping of the R?” into itself is defined and a fixed point G

of (1.14) (and therefore also of (1.3)) if L, and L, are nonsingular.

Starting with x*, x*, m,;, m,, and m,, we are now constructing interval vectors [y]*

and [y]* such that (g%z

For interval vectors [y]'=([y]}) and [y]*=([y]?) we define interval vectors

(71 =([71}) and [71*=([7]7) by

) contains a fixed point of g.

. D, i*p.q
Dl —{0’ i
and
, DX, i+p.q
Lk _{0, i=p,q,
respectively. We now determine [y]' and [y]* in such a manner that
1 2 — gl ([yjlz[y]z)) ([y]i) 24
AR (gz(ma[m “\ur oo

holds. Because of the inclusion monotonicity of interval arithmetic (see [1], p.6)

7o ()

() =(0%)
¥ D1/,

holds for all
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1
Since g is continuous and since ( 2) is a compact and convex set in R?” the fixed

1
point theorem of Brouwer implies that there is at least one fixed point of g in ( ] ) '

D1?
In order to determine [y]* and [y]? such that (4) holds we set

D1 =D =[-B.Fe (2.5)

where
1
BeR, =0 and e:( ) e R
1
Defining _
€pq :((epq)i) eR”
by
1, i¥p,q
(epq)i = %
0, i=p,q,
then :

1, -0 =01 - 0= U1 =
—D- P =[-F%F]- e,

Denotingby | K, |,| K, |,| L; |and| L, | the real matrices which one gets from K, K,
L, and L,, respectively, by forming elementwise the absolute value then we obtain
for the diameters (see [1], p. 14 and p. 125) d g, ([¥1*,[¥1?) and d g, ([¥1*, [y1?)

dg, (Y], V1) =2B1K, le+4B*| L |e, (2.6)
and .

dg, (1, ) =Imy, || L, |- d g, (D], D)+
+2B1K;le+4 8% Ly e,
<|mp || L) {2B1 K, |e+4B*|L,|e,,} +
+2B1K,le+4 B2 Ly e,
=4B%| Ly | {I+]my, || Ly |} e,p+
+2B{Imy |1 L, | | Ky | +]K; |} e.

(2.7)

For the centers (midpoints) of [y]', [¥1?, 9, ()]', [¥1?) and g, ([y]*,[y]?) we have
m[y]*=m[y]*=0 and

mg, (V1L D)=L, r* (2.8)
mgy (W1, 1) =Ly (P +my, L), (2.9)
We have
. gl(m‘,[yf))c([ﬂ‘)
71 I (ngty]‘,[y]Z) “\pp

if and only if
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. 1
Im[y]‘—mgf([y]‘,[y]ZJH? dg:(y1, v]?)

1 (2.10)
S_'_"d[y]I> 12172
2
Because of (2.6)—(2.9) this is the case if and only if both
| Ly |+BIK |e+2B*|L;|e,n<Pe
and
f"‘\_,l
| Ly (rP+my, L)+ B(Imya | | Ly | | K [ +] K ]) e+
+28° | Ly (Imya | | Ly |+ De,u<Be
hold.
Defining real numbers
o
= IUQ?EHHL 3, Pz:lﬂg?‘? {1 Ly (*+my, Ly )|},
p=max {py,p,}, (2.11)
’ﬁ:lﬂgax {Z (K, ) }, Kz—imax {Z (lmya || L, | [K1I+iK2|)ij}a
<i<n = <i<n 1
K=max {Kq,K,}, (2.12)
11211143?”{ { Z i(Ll)fji}s Iz— max {Z U L, |(Imy, || Ly H‘I));‘j},
Zl<h j=]. 3
i=maxdil,. 1. (2.13)

then (2.10) surely holds if the inequality
p+(x—1)p+21p*<0
holds. Assuming k<1 and (k—1)>—8p[>0 then this inequality holds for all

Be[Bi,B,] where _
1-xkFY(1—x)P-8pl

41

Bip= (2.14)

Hence we have the proof for the following
Theorem 2.1: Let p,x and | be defined via (2.11), (2.12) and (2.13). If k<1 and
(1—x)?—8p1>0 and if Be[B,,B,] where B, and B, are defined by (2.14) then the

1,% 1
mapping g defined by (2.3) has at least one fixed point (y2 *) in (E‘Viz) where
' Y

D1 =D =D1°:=[-B.F]e.
]

1,%
A fixed point (y2 *) of g is surely a solution of (1.14) (and hence of (1.3))if L and L,
y2

are nonsingular. Under the assumption x <1 of the preceding Theorem 1 this is
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always the case. This can be seen as follows: From the definition of x we have that
" Kl ”m: N I_Li Bl I[m<}'

Therefore the inverse of (I —(I — L, B,))= L, B, exists which implies that L; ! exists.
Similarly the existence of L; ! follows.

We now consider the iteration method
{[y]""“=91([y]"", S
S =S
a1 (e .

V)

where

D1 =0y1*°=[y1°=[-B.B]e.
Theorem 2.2: Let k<1 and B, +f, where B, and B, are defined by (2.14). If then
Bi+ P,

Pr<p< o
and [y]°=[—B, Bl e then (V) is well-defined.
(V) delivers two sequences {[y]*"*};> o and {[y}>*}{°, of interval vectors for which
yhrelyItk y>*ey]** and
lim [y F=yt*; lim [y

k— oo

yl,* [y 1.0
hold. (yZ*) is the unique fixed point of g in (D’]z'o)

Proof: By the proof of Theorem 1 we have

DT”): y LOC(UT”)
(Uﬁl 901" DTE( [0 )

By complete induction it follows that

[y]t*+! [y]"*
([}’ Z’RH);(DJ Z,k)’ k=0,1,2,....

Hence the convergence of the sequences {[y]"*}°, and {[y]**]1 2, follows, that is
we have lim [y]"*=[y]"* and lim [y]**=[y]}** where [y]"* and [y]** are
k=>co koo

1,%
interval vectors. By Theorem 1 there exists at least one fixed point (yz *) of g in
[y1*° 2
([y “’)'

Using the inclusion monotonicity (see [1], p. 6) it follows by complete induction and
passing to the himit afterwards that

(o)~ (o)
€ "
yr byl
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Therefore, if we are able to prove that

lim d[y]* = lim d[y]>*=0

k—w k— oo

yh* [y1°
holds then (2.15) and the uniqueness of in follow.
y* [1%°

We define d, to be

l<izn

d, =max {max {d[y]}*}, max {d [y]?”‘}}

and take into account that for two real intervals [a] and [b] (see [1], p. 15)

d([a]-[P])<|[a]| d[b]+d[a]|[b]].

The absolute value of interval terms is defined in [1], Chapter 2.

Because of
DIV. > <1’ =[-B.Ble
we then get
dy]" " =K, [dDy]1V + I L [d (D] " - D9 +
+I L 1d(Dy)g ™ - T (2.16)
<d-(|K{|+4B|L,|)e
and

ALy =lmyy || Ly | d VT F + K A D>+
+| Ly | d([Dy12*- 19+ L1 d(12F- 129
<d.|mg, || Ly |(| K; |+4B|L,|)e+di | K;yle+4d, Bl Lyle (2.17)
=d (1Ko | +4B| Ly | +Imyy | | L | (| Ky | +4B] Ly |))e
=d((Imy2 |1 Lo | 1K |+ Ko D+4BI Ly | (1mys | | Ly |+ D) e.

Using the definition of k and [ it follows from the last two inequalities that

dysq <(k+4Bhd,. (2.18)
Because of
51 +52 =%
p< =
2 41
we have
K+4pl<1.

Therefore from (2.18) it follows that lim d, =0 and therefore (2.15) holds. O

k— oo
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3. Numerical Examples

1. We consider the (7, 7)-matrix

—6 0 0 -1 -4 -4 0

0 B 1 0 0 0 2

0 1 4 0 0 0 0

A= -1 0 0 -6 -4 -4 0
—4 0 0 -4 -6 -1 0

—4 0 0 -4 -1 -6 0

\ 0 1 1 0 0 0 4 )

which has the eigenvalues
M=6, y=13=3, =1, ds=4s=—5, 4,=—15.

To the double eigenvalue 4, =4;=3 belongs a quadratic elementary divisor, to
As=24¢=—35 belong two linear elementary divisors. The eigenvectors and the
principal vector belonging to the eigenvalue 3 are as follows:

(0 0 0 1

4 1 0 0

.- - =1 0
w=—1]0]; u?= 0}; = 0f; u*= 1
410 0 0 )

0 0 0 =

\3) 0 \ 4 0/

( eigenvector principalvector
belonging to the eigenvalue 3

1) 1) 1

0 0 0

0 0 0
w=|—-11|; u=|-11|; u"=|1
—1 1 1

1 —1 1

\ 0 0 0

u®> and u® are two linearly independent eigenvectors belonging to the double
eigenvalue —35.

As approximations to the real numbers m,,, m,, and m,, in (1.3) we choose

(mu mu)*(—4.99999999 1E—8 )
my) —5.00000001 )
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Correspondingly we consider

9.9999999 E — 1 1 \
1E—38 1E-8
—1E-38 —1E—8

xl=]| -1 and x*=| —9.9999999 E—1
—9.9999999 FE — 1| 9.9999999 E —1
9.9999999 E — 1 —9.9999999E—1
1E-8 1E-8 ),

as approximations to the eigenvectors u° and u®. Using the iteration method (V)
from Section 2 we get the following inclusions for the solution of (1.3):

(mu + Uy m12+#12) .

Hay Mys + Has

"[—5.000 00000001 ; [-1E-19; 3E-20]
—4.999999 999 997
[-2.6 E—20; 2.6 E—20] [ —5.000 000 00001 ;

—4.999999 999 99]
x'+yle x*+j% e
[9.99999999999 E —1; / [9.99999989999 E—1;
1.000 000 000 01] 9.99999990001 E—1]
[=1E~19;: 2E-20] [-2E-19; 12E—19]
[-2E-20; 1E-19] [-3E-20; 1.0E—19]
[ . [—9.9999999E—1;
[—9.9999999E—1; —9.9999999E—1]
—9.9999999 E—1] [9.9999999 E—1;
[9.99999989999 E—1; 99999999 E—~1]
9.99999999901 E—1] [—9.99999990001 E—1;
[SHE=19: 2E--00] —9.99999989999 E—1]

[=1E-=19; 3E-20]

2. In this example we replace the zero elements of the preceding matrix by numbers
g;; for which [¢;|=1E—8. We denote this matrix by 4,. We now choose

(™ m)-C 3)
mys 3)

(

=
Il
[ o I e B = B ™
e
I
—_—o O O = o O

23 Computing 36/4
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In this case we get the following inclusions:

(mu + Uiy mu"‘#u) 2
Hay My + Has

[2.999999 999 99;
3.000 000 000 00]

[ —5.92592593625E—17;
. =35.92592593621 E—17]

x'+jte

[4.027777771777E-9:
402777777780 E—9]

g

==k ]

[1.52777777777 E-9;
1.52777777779 E—9]

[—2.22222222224 E—9;
222792927229 E—9]

[=2222222222 94 E=9
~2990990 99992 F.-0]

[—7.037037067 12 E—17;
—7.03703706707 E—17]

[1.000 000 006 66;
1.000 000 006 67]

[3.000 000003 33;
3.000 000003 34]
X2y e
[4.82831789428 E—9;
482831789433 E —9]
[0; 0]
[—li==1]
[2.64081789729 E—9;
2.64081789733 E—9]

[—2.51543208806 E—9:
—2.515432088 02 E —9]
[—5.01543209536 E—9:
—5.01543209531 E—9]

[1.000 000 003 33;
1.000 000 003 34]

3. As a final example we consider the (7,7) matrix

-6 0 =4 —1
0O b 0 0
=4 O =6 4
A=l -1 0 -4 —6
0 0 0 0
0 1 0 0
=4 0 =i =

0 0 —4

0 0 0

0 0 -1

0 0 —4 afb
c 0 0

0 a 0

0 0 6 y

The eigenvalues and the corresponding eigenvectors are as follows:

Eigenvalues:

Ay=a; A=b; Az=c; l=-1

Eigenvectors:

0 0
0 b—a
0 0
=l 0 w=| 0 u
0 0
11 1
0 0

Il
O = O O O O
=
B
Il
!
b
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~1 1 [ 1)
0 0 0
1 1 -1
=] 1 ub=|—-1 wl=f .1
0 0 0
0 0 0
-1 —1 —1
We slightly modify this matrix to 4 defined by
—6 0 -4 -1 0 0 ~4 )
0 b 0 0 —1E-10 —1E-10 0
—4 0 -6 —4 0 0 —1
A=| -1 0 -4 -6 0 0 —4
0 —1E-10 0 0 c 1E—10 0
0 1 0 0 1E-10 a 0
—4 0 -1 -4 0 0 -6
and choose
a=5.000001
b=4.999 999
¢=5001.
In (1.3) we choose
myy my )\ (5.000001 0
my, ) 0 4.999999 )’
(0
2E-6

O~ oo 0o o ~—

o= O O O

The inclusions computed by (V) are

(m“ + g,y m12+#12) 2

Uay Myy+ a3
[5.00005099999; [5.399999498 54 E—5;
5.000 051000 00] 5.399999 498 55 E —5]
[ —4.99999949955E—5; [4.999 949 000 000;

—4.999999499 54 E— 5] 4.999 949 000 001]
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x'+j'e x*+j* e

[—2E—99; 2E—99] ([—2E—99; 2E—99]
[0: 0] [2E—6; 2E—6]
[—2E—99; 2E—99] [—2E—99: 2E—99]
[—2E—99; 2E—99] [—2E—99; 2E—99]
[—1.00090101082 E—7: [—1.00289881504 E—7;
—1.00090101079 E—T] —1.00289881502E—7]
[1; 1] 0 1

[—2E—99; 2E—99] \[-2E-99; 2E-9]

It is interesting to note that the (2,2) matrix

mpy+ Ry Mzt pgs
2231 Mys+ Hao

now has a pair of complex eigenvalues.

All computation was done on an APPLE Ile using the programming language
PASCAL SC (see [4]). This system uses a decimal number system which has
12 digits in the mantissa of a floating point number. Note that all rounding errors are
taken into account using this system. Therefore the bounds computed in the
preceding examples are absolutely safe.
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