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Summary. In this paper we use interval arithmetic tools for the com-
putation of componentwise inclusion and exclusion sets for solutions of
quadratic equations in finite dimensional spaces. We define a mapping for
which under certain assumptions we can construct an interval vector which
is mapped into itself. Using Brouwer’s fixed point theorem we conclude the
existence of a solution of the original equation in this interval vector.
Under different assumptions we can construct an interval vector such that
the range of the mapping has no point in common with this interval vector.
This implies that there is no solution in this interval vector. Furthermore
we consider an iteration method which improves componentwise error-
bounds for a solution of a quadratic. The theoretical results of this paper
are demonstrated by some numerical examples using the algebraic eigen-
value problem which is probably the best known example of a quadratic
equation.

Subject Classifications: AMS(MOS): 65G10, 65H10; CR: G.1.5.

0. Introduction

In this paper we consider the problem of constructing sets in R” in which
there exists either at least one solution or no solution of a given quadratic
equation in R™. Such sets are called inclusion and exclusion sets, respectively.

After having formulated in detail the problem and having collected some
more or less well known formulas in Chap. 1 we list in Chap. 2 some tools
from interval analysis. In Chap. 3 we start by proving the fundamental in-
clusion Theorem 1. Under special assumptions we get a result (Corollary 2)
which was proven partly in a series of papers by Yamamoto [24-27]. See also
Hoffmann [6].

*  This paper contains the main results of a talk given by the author on the occasion of the 25th
anniversary of the founding of Numerische Mathematik, March 19-21, 1984 at the Technische
Universitdt of Munich, Germany
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In Chap. 4 we construct exclusion sets, that is sets which contain no
solution of the quadratic equation. To the authors knowledge there do not
exist similar results in the literature.

In Chap. 5 we introduce an iteration method by which a solution of a
quadratic equation can be computed which is contained in an interval vector.
If the interval vector does not contain a solution then this method will break
down after a finite number of steps.

In the final Chap. 6 we illustrate some of the results of this paper by using
the algebraic eigenvalue problem, the most important case of a quadratic
equation in R™.

In passing we note that some of the results of this paper also hold for more
general nonlinear equations. On the other hand quadratic equations possess a
series of special properties which can be used with great advantage.

We finally note that there exists a general theory on quadratic equations
which was developped by Rall [16]. See also Prenter [14].

1. Quadratic Equations in R™ and some Preliminaries

Assume that c¢=(c;)eRR™ is a real m-vector, that A=(a;;) is a real (m,m) matrix
and that B=(b;;) is a bilinear operator from R™xR™ to R™. Then the
mapping f: R™—IR™ defined by

f(2)=c+Az+Bz*, zeR™ (where Bz2=Bzz) (1)
1s called a quadratic operator. The equation f(z)=0, that is
Bz’+Az+c¢=0 (2)

is called a quadratic equation in R™.
Let z°€R™ and assume that f'(z°) and f”(z°) denote the first and second
derivatives, respectively. Then for zeIR™ it follows that

f@=1E)+f'(%)(z—2°+3f"(") (2% &)
holds.
If f(z*¥)=0 and if L is a real (m,m) matrix then it follows from (3) that
z2*=2°—Lf(z°)+{I,—Lf'(c°) -3 (Lf" (") (z* - 2°)} (z* - 2°). 4

Using the real (m,m) matrix L we define for a given quadratic operator the
mapping g: R™—R"™ by

g(@=z"~Lf ) H{L,~ L)~ LN~z P le=2"). ©)
We now introduce two Lemmata which are used subsequently.

Lemma 1. Let K=(k;;) be a nonnegative (m,m) matrix and let u=(u;)cR™ be a
nonnegative real vector. Then it holds that
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Inequalities between vectors are always understood elementwise, that is, if a=(a), b=(b;) are
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Lemma 2. Let H=(h;;,) be a bilinear operator and let u=(u;) be a nonnegative

i S|
vector. Then if p>1, g>1, E+ZI:1 it holds that

Hu<|u| H, (12)

o-(Em)

If we set g=co for p=1 and p=oo for g=1 then (12) holds with H, = Z h: )
and H ,=( max h,;), respectively. []

1=k=m

where H , is the (m,m) matrix

2. Tools from Interval Analysis

We assume that the reader has a certain knowledge of the basic facts of
interval analysis. See for example [1]. Subsequently we list some details which
are used repeatedly.

For two real compact intervals [a]=[a,,a,] and [b]=[b,,b,] the basic
arithmetic operations *e{+, —,-, /} are defined by

[a]+[b]={axblac[a], be[b]}. (1)
The so-called subdistributive law holds:

La}((b]+[c]) <[a][b]+[allc]. 2
Vectors, whose components are intervals, so-called interval vectors, are de-
noted by [z],[u],[v],.... For the components of [z] we write [z],. Hence we

have [z]=([z]).
A mapping f from the set of interval vectors into the same set is called
inclusion monotonic if

[u]<[v] = f([u])<=f([¥]) ©)

where the inclusion [u]<[v] i1s defined via the components. If B= (b;j) is a
bilinear operator then the product B-[u] is an interval matrix defined by

B-[u1= ( T buuliy) @

The multiplication of an interval matrix and an interval vector is defined by
the usual rule for the product of a matrix and a vector. If A=(q;) is a real
(m,m) matrix and B=(b;;) is a bilinear operator then the product AB is a
bilinear operator defined by

48= (3 ab.s)- ©)
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If B is symmetric then the same holds for AB. If 4 is a real (m,m) matrix and
B is a bilinear operator, then for all interval vectors [x],[y] it holds that

(AB)[x] [yl <(ABx])) [yl ABIxIy])- (6)
If [x] is symmetric (that is [x]= —[x]) then it holds that
(AB[xD) [y]=AB[x]1y]), (7
but in general
(AB) [x] [x]+(AB[x]) [x]. (8)

The proof of (6)-(8) can be found in [13].
The width of an interval [a] is defined to be

dla]=a,—a;. | ©)
The absolute value or modulus of an interval [a]=[a,,a,] is
[a]l=max {a,], la,l}. (10)
If Oe[a] then it holds that
ILa]l=d[a]. (11)
Furthermoe the following rules hold:
d([a] £ [b])=d[a] +d[b], (12)
d([a][b]) =llalld[b]+d[a]|[b]l, (13)
d(a[b])=lal-d[b], acR. (14)

In [1], p. 16, Theorem 10, 1t was proven that if Oc[a] and if for [b]=[b,,b,]
either b, >0 or b, =0 then it holds that

d([a][b])=d[a]-|[P]]- (15)

We now consider the more general case that 0Oc[a] and 0e[b]. Under these
assumptions it holds that '

d([al[b])<d[a]-d[b]. (16)

We omit the details of a proof.

For an interval vector [z] the width is defined to be the real vector d[z]
=(d[z],). The absolute value |[z]| of an interval vector is the real vector |[z]|
=(|[z];})- Using (12) and (13) one shows that for an interval matrix [4] and an
interval vector [z] the relation

d([Al[z]) =I[A)ld [z} +d(LAD IL=]l (17
holds.
We now state the following: If Oe[z] (that is if 0e[z],, i=1,...,m) then for
the real matrix A=(a;;) and the bilinear operator B=(b, ;) it holds that

| d((A+B[2)[z])=(4]+|B|d[z])d[Z] (18)
where |A|= (|a5j|)= B :(lbukl)-
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The proof can be performed by using (15) and (16).
The center of an interval [a] is denoted by m[a]. It holds that

a,+a,

mla]=———= for [a]=[a,,a,]. (19)

For an interval vector [z] the center m[z] is defined to be the real vector

m[z]=(m[z]). (20)
Using the definition of m[z] and d[z] we occasionally represent [z] as
[z]=m[z]+3[—d[z],d[z]]. (21)

Using the mapping g, defined by (1.5), we now introduce an interval vector
¢([2]), defined by means of an interval vector [z] and a given real vector z°:

g([z])=z°"—Lf(z°)+{I,—Lf'(z%)— %(Lf"(zo)]([z] =g [z]=2%. . (2D
g([z]) has the following fundamental property.

Theorem 1. If the quadratic equation (1.2) has a solution z* in [z] then
z*eg([z]).

Proof. By (1.4) it holds that z*=g(z*). Because of z*e[z] it follows, using (3),
that z* = g(z*)eg([z]). O

We close this section with two remarks about the interval vector g([z]):

1) Because of the subdistributive law (2), one gets a larger interval vector in
the set theoretic sense if one is multiplying out in (22) eliminating the braces in
this manner.

2) If f'(z°) is nonsingular then one can choose L=f"(z°)~!. Then g([z])
reads

g([zD)=2° - Lf (z°) -3 {(Lf"(°)([2] - 2°)} ([2] - 2°).

Note that because of (6), (7) and (8) one has in this case the optimal order of
the appearing terms in order to get the smallest interval vector in the set
theoretic sense.

3. Inclusion Theorems

In this section we consider the problem of constructing sets in R™ which
contain at least one solution of the quadratic equation (1.2).

Theorem 1. Suppose that for some interval vector [z] it holds that g([z])<=[z]. If
L is nonsingular then the quadratic equation (1.2) has at least one solution in

g([z])-
Proof. We consider the mapping h: R™— R™ defined by
h(z)=z—Lf(2),
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where f(z) is given by (1.1) (or by (1.3)). The mapping h is continuous. From
(1.3) we get by using (2.3) that for all ze[z]

h(z)=z—Lf(2)
=2~ Lf(2°)+2—2°~L(f (29— f(z°))
=2"—L(z%)+(z—2%) - L{f'(2°)z—2)+1f"(°)(z—2°)*}
=20 —Lf(2°)+{I,,— Lf"(z°) =3 (L") (z—2°)} (z— 2%)eg ([ 2]).
By assumption g([z])<[z]. Therefore the continuous mapping h, defined on
the compact and convex set [z], has as its range a subset of [z]. By Brouwer’s

fixed point theorem h has a fixed point z* in [z], that 1s z*¥=h(z¥*)=z* — Lf(z*)
holds. Since L is nonsingular the assertion follows. []

In the preceding Theorem z°€R™ can be chosen as an arbitrary real vector
from R™ If one chooses z° to be the center of [z] then one has the following
results.

Corollary 1. Let z°€R™ and assume that the matrix L is non-singular. For the
quadratic operator (1.1) we define the matrix K =(k;;) by

K=(k;)=II,,—Lf"@°), (1)
the bilinear operator H=(h;;,) by
H=(h;;)=ILf"(z°) )
and the vector & by
e=(&)=ILf (). &)
If the inequality (for the vector feR™)
| e+Kp+3HB <P )

has a solution =0 then the quadratic equation (1.2) has at least one solution in
[z]1=2°+[-B,B].
Proof We have [z]—z°=[—8, 8] and d([z] —z°)=d[z]=2p. Hence g([z]) can
be written as :
g([z))=2°—Lf (z°) +{L,— Lf'(2°) =3 (Lf"°) [ - B, B} [ - B, B]
=2°—Lf(2°)+(I,— Lf'°) [— B, B1+3 (LS ) [ - B, B)*
from which it follows that dg([z])=2K f+ H B>.
Using this equation and (3) then (4) is equivalent to
ILf () +3d(g[z]) =3d[2],
or, because of _
mglz]=2"~Lf(z°), m[z]=2°,
to
Im[z]—mg[z]|+3dg[z] £3d[z].
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The last inequality is equivalent to g([z])<[z]. The assertion now follows from
Theorem 1. [

The next result shows that under certain additional assumptions a solution
=0 of the inequality (4) can be found explicitly.

Corollary 2. Let z°c€R™ and let K, H and ¢ be defined as in Corollary 1. Let k|,
and h, be defined as in Lemma 1.1. If

lIre,ll, <1, ®)
(1=l 1 )* =2 llhll, el , =0, (6)
. = (e, = DFY Ul Il ,— 1)* =2 I, |, IISII )
Ikl
and if for some a€la,,a,),
p=ce+ax,+3a’h, (8)

then the quadratic equation (1.2) has at least one solution in

[2]=z°+[-B,A].

Proof. Since p(K)<1 by (1.7) and (5), it follows by the Perron-Frobenius theory
on nonnegative matrices (see [29]) that

pI,— L) =p(1,— LI (%)) =p(K)<1

Hence L is nonsingular.

If after multiplying (1.3) by L from the left the bilinear operator Lf"(z°)
vanishes (that is Lf”(z°)=0) then (1.3) is a linear equation. This case is
considered as a trivial one in connection with quadratic equations and it is
therefore excluded. We therefore have h,+0 for the vector h, defined by (1.11).
It follows that |h,||,+0. Hence the denominator does not vanish in (7) and a,
and a, are well-defined. Furthermore a, =0 and therefore =0 for the vector f
defined by (8). Subsequently we use the fact that a, and a, are the solutions of
the quadratic equation

2kl 6%+l ll,— 1) a+ el ,=0.
Therefore we have for a€[a,,a,] that

2 bl @+ ikl a+ el ,Za. 9)

|
By Lemmal.l we have for p=1, ¢=1, —+-=1 that Kf<|p|,x, and
P q

B>< 1812,
Therefore the inequality (4) from Corollary 1 certainly holds if f=0 is a
solution of the inequality

e+ Bl x, +5 1817 h,<B. (10)
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We now show that f, defined by (8), is a solution of this inequality. Using (9) 1t
follows from (8) that

1Bl < lell,+allx I, +3a° k], Za
Hence it follows from (8) that
p=e+ax,+5a”h,Ze+| Bl x,+ Bl h,.
The assertion now follows from Corollary 1. []

Some of the results of Corollary 2 were proven by completely different
methods by Yamamoto in a series of papers [24-27]. However, he considered
only the (under practical aspects most important) cases p=1,2, co. Further-
more he could only allow a=a, in (8) which of course gives the smallest
inclusion [z]=z°+[—B, B]-

In Chap. 5 we will prove that the quadratic equation (1.2) has a unique
solution in [z]=2z"+[—f, ] if in (8) the real number a is chosen to be equal

a,+a,

to where a, and a, are defined by (7) provided that a, #a,.

We stress the fact that the real vector z° in Theorem 1 can be chosen
arbitrarily. Therefore by choosing z° appropriately one has a greater chance to
have g([z])=[z] for some interval vector [z] compared with Corollary 1 or

Corollary 2 where z° has to be the center of [z].

4. Exclusion Theorems

We start with the following basic result.

Theorem 1. Let z°cR™ and let L be an (m,m) matrix. If [z] is some interval
vector then the quadratic equation (1.2) has no solution in [z]\g[z]). ([z]\g[z]
denotes the set theoretic difference of the interval vectors [z] and g([z]).)

Proof. By Theorem 1.1 we have for all solutions z*e[z] of the quadratic
equation (1.2) that z*eg([z]). Hence in [z]\g([z]) exists no solution of
(12). O

Corollary 1. Let z°cR™ and assume that for some real matrix L it holds that

gz nlz]=9 (1)

for some interval vector [z]. (1) is true if g([z]);n[z],=0 for at least one i).
Then the quadratic equation (1.2) has no solution in [z].

Proof. From (1) it follows that [z]\g[z]=[z]. The assertion now follows from
Theorem 1. [J '

Corollary 2. Let K, H and ¢ be defined as in Corollary 3.1. If the vector f=0 is
a solution of the inequality

B+Kp+3HP <, (2)
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where in (2) the equality-sign is excluded?, then the quadratic equation (1.2) has

no solution in
[zZ]1=z°+[-B,B].

Proof. Because of [z]—z°=[—p, 8] we have dg([z])=2K p+H p*
(See also the proof of Corollary 3.1). Furthermore

Im[z] —mg[z]|=|Lf(z°)=e.
Therefore (2) can be written as
3{d 2] +dg([z])} SIm[z] —mg[z]]

where the equality-sign is excluded. Hence g([z])n[z]=9 holds. The assertion
now follows from Corollary 1. []

Under appropriate assumptions one can find solutions of the inequality (2).
Corollary 3. Assume that K, H and ¢ are defined as in Corollary 3.1. Let

o = e )+ A+ e 1)* + 2 el Tl
”ho: || 1

If e—%a*h,—axk =0, where the equality-sign is excluded and if f is chosen
according to

0Lp<e—3a’h,—ax,, PfFe—za*h,—ax,, 3)
then the quadratic equation (1.2) has no solution in
[z]1=2"+[-8.8].

Proof. We show that  from above is a solution of (2) where the equality-sign
is excluded. Because of K f<|B|,x, and KB*<|Bl}h, (see Lemma 1.1) it
follows that

B+KB+3HBZB+IBly Ko +3 1817 Po-

Therefore (2) holds if f is a solution of

BBl Ko +5 1B h, S8 (4)

where the equality-sign is excluded.
From (3) it follows that

B+ia’h, +tax, <e P+3a’h,+ax Fe
Because of =0, 1a*h_ =0, ax =0 we have that
1Bl +5a |l +alk,ll =1B+3a%he+ar, | <lely,
or, since a is a solution of the quadratic equation

lelly —3a% [l —allk,ll =a,
that |||, <a.

* By this we mean that for at least one component the -sign holds
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Therefore if f is chosen according to (3), where the equality-sign is excluded

then
e— 1Bl k=3B  hyze—30*h—aK, =

where the equality-sign is excluded. []
Corollary4. Let K, H and ¢ be defined as in Corollary 3.1. Assume that o

= min ¢>0.
1Zi<m
If
- s 2
o, = ZUH Il VUt Dl 42000
"h}”co
and .
1
p=al:). 5)
1
then
B+KpB+5HB*<e. (6)

Hence by Corollary 2 the quadratic equation (1.3)) has a solution in
[z1=2°+[-B,B].
Proof. Using f defined by (5) we certainly have that

1
prKprifp=al: [fa( X k) +1a (X 3 h)
1 j=1 j=1 k=1
1
=a| ‘ |+ak, +1a’h, <
1
if
a+alk,l|l,+3a®|h ), < min g=4.
15i<m

Since the quadratic

Lkl @+ k0l a+ta—38=0

has the zeroes

g = 20 ) =V, ) +2 008

0
' lihyll
and
o QI [V Dy L 218, 16
g Il
we have
THPR*+KB+p<e

for f defined by (5) if 0<a<a,. []
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5. Convergence Results

Using Theorem 3.1 we have proven a series of inclusion results in Chap. 3. The
basic idea was to prove g([z] =[z] for some given interval vector [z].
Similarly, using Theorem 4.1 we have proven a series of exclusion results.
In this case the basic idea was to prove that g([z])n[z]=0 holds for some
interval vector [z].
There is, however, a third case besides of g([z])=[z] or g([z])n[z]=0,

namely that
g([z)n[z]+0 and g([z]¢[z]. -0

For this last case we cannot make a statement about the existence or non-
existence of a solution of the quadratic equation (1.1) using the results of the
preceding Chapters.

We now introduce an iteration methad which has the interesting property
that under appropriate conditions it will break down after a finite number of
steps if (0) holds and if there exists no solution in [z]. If, however, there exists
a solution in [z] then this method will converge to this solution.

The method introduced in the next theorem can of course also be consid-
ered if g([z])=[z], that is if we know in advance that there exists a solution in
[z]. We return to this special case later.

Theorem 1. Let z°€R™ and let [z] be an interval vector. Let K and H be defined
as in Corollary 3.1. Assume that the real matrix

M=K+H|[z] -2 (1)
has spectral radius less than one: p(M)<1. Then for the iteration method

{[2]‘): (2]

[ =g (9Ll k=0,1,2,... v

the following holds:

1) If there exists a zero z* of the quadratic equation (1.3) in [z] then (V) is
well-defined, that is the intersection (which is to be understood component-wise)
is never empty. Furthermore z*€[z]*, and lim [z]*=z* (which means that the

k— oo
bounds of [z]* are converging to z* from below and above). f'(z*) is non-
singular. z* is unique in [z].
2) If (1.3) has no solution in [z], then there exists a ko,=0 such that
g([z]*)n[z]*=0 that is (V) is breaking down after a finite number of steps
because of empty intersection.

Proof. Of 1): If (1.3) has a solution z* in [z], then z*=g(z*) by (1.4) and (1.5)
and using (2.3) it follows that

z*=g(z¥)eg([z) =gz n[z]=[z]"

By mathematical induction it follows that z*eg([z]"), and because of z*e[z]*
we conclude that z*eg([z]")n[z]*=[z]**'. Hence z*e[z]* and the well-de-
finedness of (V) is shown.
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Using (2.13) it follows from (V) that for k=0

d[z]**+' <dg([2]")
=d({I,,— Lf"(z°) =3 (LS W ([2T* - 2} ([2]* - 2°))
<|L,— Lf'(2°) =3 (Lf " @) ([T~ 2°) d[2]*
+d({I,—Lf"(2°) =3 (LS V(T - 2O [T~ 2°
<{L,—Lf" &) +ILf" () I[z]*~2°1} d [T*
=(K+H|[z]*-2°)d[z]~
Because of forming the intersection in (V) it holds that [z]*<[z], k=0,1,2,...,

and therefore [z]*—2z°<[z]— 2% that is |[z]*—2°| £|[z] — 2%, k=0, 1,2, ....
Therefore it follows that

d[z]**' =(K+H|[z] -2°)d [}
=Md[z]*
<M*d[z], k=0,1,2,....

Since p(M)<1 we conclude that lim d[z]*=0, and since z*e[z]" it follows that
lim [z]*=2* foreng
k— w

We now prove that f’(z*) is nonsingular. From the representation (1.3) of
f(z) 1t follows that :

S @=f')+ ") (-2,
and therefore, for z=z*
Lf'(z*)=Lf"(z°)+(Lf" () (z* - 2°).
Since z*€[z] we have
\L,— Lf'(z*)| =], — Lf'(z°)— Lf"(z°)(z* — 2°)|
S, —Lf' @O +ILf" () (2] —2°
=K+ H|[z]-z°|=M

From the Perron-Frobenius theory on nonnegative matrices it follows that
p(,—Lf(z*)=p(l,—Lf (*))= p(M)< L

Hence {I_—(I,,—Lf'(z*))} ' exists, that is f'(z*)~ ' exists. Finally, we have to
prove that z* is unique in [z]. This statement follows immediately from the
already proven fact that lim [z]*=z*.

k— @ :
Of2): Assume that g([z]*)n[z]*+0 for all k=0. alogously as in the proof
of 1) one shows that d[z]**'<M*d[z], k=0,1 ., from which it follows

that lim d[z]*=0. From (V) it follows that
k— oo
Fl=lZP2 .2l e ...

Hence there is a real vector Ze[z]* for which lim [z]*=Z. Since g([x]) is a
k—+ o0
continuous function of the interval vector [x] and since g([x])n[x] is a
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continuous function of [x] if the intersection is nonempty (see, for example,
[1], p. 128, Corollary 10) it follows from (V) that for k— o0

£=g(5)nz=g(2),
or that

£=20—Lf (2% + {I,— Lf' ()~ 3(Lf " @) E - 2} (¢~ 2. ®)

Since
\I,,—Lf'(°) <|1,,—Lf'(z°)+H|[z]—2°

=K+ H|[z]-2°|=M

the nonsingularity of L follows similarly to the nonsingularity of f’(z*), which
was proved in part 1). Therefore (2) can be written as

FE@)+ LG+ ) E -2 =0.
On the other hand we have by (1.3)
f@=1E)+ () E-2°)+31"(°)(E—2°?

from which it follows with the preceding equation that f(Z)=0. This is a
contradiction to the assumption that f(z)=0 has no solution in [z]. [

We add some remarks concerning the condition p(M)<1 for the matrix M
defined by (1). The question arises whether by choosing a special z° the
condition p(M)<1 can be replaced by a weaker one.

If we choose z°€[z], then 0e[z]—z° and by applying (3.18) we get from (V) for
k=0 that
d[z]' <dg([z1°) < (K +5 H-d[2]°)d[=]"

In part 1 of the proof of Theorem 1 we have shown that for arbitrarily chosen
ZOE]Rm k+1 k
d[z]""' (K +H|[z]*—z°))d[z]"*
which for k=0 and z°c[z]° can be written as
d[z]' =(K+Hd[2]°)d[2]°

since |[z]°—z°<d[z]°. Compared with the preceding inequality the term
$Hd[z]° is multiplied by a factor of two and therefore it seems that by
choosing z°e[z] we can gain this factor of two. However, in the next steps of
method (V) we don’t have z°¢[z]*, in general, and therefore (3.18) can no
longer be applied. Therefore it seems that the spectral radius condition
p(M)<1 in Theorem 1 cannot be weakened.

In the following Theorem we will see that under natural conditions on z°,
f'(z°) and L we always can find an-interval vector [z] for which the matrix M
defined by (1) has spectral radius less than one.

Theorem 2. Let K and H be defined as in Corollary 3.1. Assume that |- ||

q

m 1
=(Z ]uilq)q, gz1. If |[K| <1l for some matrix norm and if [z] is chosen
i=1

according to
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1-K] 1 1
qé_—_y F—= ?
- H P q

I[z1—2°1

where H , is defined in Lemma 1.2 then p(M)<1 for the matrix M defined by (1).

Proof. By Lemma 1.2 we have for all interval vectors [z] that
M=K+H|{zZ]-z°|SK+H,- | |[z]-2°|,=:M,.

Therefore by the Perron Frobenius theory on nonnegative matrices certainly
pM)<11f p(M,)<1. The condition |M,| <1 is sufficient for p(M,)<1. Since

IM, || =IIK+H,- || I[z]—2° |
<K+ 1H -1z =2,
we have [|[M, || <1 if | |

1-]K|
izl =2t~ O
T OH
In passing we note that |K| <1 can always be fullfilled if f'(z°) is non-
singular and if then L is a sufficiently good approximation to f'(z%)~*.
We now consider the method (V) under more special assumptions.

Theorem 3. Assume that for some interval vector [z} we have that g([z])<[z].
Then (V) is well-defined and it holds that lim [z]*=[z]* where in general
kv

d[z]*=0, that is [z]* is an interval vector. There are no solutions of (1.3)
[z]\[z]*.

Proof. Because of g([z])=[z] it follows by mathematical induction that [z]
=il ol .. gnd enee i [z ="

k—
Furthermore, by Theorem 1.1, z*eg([z]°)=[z]" for all solutions z* of the
quadratic equation (1.3). By complete induction we get z*eg([z]¥)=[z]**" for

all k=0 and therefore z¥€[z]*. Hence there are no solutions in [z]\[z]*. [

We now use a simple example (see Bohm [3], Ch. 1) to demonstrate that
even the stronger condition g([z]<[z] is not sufficient for the convergence of
the sequence {[z]*}_, to a real vector: Consider the quadratic operator

f(z2)=—z+2z% zeR!

in R' and the interval [z]=[0,2].
We choose z°=1 and L=1. Then using [z]°=[z] we get

g([z21)=1-([z1°~1)*=1-[0,1]=[0,1]=[z]",

hence g([z]°)<[z]°. The following iterates are all equal to [z]'. Therefore
lim [ZJ*=[z]*=[z]". O
k— oo

We now discuss the question of which additional assumptions one has to
immpose besides of g([z]<[z] in order that lim [z]*=2z* where z* is a real

k=0
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vector. In order to discuss this we now choose z°=m[z] and consider the even
stronger assumption g([z])c[z] (which is defined as g([z]),<[z];, i
=1,2,...,m). It then follows that d[z]=2>0. A similar proof as that of
Corollary 3.1 shows that the assumption g([z])<[z] implies that

e+KB+5HB <P
from which it follows that
Kp+3HpB*=(K+3HPB)B<p.
Since >0 it follows by Corollary 3 in [29], p. 18, that the spectral radius of
the matrix
MozK+%Hﬁ=K+%Hﬂ;—=K+%H|[z]—z°l

1s less than one. For the convergence of (V) to a real vector we need, however,
by Theorem 1 the condition p(M)<1 which because of

M,=K+1H|[Z]-2°|SK+H|[Z]-2°|=M
is a stronger condition than p(M,)<1.
The discussion is made more precise in the next theorem.
Theorem 4. Let [z]=2z°+[— B, ] where B is a solution of the inequality
e+Kp+iHB <P
and where K, H and ¢ are defined as in Corollary 3.1. If besides of this
p(K+H|[z]-z°)=p(K+H p)<1

then (V) is convergent to the unique solution z* of (1.3) in [z].

Proof. By Corollary 3.1 we have g[z]<[z] and therefore there exists at least
one solution z* of (1.3) in [z]. By Theorem 1 lim [z]*=2z*. [
k— o0
The following Corollary shows that by choosing in (3.8) the number «
appropriately the spectral radius condition of the preceding theorem holds.
Therefore we have the uniqueness result under the assumptions of Corollary
3.2 which was already announced in Chap. 3.

Corollary 1. Assume that the conditions of Corollary 3.2 hold where in (3.6) the
equality sign is excluded. If in (3.8) the real number a is chosen to be less than
(a; +a,)/2, where a, and a, are defined by (3.7) then
p(K+H|[z]—2%)<1
for
[z2]=z"+[-4,8],

that is the iteration method (V) is for this [z] convergent to the unique solution
z* of the quadratic equation (1.3) in [z].
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Proof. For [z]=z°+[—B, B] it follows, using Lemma 1.2, that
K+H|[z]-z°{=K+HB<K+H,|Bl,

1 1
where p=1,g=21,—+—=1.
P q

Hence by the Perron Frobenius theory for nonnegative matrices certainly
p(K+H|[z]-z°) <l if p(K+H,|pl)<1.

We use the matrix norm |- ||= sup [-ul,,g=1
] "'"qz 1
We then have |K||=|k,||,. Since for a nonnegative vector u we have by

Lemma 1.1 that H u<i[u;]q , it follows, using that the vector norm |- ||

m 1
= (z |uii‘*)" is absolute, that
i
IH = sup [H,ul,=lhl,-

Hullg=1

Therefore
1K +H Bl I S IKI+ 1Bl Y H |
<l Nl + 1Bl Ayl

If we now choose
i 2
B=¢+ax,+3a*h,

a,+a,

where a=

al +a2_____1_ HKp”q

1Bl = =
! 2 Ith,llg

Therefore
1K+ H B 1l + 1Bl Ml < 1.

Hence p(K+H,|Bll,))<1 and all statements follow from the preceding
Theorem. []

6. Numerical Examples

As a simple but very important example to the quadratic equation (1.3) we
consider the algebraic eigenvalue problem

szflx (0Y)

where T=(t;;) 1s a real (n,n) matrix. We assume that the eigenvector x=(x;) has
Euclidean lcngth one:

n

Ixliz= Y Ix/*=1. 2
i=1
If we set z'=(x,,X,,...,X,,4), then (1) and (2) can be written as a system of
nonlinear equations, namely

fio)= ((T ADx e

L(1-Ix12) G)
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It is well known that (3) is a quadratic equation of the form (1.2) where m=n
+1 and

c'=(0,...,0,3), ceR", (4)
0
T n
0
0..010/ }1
n 1

T ) | O 0...0-1 0 10 010/ }1
e r— — Ner—— — ————eea " Myt
n 1 n 1 n 1
n-I—l

In passing we note that there exists a series of papers starting with Unger [28]
in which Newton’s method was applied to the nonlinear system (3). See, for
example Collatz [5], Krawczyk [7], Rall [15], Rokne [17], Rump [18-20],
Symm-Wilkinson [21] and others.

For the mapping (3) we get by using (4, 5) and (6) that

f(z2)=c+Az+Bz*, f'(z2)=A+2Bz, f"(z)=2B.

Therefore f'(z) has the matrix representation

1= (—;j %) ¥ )
n 1

and f"'(z) is the bilinear operator defined in (6), multiplied by the factor two.
If we choose L= f'(z%)~! then the interval vector g([z]), defined in (2.22)
reads

g([2)=2"= ") f (") = 3((f ) [N ([2] - 2°) ([z] - 2°).

For a given z°€R™ we now use Corollary 3.2 in order to compute an interval
vector [z]=z"+[ —p, ] in which there exists a solution of (3). We have in this

case .
K=0, H=|f'()"""C) &=I1f(")"f)
We now choose p=1, g=o00. Then Corollary 3.2 states that if
f—it thuw “8|Jc}'_\>0
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1 -]/1 =2k}l llell
172 o

[z]=2"+[-8,B]. (8)

Furthermore, by Corollary 5.1, the iteration method (V) introduced in Theo-
rem 5.1 will converge to this solution.
For L= f'(z°)~" the iteration method (V) reads

(141 = {20~ ') S )~ 3 ) N[ — 2 (21— 20} A L1

We perform this method in the following manner:
In the k-th step we compute an interval vector [y]* with the following
property: For each z*e[z]* the solution z**! of the linear system

@) —2%=— f&°)—31"E)F -2

is contained in this interval vector [y]*. This can be done by using an interval
algorithm which computes for the given real matrix f'(z°) and the given right-

hand side
- ) =3 (") [z} —2"N({[z]*-2")

an interval vector which includes all possible solutions. (Note that this is not
exactly our proposed method (V) since in general A~ -[b]+IGA(A,[b]) where
IGA(A,[b]) denotes the result which is delivered if the Gaussian algorithm is
applied to the real matrix A and the right hand side [b]. See, for example, [2],
Lemma 1, for details. This i1s not very important in our case because the
inclusion of the zero is also guaranteed if (V) is modified as described. Further-
more for an interval vector [b] with d[b] small compared with the nullvector
the difference between A~'-[b] and IGA(A,[b]) is negligible).
Because of the special structure of f”(z°) the term

—3(" @) (21 - 2°)([z]* -2
simplifies to the interval vector
(C2h, 1 =20, ) (20 —22)
(11— 2 )l —22)

and f=¢+%alh, where a;= , then there exists a solution

z¥In

)

(21, —22, ) ([ —20)

LY (-7

The residual f(z°) can be written in the form

Txtedx”

f(zo)% %(l_élixilz) :

Taking into account the special form (9) of

—3(/" @) ([T~ 2N([2]* - 2°%)
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the right-hand side interval vector
=)~ HF =] =2 (10)

can therefore be computed by using only scalar products.

Using the so-called exact scalar product, introduced by Kulisch (see [8-12])
the individual components of the right-hand side can be computed with maxi-
mal available precision.

After having computed [y]* (this is actually done by using the subroutine
LGLSI which is available in the PASCAL SC language, see [8-12] for details),
we form the intersection with [z]* getting [z]**1.

All computation was done on an APPLE IIE using the programming
language PASCAL SC (see [8-12]). This system uses a decimal number system
which has 12 digits in the mantissa of a floating point number. Note that all
rounding errors are taken into account using this system. Therefore the bounds
computed in the following examples are absolutely safe.

Example 1. The first matrix is taken from [24], p. 196. Let

1 1 0.5
T=| 1 I 025
05 023 2

and

—0.721 207 180
%" 0.686 349 340), 1,=-0.016647302.
0.093 727 970

Il

Then we get for .he interval vector [z] defined in (8);

[—0.721 207 3] ; —0.721 207 1]
[ 0.686 349 2] ;  0.686 349 4]
[ 0.093 727 96];  0.093 727 98]
[—0.016 647 33]; —0.016 647 28]/.

After two iteration steps of (V) we have the final result

[—0.721 207 129 831 ; —0.721 207 129 830 ]
[ 0.686 349 287 710 ; 0.686 349 287 711 ]
[ 0093 727 963 498 o 0.093 727 963 498 8]
[—0.016 647 283 606 4; —0.016 647 283 606 3]

Example 2. As a second example we consider the matrix

4 9 6 4 2
ol ] el ) el

T=| -2 -2 0 -1 -1
3 3 3 5 3

ol = =) i =f
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introduced in [24], p. 197, which has 2=5 as a simple eigenvalue. The corre-

: |
sponding normalized eigenvector is xr:ﬁ(l, —1,0,0,0).

We choose
0.707 106 58
—0.707 107 30
x®=| —0387 205 54 E—6
0.332 787 40 E—6
0.508 088 97 E—6
and

1y =49999957.

Then, for the interval vector [z] defined in (8) we get

[ 0707 106 3: 0.707 106 8 ]
[—0.707 108; —0.707 106 ]
[—0.78 E—6; 0.12E—10 ]
[—0.9E—11; 0.67E —6 ]
[—04E—10; 0.11E—5 ]

[0.499 999 1E+1; 0.500 000 1E+1]

After three iteration steps of (V) we have the final result:

[ 0.707 106 781 186; —0.707 106 781 187 1
[—0.707 106 781 187; —0.707 106 781 186 ]
[—09E-17; 0.14E—16 1
[—05E-—-17; 09E-17 3
[-0.25E—16; 028 E—16 i

[ 0.499 999 999 999E +1; 0.500 000 000 O0LE+1]}

Example 3. As a final example we consider a symmetric (14,14) matrix T which
was introduced in a. paper by Brooker and Sumner [4] and which was
reconsidered by Wilkinson [22, 23]. Because of lack of space we do not list the
matrix elements. Instead we refer to [4], [22, 23] or to Example 4.12 in the
book by R.T. Gregory and D.L. Karney [30].

We choose

1,=1.33403483700
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and

9.168 195 046 95E—2
1.945 051 119 20E—1
3.189 487 364 33E—1
3.407 954 910 35E—1
1.457 661 093 1SE—1
1.918 835 439 20E—1
1.826 099 068 19E—1
3.382 100 423 35E—1
2.884 013 952 30E—1
2.701 082 857 28E—1
3.233 984 439 34E—1
2955 518 490 31E—1
3210 872 399 33E—1
2.809 351 151 29E—1

Then for the interval vector [z] defined in (8) we get:

[9.168 195 044E—2; 9.168 195 050E —2]
[1.945 051 119E—1; 1.945 051 120E—1]
[3.189 487 363E—1; 3.189 487 366E—1]
[3.407 954 910E—1; 3.407 954 911E—1]
[1.457 661 092E—1; 1.457 661 094E—1]
[1.918 835 438E—1; 1918 835 440E—1]
[1.826 099 067E—1; 1.826 099 069E—1]
[3.382 100 420E—1; 3382 100 427E—1]
[2.884 013 950E—1; 2.884 013 954E—1]
[2.701 082 857TE—1; 2.701 082 858E—1]
[3.233 984 439E—1; 3233 984 440E—1]
[2.955 518 489E—1; 2.955 518 492E—1]
[3.210 872 396E—1; 3.210 872 402E—1]
[2.809 351 150E—1; 2.809 351 153E—1]
[1.334 034 836 ; 1.334 034 838]
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After two iteration steps of (V) we have the final result:

[9.168
[1.945
[3.189
[3.407
[1.457
[1.918
[1.826
[3.382
[2.884
[2.701
[3.233
[2.955
[3.210
[2.809
[1.334

195

051
487
954
661
835
099
100
013
082
984
510
872
351
034

049
119
365
910
092
438
068
420
953
857
439
489
401
150
836

16E—2;
J1E—-1;
32E—1;
38E-1;
TME-1;
95E—1;
S9E—1;
34E—1;
95E—1;
18E—1;
50E—1;
32E—1;
TAE—1;
22E—1;
955

2

9.168 195
1.945 051
3.189 487
3.407 954
1.457 661
1.918 835
1.826 099
3.382 100
2884 013
2.701 082
3.233 984
2955 518
3.210 872
2.809 351
1.334 034

049 17E—2]
119 32E-1]
365 33E—1]
910 39E—1]
092 72E—1]
438 96E—1]
068 60E—1]
420 35E—1]
953 96E—1]
857 19E—1]
439 SIE—1]
489 33E—1]
401 75E—1]
150 23E—1]
836 96 ]

In [30] also the elements of the tridiagonal matrix T are given which one gets
if the Givens method is applied to T using a floating point system with 9 digits
in the mantissa. In order to compare the influence of the rounding errors
which are introduced by the Givens method we now repeat the computation

for the matrix T

In this case we choose

and

Ao =1334034

9.168 1E—-2
6.467 91E—2
7.526 §1E~2

8177 6E-2
5.504E—-3
1.68E—4

0

o o o o o o 2O
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Then we get for the interval vector [z] defined by (8):

2.
6.
7.
8.
o
L

[
[
[
[
L
L
L
k—
[
[=
[=
im
[=
[-
[

3
2
il
P
9
7
8
7
1.

168 0 E— 2;
467 90 E— 1;
526 869E— 1;
1775 E-— 2;
503 E— 3;
67 E— 4;
E— 6;
E— 7;
E— 9;
E—10;
E—12;
E—12;
E—12;
E—12;
334 033 :

91682 E— 2]
6.467 92 E— 1]
7.526 871E— 1]
ST B 2]
5.505

1.69
)

2
4
2
5"
7
8
7
1

E— 3]
E— 4]

334 035 |

After three iteration steps of (V) we have the final result:

[9.168
[6.367
[7.526
[8.177
[5.504
[1.682
[4.990
[1.440
[3.474
[1.079
[1.417
[2.822
[6.955
[4.323
[1.334

194
912
870
651
061
681
323
899
596
736
336
i
927
312
034

970 23 E= 2;
624 97TE— 1;
271 30E— 1;
873 31E— 2;
256 42E— 3;
402 21E— 4;
332 24E— 6
836 9BE— 17
896 67TE— 9
219 22E—-10;
691 21E-12;
968 84E—14;
655 65E—16;
212 31E—18;
842 45 2

9.168
6.467
7.526
8.177
5.504
1.682
4.990
1.440
3.474
1.079
1.417
2.822
6.955
4323
1.334

194
Biz
870
651
061
681
3D
899
596
736
336
952
927
i
034

970 24E— 2]
624 98E— 1]
271 31E— 1]
873 32E— 2]
256 43E— 3]
402 22E— 4]
332 43E— 6]
837 01E— 7]
896 74E— 9]
219 26 E—10]
691 27E—12]
968 97E —14]
656 02E—16]
212 58E—18]
842 46 ]

The largest eigenvalue of T — rounded to 17 digits — is

2,=1.334034836956 5070.

G. Alefeld
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If one compares this value with the last component of the preceding interval
vector (which is an inclusion for the largest eigenvalue of T) then we conclude
that the largest eigenvalues of T and T, respectively, differ in the 9-th digit of
the mantissa. This is not surprising since - as was mentioned above - T was
transformed to T by using 9 digits in the floating point mantissa.

We close this paper with two final comments:

a) The including sets for the eigenpairs computed in the numerical exam-
ples are very close in the sense that in most cases the individual components
are included by two neighbouring machine numbers. A theoretical foundation
for this will be given in a future paper in which - using the so-called exact
scalar product - the influence of rounding errors on the method (V) is studied
in detail.

b) Method (V) will not work for a multiple eigenvalue of the matrix T since
in this case the (n+1,n+1) matrix f'(z*) 1s necessarily singular. If multiple
eigenvalues exist we are in the position to formulate a method which takes into
account the multiplicity of an eigenvalue. The investigation of this method will
be performed in another paper.
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