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Abstract - Zusammenfassung

Iterative Improvement of ComponentwiseErrorbounds for Invariant SubspacesBelongingto a Double or
Nearly Double Eigenvalue. In this paper we present a systematic method which computes bounds for
invariant subspaces belonging to a double or nearly double eigenvalue.Furthermore an algorithm based
on interval arithmetic tools is introduced which improves these bounds systematically.
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Iterative Verbesserung von komponentenweiseoFehlerschranken rur invariante Teilräume, die zu einem
doppelten oder fast doppelten Eigenwert gehören. In dieser Arbeit bringen wir eine systematische
Methode zur Berechnung von Schranken für invariante Teilräume, die zu einem doppelten oder fast
doppelten Eigenwert gehören. Außerdem wird ein auf intervallarithmetischen Hilfsmitteln aufgebauter
Algorithmus angegeben, der diese Schranken systematisch verbessert.

O. Introduction

In this paper we consider the eigenvalue problem for areal (n,n) matrix which has a
real double eigenvalue or a real pair of nearly equal eigenvalues.

Starting with sufficiently good approximations we construct bounds for the
elements of a two by two matrix whose eigenvalues are eigenvalues of the given (n,n)
matrix. Furthermore using the Jordan normal form of this (2,2) matrix the
generators ofthe invariant subspace belonging to these eigenvalues can be enc1osed.

The.first section contains a careful description of the problem and a reformulation
which was already discussed in [3]. See also [6]. In Section 2 we construct bounds
für the unknown terms. Furthermore we introduce an iterative method which

improves these bounds and which has the property that these bounds are
converging to the exact values.
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The computation of these bounds and the iterative improvement is based on the
contents of Theorem 1 from Section 1. This theorem was implicitly already uscd
in [3].

In Section 3 we list some numerical examples. These examples were computed on
an APPLE He using the programming language PASCA~ SC which has available
the exact scalar product. See [4], [5].

In coneluding we note that in principle it is not difficult to discuss the more general
case in which the matrix and the eigenpairs are complex. Furthermore we also could
consider the case of an eigenvalue which has multiplicity larger than two or a set of
more than two eigenvalues which are nearly equal. These problems will be discussed
in a future paper.

1. Fonnulation of the Problem

Assume that A = (aij) is areal (n,n)-matrix which has the real eigenvalues)'1 and )'z.
We assume either that

a) Y1=F}/zand }/1,}/Zare both simple eigenvalues or that
b) )'1=Yz=Y holds and that }/is double eigenvalue. Then )' either has two linear

elementary divisors or one quadratic elementary divisor.

From a numerical point of viewwe are in case a) especiaIly interested in the situation
that )'1 is elose to }/z.

Und er our assumptions there exist two linearly independent real vectors ii and i5
from IRnsuch that

A (ii, V) = (ii, V) A (1.1)
where

-

(
Yl 5

)
-

A= , bEIR
0 )'2

and where (ii,V)is an (n,2)-matrix which has ii and i5as its columns.

(1.2)

We now assume that approximations Xl =(xf) and X2=(xf) to ii and i5are given.
Furthermore mll, m12 and mZ2 are given real numbers which areconsidered as
approximations to )'1' 5 and )'2. In [3] it is described in detail how to find such
approximations using the QR-algorithm. See also [6].

We are now 10üking for vectors y1=(Yt) and yZ=(yf) and furthermore für real
numbers Jlll, Jl12, Jl21 and Jl22 such that

A(X1 + y1, X2+ f)=(X1 + yl, x2 + f) (
mll + Jlll m12 + Jl12 )JlZ1 m22 + f.122

(1.3)

holds.

Defrning the (n,2) matrix X by

X =(X1+ yt, X2+ yZ) (1.4)
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and the (2,2) matrix D by

D=
(

m11 + /111 m12 + /112

)/121 m22 + /122
(1.5)

then (1.3) can be written as

AX=XD. (1.6)

If the (2,2)-matrix Y = (Yi) transforrns D by a similarity transformation to upper
Jordan normal form then

AXY=Xyy-1DY,
or

where
A(u,v)=(u,v)A

A = y-1 DY =
(

y1 b

)0 Y2
(1.7)

and

(u, v)=XY. (1.8)

If Y1=j=Y2or if Y1= Yz= Y and if there are linear elementary divisors belonging to Y
then b=O. The vectors u and v are then eigenvectors of A corresponding to the
eigenvalues Yl and Y2.

If, however, Y1=Yz=Y is a double eigenvalue with a quadratic elementary divisor
then b = 1. The vector u then is an eigenvector of A belonging to the eigenvalue Yand
v is a principal vector of grade two belonging to the eigenvalue y.

In every case the linearly independent vectors u and v span a linear space called the
invariant subspace belonging to the eigenvalues Y1and Y2or Y,respectively, u and v
are called generators of the subspace.

After having solved (1.3) the computation OfYl and Y2and ofthe generators u and v
is, because of (1.7) and (1.8), essentially reduced to the eigenvalue problem for the
(2,2)-matrix D, defined by (1.5).

The system (1.3) is a nonlinear system of 2 n equations and 2 n+4 unknowns. In
order to compute a unique solution we perform the same normalization as in [3J.
(See also [6J):

If Xl =(xt) and X2=(xi) are sufficiently good approximations for the (linearly
independent) vectors iiand v then they are also linearly independent. Therefore, ifwe
define the integers p and q such that

Ix~ I= max Ix; I1 S;iS;n
(1.9)

and

IXl X2 - Xl x2 1 = max IXl X~ - X~ x2
1pq qp . P!!P

1 S;tS;n
(1.10)

then p=j=q.
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The vectors yl =(jif) and yl =(Yf) are now determined in such a manner that
-1 -2 -1 -2 0 (111Yp=Yp=Yq=Yq= . 0 )

If we also define vectors yl = (yf) and yZ = (yf) by

{

-I .-1-Yi, l,p,q
1 .

Yi = f.lli> ~=P
f.lZI' l=q

(1.12)

and

{

Yf, i=l=p,q
1 0

Yi = f.l12, ~:pf.lzz, l-q,

(1.13)

respectively, then (1.3) can be written as

{
Bl yl = rl +y; . yl + y~ 0 yZ

Z ~ Z ~ ~
Bzy =r+m12.y +yp'y +~.y

(1.14)

where

{
rl =mll Xl _AXl

r=m12 XI +m22~-AxZ

and where Bi, i= 1,2, is A - miiI with columns p and q replaced by - Xl and - XZ

respectively. The rewriting of the original system (1.3) into (1.14) was already
performed in [3]. See also [6].

(1.15)

This rewriting has two important advantages:

1. Theright-hand sides of(lo14)can becomputeg bycomputing2n scalarproducts.
This has a tremendous impact on the numerical precision if one is computing the
unknowns yl, T, f.lll' f.llZ, f.lll and f.lzz. .

2. For sufficiently good ~pproximations Xl, XZ, mlt> m12 and mZl the matrices BI

and Bz are nonsingular. By continuity arguments this follows from the next
theorem which was implicitly already used in [3]. .

Theorem1.1: Assume that the real (n,n)matrix A = (aij)has the eigenvaluesYl and Yz
and that uand v arethe generatorsof the invariant subspacebelongingto Yl and Yz-Let
the integers p and q be defined analogously to (1.9) and (1.10).

If Yl =l=yzthen assume that 1'1and Yz are both simple eigenvalues. If Yl =Yz =1' then
assume that Y is a double eigenvalue with two linear elementary divisors or one
quadratic elementary divisor. Then the matrices Bi, i= 1,2, where Bi is A - yJ with
columns p and q replaced by -u and -v, respectively, are nonsingular.

The preceding Theorem 1 is the basis for a method which computes bounds for yl,
T, f.lll~PIZ'Pu and P22and for a method which improves these bounds. This is the
topic of the next section.
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2. ComputingBoundsand Their Iterative Improvement

Assume that LI and L2 are approximations to the inverses of BI and B2 (or the
inverses themselves). Then the equations (1.14) can be written as

{
i =gl (yl,y2)

y2 = 9 2 (y1, y2)
(2.1)

where

gl (i,y2)=L1 r1+Kl y1 +L1 (y;. y1)+L1 (y~. T),

g2 (i ,y2)=L2 r2+ K2l+L2 (m12' gl (yl ,l))+L2 (y;. yt)+L2 (y;. T)

and

K1=I-L1B}> K2=I-L2Bz. (2.2)

Furthermore gl (y1,y2) is gl (yl, y2) with components p and q set equal to zero. By

(
1 2

)=
~

1 (y1,l) )9 y , Y
(

1 Z
)2 Y ,y

(2.3)

amapping ofthe ~2n into itselfis defined and a fixed point (~:::) E ~2n is a solution

of (1.14) (and therefore also of (1.3)) if LI and Lz are nonsingular.

Starting with Xl, X2, mll, m12 and mZ2we are now constructing interval vectors [yr
and [yJz such that (~~:) contains a fixed point of g.

For interval vectors [yr=([yJf) and [y]2=([yJ?) we define interval vectors
[Yll = ([Ylf) and [Ylz = ([YJ?) by

[Ylf =
{ [YJL ~~p,q0, l-p,q

and

[Yl?=
{

[y J?, i =Fp, q

0, i=p,q,

respectively. We now determine [yr and [yJ2 in such a manner that

([ Jl
[yJ

Z
) =

(
9d[YJ1, [YJZ))~ (

[yr )9 y , g2([yr,[YJZ) [yJ2

holds. Because of the inc1usion monotonicity of interval arithmetic (see [IJ, p.6)

(2.4)

g(y1,?) E ([yr

).[yJ2

holds for all

(
i

)
E

(
[yr

)
.

yZ [yJ2
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Since g is eontinuons and sinee ([y J: ) is a eompael and eonvex sei in ~2" Ihe flXed

poinl Iheorem ofBrouwer implies~2a' there is al least one fixedpoint of gin (g~:),

In order to determine [y]l and [y]Z such that (4) holds we set

[yr =[yJz =[ -ß,ßJ e (2.5)
where

PE~, P>O and e=C)ER",

Defming

epq= (epq)i) E IRn
by

{
I, i=f:p,q

(epq)i= 0, i=p,q,
then

[Y];. [Yll =[YJ~. [Ylz=[y];. [Yll =

=[yJ;. [Ylz=[ -ßz,ßZ]. epq.

Denoting by IKll, IKzl, ILll and ILzl the real matrices which one gets from Kl, Kz,
LI and Lz, respectively, by forming elementwise the absolute value then we obtain
for the diameters (see [1J, p.14 and p.125) dgl ([yJl,[yJZ) and dgz([yJl,[yJZ)

dgl ([yJl, [yJZ)=2ß IKll e+4ßzl Lll epq (2.6)
and

dgz ([yJ\ [yJZ)=1m1211Lzl. dill ([y]l, [yJZ)+

+2ßIKzle+4ßZILzlepq

:s;1m1211Lzl {2ßI Klle+4ßzl Lll epq}+

+2ßI Kzl e+4ßz, Lzl epq

=4 ßZI Lzl {l + Im1211LI I}epq+

+ 2 ß {Im1211Lzll K 1I+ IKzl} e.

(2.7)

For the centers (midpoints)of [yJi, [yJ2, gl ([yJi, [yJ2) and gz ([yJi, [yJZ)we have
m[yJl=m[yY=O and

mgl ([yr, [yJZ)= LI rl

1 z ~~2 "--""""'-1
mgz ([yJ , [y] )= Lz (, + m12LI r ).

(2.8)

(2.9)

Wehave

g([yr, [y]2)= (gI ([yr, [y]Z»)c ([yr

)\g2([yJl, [y]Z) - .[yY

if and only if
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Im[yJ-mgi([yJl,[YY)I+ ~ dgi([yJl,[y]2)
1 .

::;;2d[yJ, i=1,2.

Becauseof (2.6)- (2.9) this is the case if and only if both

ILI r1 1+ ß IK 1 Ie + 2 ß21 LI Iepq::;;ß e

(2.10)

and
~

IL2 (r +ml2 LI r1)1+ß(I ml211 L211K11 +1 K21)e+

+ 2 ß21 L21 (Iml211 L11 + I) epq::;;ße
hold.

Defining real numbers
~

PI = max {ILI r1 Ii}, P2= max {IL2 (r+m12 LI r1)1)'
l,s;i,s;n l,s;i,s;n

"1= lrr:~:.ttll(KrJ'jl},

P=max {PbP2}, (2.11)

"z ~ l";'f';. {Jl (Imlzll Lzll Kll + IKzl)u},

K=max {K1,K2}, (2.12)

11= r'~f:. Ltl I(Ll)'j I}, lz= r;~:. tt (ILzHI m1211Lll + 1))+

I=max {lI' 12},

then (2.10)surely holds if the inequality

(2.13)

p+(K-1)ß +2Iß2::;;0

holds. Assuming K< 1 and (K- 1f - 8PI>0 then this inequality holds for all
ß E[ß1,ß2] where

ß
- 1-K+ V(1-Kf-8 p I

1/2 (2.14)

Hence we have the proof for the following

Theorem 2.1: Let p,K and I be defined via (2.11), (2.12) and (2.13). If K<l and
(1-Kf-8pl>0 and if ßE[ßbß2] where ß1 and ß2 are defined by (2.14) then the

(
l'*

) (
[yr )mapping g defined by (2.3) has at least one fixed point 2 in 2 where

y ,* [y]

[yJl = [y]2 =[y]o:=[ - ß,ß] e.
D

A fixed point G:: :)of 9 is surely a solution of (1.14) (and heuce of (1.3)) if LI and Lz
are nonsingular. Under the assumption K< 1 of the preceding Theorem 1 this is
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always the case. This can be seen as folIows: From the definition of K we have that

IIKI 1l00=III-LlBl 1100<1.

Therefore the inverseof(1 -(I -LI B1))=LI BI exists which implies that L-;1 exists.
Similarly the existence of Li 1 follows.

We now consider the iteration method

{

[yr,k+1 = 91 ([y r,\ [y JZ,k)

[yJZ,k+l =9z ([yr,\ [yJZ,k)
(V)

k=O, 1,2, ...,
where

[yr'o =[y]Z,O= [yJo=[ - ß,ßJ e.

Theorem 2.2: Let K< 1 and ßl +=ßz where ßl and ßz are defined by (2.14). If then

ß <ß <ßl +ßz
1- 2

and [y JO= [ - ß, ßJ ethen (V) is well-defined.

(V) delivers two sequences {[yr,k}~o and {[yy,k}r=o of interval vectors for wh ich
yl'*E[yr,\ yZ'*E[yJZ,k and

lim [yr,k=yl,*; lim [yJZ,k=yZ,*
k~<X) k--+oo

(
i'*

) (
[yr,O

)hold. T' * is the unique fixed point of 9 in [y JZ'o .

Proof: By the proof of Theorem 1 we have

(
[y]l' 1

) -9{[Yr,0, [yJZ'O) ~ (
[yJl'O

).
[y]Z,1 . . [y]Z,O

By complete induction it follows that

(
[yr'k+l ) (

[yr'k

)[y]Z,k+l ~. [yJ2,k ' k=O,1,2,....

Hence the convergence of the sequences {[y r,k}r=o and {[y]Z, k}~o follows, that is
we have lim [y]l,k=[Yr,* and lim [yJ2,k=[yJZ,* where [yr,* and [yJz,* arek--+00 k--+Cf:)

l
.

'nterval vectors. By Theorem 1 there exists at least one fixed point
« ' :)of 9 in

(
[yjI,O

)
Y ,

[y]2,0 .

Using the inclusion monotonicity (see [IJ, p. 6)it follciwsby complete induction and
passing to the limit afterwards that

(
i'*

) (
[yr,* )y2,* . E [yJ2,* .
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Therefore, if we are able to prove that

tim d[y]l.k= tim d[y]2,k=O
k--+co k-co

(yl,* ) (
[yJl.O

)holds then (2.15) and the uniqueness of..2 in 2 ° follow.
y .* [yJ .

We define dk to be

dk=max
{

m~ {d[yJt,k}, max {d[yJf.k}
}1 :;I:;n

and take into ac~ount that for two real intervals [aJ and [bJ (see [1J, p. 15)

d([aJ. [bJ)<I[aJI d[bJ+d[aJ l[bJI.

Tbe absolute value of interval terms is defined in [lJ, Chapter 2.

Because of

[yr.k, [yJ2.kS;[yJo = [- ß, ßJ e
we then get

d[Yr,k+l = IK11d[yr,k+1 L1Id([YJ~,k.[Yll.k)+

+ IL11 d([y J~,k . [Yl2,k)

< dk . (I K I 1+ 4 ß ILl I)e

(2.16)

and

d [yJ2,k+l =1 m1211L21 d [yJl,k+l +1 K21 d[yJ2.k+

+ IL21 d([yJ;,k. [Yll,k)+ 1L21 d([YJ~,k. GY.k)

sdkl m1211L21(1K11+4ßI L11)e+dk1K21 e+4dkßI L21 e

=ddl K21+4ßIL21 +1 m12IIL21(IK11+4ßILll))e

=dk(1 m1211L211K11 +1 K21)+4ßI L21(1m1211LII +I»)e.

(2.17)

Using the definition of K and I it follows from the last two inequalities that

dk+l s(K+4ß Ddk. (2.18)
Because of

ß< ßl + ß2 1- K
2 -41

we have

K+4ßI<1.

Tberefore from (2.18) it follows that !im dk=O and therefore (2.15) holds.
k-oc'

0
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Al =6, Az=A3=3, A4=1, As=A6= -5, A7= -15.

To the double eigenvalue Az = )'3 = 3 belongs a quadratic elementary divisor, to
AS= A6= - 5 belong two linear elementary divisors. The eigenvectors and the
principal vector belonging to the eigenvalue 3 are as follows:

US and U6 are two linearly independent eigenvectors belonging to the double
eigenvalue - 5.

As approximations to the real numbers mIt> m12 and mzz in (L3) we choose

(mu ::)~(-4.99999999

lE-8

)-5.00000001 .

3. Numerical Examples

1. We considerthe (7,7}-matrix

-6 0 0 -1 -4 -4 0
0 4 1 0 0 0 2
0 1 4 0 0 0 0

A=I -1 0 0 -6 -4 -4 0
-4 0 0 -4 -6 -1 0
-4 0 0 -4 -1 -6 0

0 1 1 0 0 0 4,

which has the eigenvalues

0 0 0 1
4 1 0 0

Ul I
-1 -1 0

, U2= 0 , U3= 0 , U4= 1
4 0 0 0 -1

0 0 0 -1
3 0 1 0

, v J , Jv

( eigenvector principalvector )belonging to the eigenvalue3 .

1 1 1
0 0 0
0 0 0

US = I -1 , U6= -1 , U7= 1
-1 1 1

1 -1 1
0 0 0
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Correspondingly we consider

9.9999999 E - 1
lE-8

-lE-8

Xl = I - 1
-9.9999999 E-l

9.9999999 E - 1
lE-8

331

and X2=

1
lE-8

-lE-8
-9.9999999 E-l

9.9999999 E - 1
-9.9999999 E-l
lE-8

as approximations to the eigenvectors U5 and U6. Using the iteration method (V)
from Section 2 we get the following inc1usions for the solution of (1.3):

(mll + J1u ml2 + J1l2)E

. J12l m22 + J122

(

/[ -5.00000000001;
- 4.999999999 99J

[-2.6E-20; 2.6E-20J

[-lE-19; 3E-20J

]
[ -5.00000000001;

- 4.999999 999 99J

X2 + ji2 E
I

[9.99999989999 E -1;
9.99999990001 E-IJ

[ -2E -19; 1.2E -19J

[-3E-20; 1.0E-19J
[ - 9.9999999 E -1 ;

-9.9999999 E-1J

[9.9999999 E-1;
9.9999999 E -lJ

[ - 9.999999 90001 E - 1;
-9.99999989999 E-IJ

[-IE-19; 3E-20J

2. In this example we replace the zero elements ofthe preceding matrix by numbers
Cijfor which ICij1= 1E - 8. We denote this matrix by Al' We now choose

Xl + ji1 E

[9.99999999999 E -1; 1

1.00000000001 J

[-1E-19; 2E-20J

[-2E-20; 1E-19]

[-I;-IJ

[-9.9999999 E -1;
- 9.9999999 E - 1J

[9.99999989999 E -1; .
9.99999999901 E-IJ

[-IE-19; 2E-20J

(mll :::)= (3 ~),

Xl=

0
1

-1
0
0
0
0

23 Computing 36/4

X2=

0

0

-1

0

0

0

1
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In this case we get the following inc1usions:

(
m11 + /111 m12 + /112

)
E

/121 m22 + /122

(

[2.99999999999; [1.00000000666;

J

3.000000000OOJ 1.00000000667J

[- 5.925925 936 25 E -17; [3.00000000333;

. - 5.925925936 21 E -17J 3.000000003 34J

Xl + yl E X2 + y2 E

[4.027 777 777 77 E -9;

4.027 777 777 80E - 9J
[1; 1J

[-l;-lJ
[1.52777777777 E-9;
1.52777777779 E - 9J

[ - 2.22222222224 E -9;
- 2.222222 222 22 E - 9J

[ -2.22222222224E-9
- 2.222 222 222 22 E - 9J

[ -7.03703706712E-17;
~ 7.037037 067 07 E -17J

[4.828317 89428 E-9;

4.82831789433 E - 9J
[0; OJ

[-I;-IJ

[2.64081789729 E -9;
2.64081789733 E -9J

[ -2.51543208806E-9;
- 2.51543208802 E -9J

[ -5.01543209536E-9;
-5.01543209531 E -9J

[1.00000000333;
1.00000000334J

The eigenvalues and the corresponding eigenvectors are as follows:

Eigenvalues:

Al = a; A2= b; A3= C; A4= - 15; A5= A6= - 5; A7= 1;

Eigenvectors:

UIJ~

t

3. As a final example we consider the (7,7) matrix
I
I

-6 0 -4 -1 0 0 -4
0 b 0 0 0 0 0

-4 0 -6 -4 0 0 -1
A=I -1 O. -4 -6 0 0 -4 I a+b

0 0 0 0 c 0 0
0 1 0 0 0 a 0

-4 0 -1 -4 0 0 -6

0 0 -1
b-a 0 0
0 0 -1

u2=1 0 U3= 0 u4= -1
0 1 0
1 0 0
0 0 -1



We slightly modify this matrix to 1 defined by

In (1.3) we choose

(
mll m12

)
= (

5.000001 0

)m22 0 4.999999'

0 0
0 2E-6
0 0

Xl ~ I 0 X2 = 0
0 0
1 1
0 0

The inc1usions computed by (V) are

(mll +/111 m12+/112

)
E

,/121 m22 + /122

[

[5.00005099999;
5.00005100000J

[ -4.99999949955 E-5;
- 4.999 999 499 54E - 5J

[5.399999498 54E -5;

)

5.39999949855 E - 5J
[4.999949000000 ;
4.999949000001J

23*
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-1 1 1

0 0 0
1 1 -1

u5=1 1 u6= - 1 u7= 1
0 0 0
0 0 0

-1 -1 -1

-6 0 -4 -1 0 0 -4
0 b 0 0 -lE-lO -1 E-lO 0

-4 0 -6 -4 0 0 -1
1=1 -1 0 -4 -6 0 0 -4

0 -1 E-lO 0 0 {; 1E-1O 0
0 1 0 0 1E-1O g 0

-4 0 -1 -4 0 0 -6

and choose

a=5.000001
b=4.999 999
c= 5.001.
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Xl + .v1 E

[-2E-99; 2E-99J

[0; 0]

[-2E-99; 2E-99J

[-2E-99; 2E-99J
[-1.000901010 82E -7;

-1.00090101079 E - 7]

[1; 1J

[-2E-99; 2E-99]

X2 +T E

[-2E-99; 2E-99]

[2E-6; 2E-6]

[-2E-99; 2E-99J
[-2E-99; 2E-99]

[ -1.00289881504E-7;
-1.00289881502 E -7]

[1; 1J

[-2E-99; 2E-99]

It is interesting to note that the (2,2) matrix

(
m11 + 1111 m12 + 1112

)112l mn + I1n

now has a pair of complex eigenvalues.

All computation was done on an APPLE He using the programming language
PASCAL SC (see [4]). This system uses a decimal number system which has
12digits in the mantissa of a floating point number. Note that all rounding errors are
taken into account using this system. Therefore the bounds computed in the
preceding examples are absolutely safe.
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