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Summary. In this paper we use interval arithmetic tools for the com-
putation of componentwise inclusion and exc1usion sets for solutions of
quadratic equations in finite dimensional spaces. We define a mapping for
which under certain assumptions we can construct an interval vector which
is mapped into itself. Using Brouwer's fixed point theorem we conc1ude the
existence of a solution of the original equation in this interval vector.
Under different assumptions we can construct an interval vector such that
the range of the mapping has no point in common with this interval vector.
This implies that there is no solution in this interval vector. Furthermore
we consider an iteration method which improves componentwise error-
bounds for a solution of a quadratic. The theoretical resuIts of this paper
are demonstrated by some numerical examples using the algebraic eigen-
value problem which is probably the best known example of a quadratic
equation.

Subject Classifications: AMS(MOS): 65GlO, 65HlO; CR: G.1.5.

o. Introduction

In this paper we consider the problem of constructing sets in ]Rmin which
there exists either at least one solution or no solution of a given quadratic
equation in ]Rm. Such sets are called inclusionand exclusionsets, respective1y.

After having formulated in detail the problem and having collected some
more or less well known formulas in Chap. 1 we list in Chap. 2 some tools
from interval analysis. In Chap. 3 we start by proving the fundamental in-
c1usion Theorem 1. Under special assumptions we get a resuIt (Corollary 2)
which was proven partly in aseries of papers by Yamamoto [24-27]. See also
Hoffmann [6].

* This paper contains the main results of a talk given by the author on the occasion of the 25th
anniversary of the founding of Numerische Mathematik, March 19-21, 1984 at the Technische
Universität of Munich, Germany



-- ---.

392 G. Alefeld

In Chap. 4 we construct exc1usion sets, that is sets which contain no
solution of the quadratic equation. To the authors knowledge there do not
exist similar results in the literature.

In Chap. 5 we introduce an iteration method by which a solution of a
quadratic equation can be computed which is contained in an interval vector.
If the interval vector does not contain a solution then this method will break
down after a finite number of steps.

In the final Chap. 6 we illustrate some of the results of this paper by using
the algebraic eigenvalue problem, the most important case of a quadratic
equation in JRm.

In passing we note that some of the results of this paper also hold for more
general nonlinear equations. On the other hand quadratic equations possess a
series of special properties which can be used with great advantage.

We finally note that there exists. a general theory on quadratic equations
which was developped by Rall [16]. See also Prenter [14].

1. Quadratic Equations in IRmand some Preliminaries

Assurne that C=(ci)EIRm is areal m-vector, that A=(ai) is areal (m,m) matrix
and that B=(bijk) is abilinear operator from IRmx IRm to IRm. Then the
mapping f: IRm-+ IRm defined by

f(z)=c+Az+Bz2, zEIRm (where BZ2=Bzz) (1)

is called a quadratic operator. The equation f(z)=O, that is

Bz2+Az+c=0 (2)

is called a quadratic equation in IRm.
Let zOEIRmand assurne that 1'(zo) and f"(zO) denote the first and second

derivatives, respectively. Then for ZEIRmit follows that

f(z)= f(zO) + 1'(zO)(z-zO)+!-f"(zO)(Z-ZO)2 (3)

holds.

If f(z*)=O and if L is areal (m,m) matrix then it follows from (3) that

z* = ZO- Lf(zO) + {Im- L1'(zO) -!-(Lf"(zO))(z* - zo)}(z* - ZO). (4)

Using the real (m,m) matrix L we define for a given quadratic operator the
mapping g: IRm -+ IRm by

g(z) = ZO - Lf(zO) + {Im- L1'(zO) -1 (Lf"(zO))(z - ZO)}(z- ZO). (5)

We now introduce two Lemmata which are used subsequently.

Lemma 1. Let K = (ki) be a nonnegative (m,m) matrix and let u=(ui)EIRm be a
nonnegative real vector. Then it holds that
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1
Ku~ lIullqKp (6)

and for the spectral radius p(K) it holdsfor p> 1, q> 1, ~+~= 1, thatp q

p(K)~ IIKpll,,={t, [et. kf;);n{
(7)

where

(

m 1

lIullq= i~llu;!q)q,
(8)

and

Kp= ((t/fi)~)EJRm.
(9)

If furthermore H = (hij,J with hiik> 0 and if U=(Ui) is non-negative then

HU2~lIull:hp (10)

where

hp=
({ .I I hfik }

~)EJRm.
)= 1 k= 1

(11)

If we set q= 00 for p= 1 and p= 00 for q= 1 then (6) holds with lIulloo
= max IUil,

1;:;i;:;m K1= (.I kij )EJRm
)=1 .

(9')

m

and lIulll = L lud,
i= 1

Koo =( max ki)EJRm,
1 ;:;i;:;m

(9")

respectively. .

Analogously (10) holds with Ilulloo= max luil,
1 ;:;i;:;m

m h1= (tl ktl hiik)EJRm
(11')

and lIulll= I IUil,
i= 1

hoo=( max hiik)EJRm,
1 ;:;i,k;:;m

(11")

respectively. 0

lnequalities between vectors are always understood elementwise, that is, if a=(aJ, b=(b;) are
from JRm then a-::;,b iff a.-::;'b. l-::;'i-::;'m- 1- " --
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Lemma 2. Let H = (hjjk) be a bilinear operator and let U= (Uj) be a nonnegative
11.

veetor. Then if p> 1, q> 1, -+-= 1 it holds that
p q

Hu~lIullqHp (12)

where Hp is the (m,m) matrix

Hp= (C~l h~k)~)'
(13)

1J we set q = 00Jor p = 1 and.p = 00Jor q=1 then (12) holds with H I = ( I hjjk)
and H<JJ= ( max hjjk)' respeetwel y. 0 k= I

I ~k~m

2. Tools from Interval Analysis

We assume that the reader has a certain knowledge of the basic facts of
interval analysis. See for example [1]. Subsequently we list some details which
are used repeatedly.

For two real compact intervals [a]= [al' az] and [b]= [bI' bz] the basic
arithmetic operations *E{+, -,., /} are defined by

Ca]* [b] = {a*blaE[a], bE[b ]}. (1)

The so-called subdistributive law holds:

[a] ([b] + [e])~ Ca] [b] + Ca] Ce]. (2)

Vectors, whose components are intervals, so-called interval vectors, are de-
noted by [z], Cu],[v], For the components of [z] we write [zl. Hence we
have [z] =([z]J

A mapping J from the set of interval vectors into the same set is called
inclusion monotonie if

Cu]~ [v] => f([u])~f([v]) (3)

where the inclusion [u] ~ [v] is defined via the components. If B = (bjjk) is a
bilinear operator then the product B. [u] is an interval matrix defined by

B.[u]= (~l bjjk[U]k).
(4)

The multiplication of an interval matrix and an interval vector is defined by
the usual rule for the product of a matrix and a vector. If A = (aj) is areal
(m, m) matrix and B=(bjjk) is abilinear operator then the product AB is a
bilinear operator defined by

AB= (tl ajSbSjk)'
(5)
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If B is symmetrie then the same holds for AB. If A is areal (m,m) matrix and
B is abilinear operator, then for all interval veetors [x], [y] it holds that

(AB) [x] [y] s;(A(B [x]» [y] s;A(B [x] [y]). (6)

If [x] is symmetrie (that is [x] = - [x]) then it holds that

(A(B [x]» [y] =A(B [xJ [y]), (7)

but in general
(AB) [xJ [x] =t(A(B[xJ» [x). (8)

The proof of (6)-(8) ean be found in [13]..
The width oi an interval [a] is defined to be

dCa] =az -al" (9)

The absolute value or modulus oi an interval [a] = [al>azJ is .

I[aJI =max {lall, laz/}. (10)

If OE[aJ then it holds that
l[aJI~d[a]. (11)

Furthermoe the following rules hold:

d([aJ:t [b])=d [a] +d [b],

d([aJ [b])~I[a]1 d[b] +d[a] l[b]l,

d(a[b])=lal.d[b], aEJR.

(12)

(13)

(14)

In [IJ, p. 16, Theorem 10, it was proven that if OE[aJ and if for [b]=[bl,b2J
either b1 ~O or bz ~O then it holds that

d([aJ [b])=d[aJ 'l[b]l. (15)

We now eonsider the more general ease that OE[a] and OE[b). Under these
assumptions it holds that

d([a] [b])~d[aJ' d[b J. (16)

We omit the details of a proof.
For an interval vector [zJ the width is defined to be the real veetor d[zJ

=(d[z]J The absolute value l[z]1 of an interval vector is the real veetor l[z]1
=(I(zll). Using (12) and (13) one shows that for an interval matrix [A] and an
interval veetor [z] the relation

d([AJ [z])~I[A]1 dez] +d([A]) l[zJI (17)
holds.

We now state the folIowing: Ir OE[ZJ(that is if OE[z]" i= 1, ...,rn) then for
the real matrix A = (ai) and the bilinear operator B = (bijk) it holds that

d((A + B [z])[zJ)~(lAI +IBI d[zJ)d[z]

where lAI= (lai), B=(lbijkl).

(18)
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The proof ean be performed by using (15) and (16).
The center of an interval [a] is denoted by m [a]. It holds that

m[a]=al+aZ2 for [a]=[al,aZJ. (19)

For an interval vector [z] the center m [z] is defined to be the real veetor

m [z] =(m [Z]i).

Using the definition of m [z] and d [z] we oceasionally represent [z] as

(20)

[z] =m [z] +-H -d [z], dez]]. (21)

Using the mapping g, defined by (1.5), we now introduee an interval veetor
g([ z]), defined by means of an interval veetor [z] and a given real veetor zo:

g([z])= Zo- Lf(zO) + {Im- L1'(zO) -~(Lf"(zo»)([z] - ZO)}([z] - ZO). (22)

g([z]) has the following fundamental property.

Theorem 1. 1f the quadratic equation (1.2) has a solution z* in [z] then
Z*Eg([Z]).

Proof By (1.4)it holds that z*=g(z*). Because of Z*E[Z] it follows, using (3),
that z* = g(Z*)Eg([Z]). 0

We elose this seetion with two remarks about the interval veetor g([z]):
1) Beeause of the subdistributive law (2), one gets a larger interval veetor in

the set theoretie sense if one is multiplying out in (22) eliminating the braees in
this manner.

2) If 1'(ZO) is nonsingular then one can ehoose L=1'(ZO)-l. Then g([z])
reads

g([z])= ZO- Lf(zO) -~ {(Lf"(zo»)([z] - ZO)}([z] - ZO).

Note that beeause of (6), (7) and (8) one has in this case the optimal order of
the appearing terms in order to get the smallest interval veetor in the set
theoretie sense.

3. Inclusion Theorems

In this seetion we eonsider the problem of eonstrueting sets in JRmwhich
eontain at least one solution of the quadratie equation (1.2).

Theorem1. Suppose that for some interval vector [z] it holds that g([z])~[z]. 1f
L is nonsingular then the quadratic equation (1.2) has at least one solution in
g([z]).

Proof We eonsider the mapping h: JR.m ~ JR.m defined by

h(z)=z-Lf(z),
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where f(z) is given by (1.1) (or by (1.3». The mapping h is continuous. From
(1.3) we get by using (2.3) that for all ZE[Z]

h(z)=z-Lf(z)

=zo - Lf(zo)+z-zo - L(f(z)- f(zO»

= ZO - L(zO) +(z- ZO)- L{f'(zO}(z - zO)+tf"(zo)(z- ZO)2}

= ZO- Lf(zO)+ {Im- Lf'(zO)-t(Lf"(zO»(z- ZO)}(z- ZO)Eg([Z]).

By assumption g([z]) c [z]. Therefore the continuous mapping h, defined on
the compact and convex set [zJ, has as its range a subset of [z]. By Brouwer's
fixedpoint theorem h has a fixedpoint z* in [zJ, that is z*= h(z*)= z*- Lf(z*)
holds. Since L is nonsingular the assertion follows. 0

In the preceding Theorem ZOEJRm can be chosen as an arbitrary real vector
from ]Rm.If one chooses ZOto be the center of [zJ then one has the following
results.

Corollary 1. Let zOEJRmand assume that the matrix L is non-singular. Forthe

quadratic operator (1.1) we define the matrix K=(k;) by

K = (k;) = 11m-Lf'(zo)l,

the bilinear operator H = (h;jk) by

(1)

H =(h;jk)=ILf"(zO)1 (2)

and the vector I>by

1>=(1);)= ILf(zO)I. (3)

1f the inequality (for the vector ßEJRm)

s+Kß+tHß2~ß (4)

has a solution ß ~ 0 then the quadratic equation (1.2) has at least one solution in
[zJ=zo + [ - ß,ß]' .

Proof We have [zJ-zo=[ -ß,ßJ and d([zJ-zO}=d[zJ=2ß. Hence g([zJ) can
be written as

g([zJ}=zO - Lf(zO}+ {Im-Lf'(zO}-!(Lf"(zO)}[ - ß,ßJ}[ - ß,ßJ

=zo - Lf(zO} + (Im- Lf'(zO)}[ - ß,ßJ +t(Lf"(zO})[ - ß, ß]2

from which it follows that dg([zJ}=2Kß+H ß2.
Using this equation and (3) then (4) is equivalent to

ILf(zO}1+1d(g [z])~td [z],

or, because of

mg [z] =ZO- Lf(zO), m[z]=zO,
to

Im[z] -mg [zJI+tdg[z] ~td [z].

/
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The last inequality is equivalent to g([zJ) ~ [z]. The assertion now follows from
Theorem 1. 0

The next result shows that under certain additional assumptions a solution
ß S:0 of the inequality (4) can be found explicitly.

Corollary 2. Let ZoEIR.m and let K, Hand 8 be defined as in Corollary 1. Let Kp

and hp be defined as in Lemma 1.1. 1f

IIKpllq<l,

(1-IIKpllq)2 - 211hpllq1181IqS:O,

a - -(IIKpllq -l)+V(IIKpllq -lf -21lhpllq 11811q
1/2 IIhpllq ,

and if for some aE[a1,a2J,

(5)

(6)

(7)

ß =8+aK +la2 hp 2 p

then the quadratic equation (1.2)has at least one solution in

(8)

[zJ= Zo+ [ - ß, ß]'

Proo! Since p(K) < 1 by (1.7) and (5), it follows by the Perron-Frobenius theory
on nonnegative matrices (see [29J) that

p(Im - Lf'(zO)) ~ P(11m - Lf'(zO)1)= p(K) < 1.

Hence L is nonsingular.
If after multiplying (1.3) by L from the left the bilinear operator Lf"(zO)

vanishes (that is Lf"(zO)=O) then (1.3) is a linear equation. This case is
considered as a trivial one in connection with quadratic equations and it is
therefore exc1uded. We therefore have hp=1=0 for the vector hp defined by (1.11).
It follows that Ilhpllq=l=O.Hence the denominator does not vanish in (7) and a1
and a2 are well-defined. Furthermore alS: 0 and therefore ß S:0 for the vector ß
defined by (8). Subsequently we use the fact that a1 and a2 are the solutions of
the quadratic equation

! IIhpllqa2+(IIKpllq-1)a+ 1181Iq=O.

Therefore we have for aE [al, a2J that

t IIhpllqa2 + IIKpllqa+ 1181Iq~a. (9)

1 1
By LemmaLl we have for ps:1, qs:1, -+-=1 that Kß~IIßllqKp andP q
H ß2 ~ IIßII;hp'

Therefore the inequality (4) from Corollary 1 certainly holds if ßs:O is a
solution of the inequality

8+ IIßllq Kp +t IIßII;hp~ß. (10)
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We now show that ß, defined by (8), is a solution of this inequality. Using (9) it
folIo ws from (8) that

IIßllq~ IIcllq+a IIKpllq+!-a2I1hpllq~a.

Hence it folIo ws from (8) that

ß=c+aKp+!-a2 hp;Sc+ IIßllqKp+IIßII:hp.

The assertion now folIo ws from Corollary 1. 0

Some of the results of Corollary 2 were proven by completely different
methods by Yamamoto in aseries of papers [24-27]. However, he considered
only the (under practical aspects most important) cases p = 1,2,00. Further-
more he could only allow a =a1 in (8) which of course gives the smaIIest
incIusion [z]=zo+[ -ß,ßl

In Chap. 5 we will prove that the quadratic equation (1.2) has a unique
solution in [z] = Zo + [ - ß,ßJ if in (8) the real nurnber a is chosen to be equal

to a1 +a2 where al and a2 are defined by (7) provided that a1 =!=a2-2
We stress the fact that the real vector ZO in Theorem 1 can be chosen

arbitrarily. Therefore by choosing ZOappropriately one has a greater chance to
haveg([z])~ [z] for sorne interval vector [zJ compared with Corollary 1 or
Corollary 2 where Zo has to be the center of [z].

4. Exclusion Theorems

We start with the foIlowing basic result

Theorem 1. Let zOEIRmand let L be an (m,m) matrix. 1f [z] is some interval
vector then the quadratic equation (1.2)has no solutionin [z]\g[zJ). ([z]\g[z]
denotes the set theoretic difference of the interval vectors [z] and g ([z]).)

Proof By Theorem 1.1 we have for a11 solutions Z*E[Z] of the quadratic
equation (1.2) that Z*Eg([Z]). Hence in [z]\g([z]) exists no solution of
(1.2). 0

Corollary 1. Let ZOEIRm and assume that for some real matrix L it holds that

g ([ z J) n [z] = 0 (1)

for some interval uector [zl «1) is true if g([z])J,[zl=0 for at least one i).
Then the quadratic equation (1.2)has no solution in [zl

Proof From (1) it foIlows that [zJ\g[zJ= [z]. The assertion now fo11owsfrom
Theorem 1. 0 .

Corollary 2. Let K, Hand c be defined as in Corollary 3.1. If the vector ß;S 0 is
a solution of the inequality

ß+Kß+tH ß2~c, (2)
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where in (2) the equality-sign is excluded 2, then the quadratic equation (1.2) has
no solution in

[z]= ZO + [ - ß,ß]'

Proo! Because of [z] - ZO= [ - ß, ß] we have dg([zJ)= 2K ß + H ß2
(See also the proof of Corollary 3.1). Furthermore

Im[z] -mg[z]1 =ILf(zO)I=E.

Therefore (2) can be written as

~{d [z] +dg([z])} ~ Im[z] -mg [z]1

where the equality-sign is exc1uded. Hence g([z]) n [z] =0 holds. The assertion
now follows from Corollary 1. 0

Under appropriate assumptions one can find solutions of the inequality (2).

Corollary 3. Assume that K, Hand Eare defined as in Corollary 3.1. Let

-(1 + IIKoo111)+V(l + IIKoo111f +211E111Ilhoo111
a-

Ilhoo 111

1f E -~ a2 hoo - a 1<00~ 0, where the equality-sign is excluded and if ß is chosen
according to

0~ß~E-~a2 hoo-aKoo, ß=f=E-ta2 hoo -aKoo, (3)

then the quadratic equation (1.2) has no solution in

[z] = ZO + [ - ß,ß]'

Proo! We show that ß from above is a solution of (2) where the equality-sign
is exc1uded. Because of Kß~IIßI11Koo and Kß2~IIßII~hoo (see Lemma 1.1) it
follows that

ß+K ß+~ H ß2 ~ß+ IIßl11Koo+t IIßlli hoo.

Therefore (2) holds if ß is a solution of

ß+ IIßl11Koo+1-IIßlli hoo~E

where the equality-sign is excluded.
From (3) it follows that

ß +ta2 hoo+a Koo~E,

(4)

ß+ta2 hro +aKro=f=E.

Because of ß~O, ta2 hoo~O, aKro ~O we have that

IIßll1 +ta2 Ilhoo111+a IIKoo111= IIß+1-a2hoo+a Krol11< IIEI11,

or, since a is a solution of the quadratic equation

IIEl11-ta2 Ilhro 111-a IIKoo111=a,

that IIßl11<a.

2
By this we rnean that for at least one cornponent the -sign holds
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Therefore if ß is chosen according to (3), where the equality-sign is exc1uded

then I 2 I 2
8-IIßIII Kw -zIIßIII hoo~{;-Za hw -a Koo~ß

where the equality-sign is exc1uded. 0

Corollary4. Let K, Hand t: be defined as in Corollary 3.1. Assume that (j
= min 8i>0-

I ;:;i;:;m

1f

and

then

-(1 + IIKIII00)+ V(1 + IIKlllw)2 +211h11l w (j
a2

IIhlll w
O;:;:;a<aZ'

ß={}

ß+Kß+!H ßZ<8.

Hence by Corollary 2 the quadratic equation (1.3)) has a solution in

[z]=zo+[ -ß,ßJ.

Proof Using ß defined by (5) we certainly have that

if

Since the quadratic

has the zero es

and

we ha ve

ß+Kß+iH ß2={)'ra (t/'i)+ia2 (J, ,t, h'j')

~{)+aK' +ta2h,<,

a+ a 11Kill 00 +! aZ 11 h I 1 LX) < min 8i= (j.
I ;:;i;:;m

! IIhIl100 aZ + IIKIII GOa+a-(j=O

a - -(1+ IIKtlIGO)-V(1+ IIKII1GOf+2IIh111GO(j<0
I IIhIl1 GO

-(1 + IIKII1 GO I+ v(l + IIK 111 GO)2 + 211h111 (j
az

IIh111GO

1Hß2+Kß+ß<t:

for ß defined by (5) ifO;:;:;a<az- 0

(5)

(6)
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5. Convergence ResuIts

Using Theorem 3.1 we have proven aseries of indusion results in Chap. 3. The
basic idea was to prove g([z] ~ [z] for some given interval vector [z].

Similarly, using Theorem 4.1 we have proven aseries of exdusion resuIts.
In this case the basic idea was to prove that g([z])n[z]=0 holds for some
interval vector [z].

There is, however, a third case besides of g([zJ)~[z] or g([z])n[z]=0,
nameIy that

g([z])n [z] =4=0 and g([z] si;[z]. (0)

For this last case we cannot make a statement about the existence or non-

existence of a solution of the quadratic equation (1.1) using the resuIts of the
preceding Chapters.

We now introduce an iteration method which has the interesting property
that under appropriate conditions it will break down after a finite number of
steps if (0) holds and if there exists no solution in [z]. If, however, there exists
a solution in [z] then this method will converge to this solution.

The method introduced in the next theorem can of course also be consid-
ered if g([z])~[zJ, that is if we know in advance that there exists a solution in
[z]. We return to this special case later.

Theorem 1. Let zOEJRmand let [z] be an interval vector. Let K and H be defined
as in Corollary 3.1. Assume that the real matrix

M = K + H I[zJ - ZO I (1)

has spectral radius less than one: p(M) < 1. Then for the iteration method

{

[zJO= [zJ

[zr+ 1= g([zr)n [zJ\ k=O, 1,2,...
(V)

the following holds:
1) 1f there exists a zero z* of the quadratic equation (1.3) in [zJ then (V) is

well-defined, that is the intersection (which is to be understood component-wise)
is never empty. Furthermore Z*E[ZJ\ and lim [Z]k=Z* (which means that the

k--.co

bounds of [zr are converging to z* from below and above). I'(z*) is non-
singular. z* is unique in [z].

2) 1f (1.3) has no solution in [zJ, then there exists a ko~O such that
g([zJkO)n[zro=0 that is (V) is breaking down after a finite number of steps
because of empty intersection.

Proo! Of 1): If (1.3) has a solution z* in [zJ, then z* = g(z*) by (1.4) and (1.5)
and using (2.3) it follows that

z* = g(Z*)Eg([ZJ)~g([zJ)n [zJ = [zr.

By mathematical induction it folIo ws that Z*Eg([Zr), and because of Z*E[Zr
we condude that Z*Eg([zJk)n [ZJk= [zr+ 1. Hence Z*E[Zr and the well-de-
finedness of (V) is shown.
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Using (2.13) it follows from (V) that for k~O

d[z]k+ 1~dg([zJk)

=d({Im - Lj'(zO) -t(Lf"(zO»)([Z]k- zO)} ([zr - zO»

~IIm- Lj'(zo)-t(Lf"(zo»)([zr- zO)1d[Z]k

+d({Im - Lj'(zO)-t(Lf"(zO»)([zY- zO)})1[Z]k - zOI

< {11m- Lj'(zO)1 + ILf"(zO)II[zY- z°l} d [Z]k

=(K+HI[z]k_ZODd[zY.

Because offorming the intersection in (V) it holds that [zr~[z], k=O,1,2,...,
and therefore [zr-zO~[z]-zO, that is l[zr-zOI~I[z]-zOI, k=O,I,2,....

Therefore it follows that

d[zr+l ~(K +HI[z] -z°l)d[zr

=M d[zY

~Mkd[z], k=O, 1,2, ....

Since p(M)< 1 we conc1ude that !im d [Z]k=O, and since Z*E[ZJk it follows that
lim [Z]k=Z*. k-a:> ..k-IX)

We now prove that j'(z*) is nonsingular. From the representation (1.3) of
fez) it follows that

j'(z) = f'(ZO)+ f"(zo)(z-zO),

and therefore, for z= z*,

Lj'(z*)= Lf'(zO) + (Lf"(zO})(z* - ZO).

Since Z*E[Z] we have

11m- Lj'(z*)1 =IIm-Lj'(zO)- Lf"(zO)(z* - zO)1

~ 11m- Lj'(zO)1 +ILf"(zO)II[z] -zOI

=K+HI[zJ-zO\=M.

From the Perron-Frobenius theory on nonnegative matrices it follows that
p(Im -Lf(z*»~p(IIm - Lf(z*)I)<p(M)< 1.
Hence {Im-(Im - Lf'(z*»} -1 exists, that is f'(Z*)-1 exists. Finally, we have to
prove that z* is unique in [z]. This statement follows immediately from the
already proven fact that lim [zY=z*.

k- IX)

Of2}: Assurne that g([z]k)n[z]k=l=0 for all k~O. Analogously as in the proof
of 1) one shows that d[zr+1:SMkd[z], k=O,I,2,..., from which it follows
that lim d[zr=O. From (V) it follows that

k- a:>

[z]=[Z]°;2[ZJ1~... ;2[Z]k;2[z]k+1;2....

Hence there is areal vector ZE[Z]k for which lim [zY=z. Since g([x]) is a
k- a:>

continuous function of the interval vector [x] and since g([x])n[x] is a
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continuous function of [xJ if the intersection is nonempty (see, for example,
[lJ, p. 128, Corollary 10) it follows from (V) that for k ~ Cf)

2= g(2)n2= g(2),
or that

2= ZO- Lf(zo) + {Im - Lf'(zO) -i (Lf"(zO))(2 - ZO)}(2 - ZO). (2)

Since

11m- Lj'(zO)I;:::;;11m- Lj'(zO)1 + H l[zJ - zOI

=K +H l[zJ -zOI =M

the nonsingularity of L follows similarly to the nonsingularity of j'(z*), which
was proved in part 1).Therefore (2) can be written as

f(zO)+ j'(zO)(2- zO)+ifJzO)(2- ZO)2=0.

On the other hand we have by (1.3)

f(2) = f(zO)+ j'(zO)(2-z0)+if"(zO)(2-z0f

from which it follows with the preceding equation that f (2)= O. This is a
contradiction to the assumption that f(z)=O has no solution in [z]. 0

We add some remarks concerning the condition p(M) < 1 for the matrix M
defined by (1). The question arises whether by choosing a special ZO the
condition p(M)< 1 can be replaced by a weaker one.
If we choose ZOE[zJ, then OE[zJ - ZOand by applying (3.18) we get from (V) for
k=O that

d [zJ 1 ;:::;;dg([zJO) ;:::;;(K+i H. d [zJO)d [zJo.

In part 1 of the praof of Theorem 1 we have shown that for arbitrarily chosen
zOEIRm

d [zJk+ 1;:::;;(K+ H I[zr - z°l)d [ZJk

which for k=O and ZOE[ZJo can be written as

d [z J 1 ;:::;; (K + H d [z J °) d [z J °

since l[zJo - zOI;:::;;d[z]o. Compared with the preceding inequality the term
i H d [zJO is multiplied by a factor of two and therefore it seems that by
choosing ZOE[zJ we can gain this factor of two. However, in the next steps of
method (V) we don't have ZOE[zJ\ in general, and therefore (3.18) can no
longer be applied. Therefore it seems that the spectral radius condition
p(M)< 1 in Theorem 1 cannot be weakened.

In the following Theorem we will see that under natural conditions on zO,
f'(ZO) and L we always can find an,interval vector [zJ for which the matrix M
defined by (1) has spectral radius less than one.

Theorem2. Let K and H be defined as in Corollary 3.1. Assume that 11'llq

=(tlIUilq)~, q~1. If IIKII<l for some matrix norm and if [zJ is chosen
according to
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111[zJ- zOlllq~1-IIKII"TT" ,
1 1
-+-=1
p q ,

where Hp is defined in Lemma 1.2 then p(M)<l for the matrix M defined by (1).

Proo! By Lemma 1.2 we have for aIl interval vectors [zJ that

M =K +HI[z]-zOI ~K+Hp' III[z]-zOlllq=:M1.

Therefore by the Perron Frobenius theory on nonnegative matrices certainly
p(M)<l if p(M1)<1. The eondition IIM111<1 is suffieient for p(M1)<1. Sine/"

IIM111=IIK+Hp-lIl[z]-zOlllqll

~ IIKlj + IIHpll-lll[zJ-zolllq,

we have IIM111<1 if

° 1-IIKII

111[z]- z Illq~ 11 Hp 11 . 0

In passing we note that IIKII < 1 can always be fullfilled if j'(ZO) is non-
singular and if then L is a suffieiently good approximation to j'(ZO)- 1.

We now eonsider the method (V) under more special assumptions.

Theorem 3. Assume that for some interval vector [zJ we have that g([ zJ) ~ [z].

Then (V) is well-defined and it holds that lim [zr = [zJ* where in general
k~ro

d[zJ*=t=O, that is [zJ*is an interval vector. There are no solutions of (1.3)
[zJ\[zJ*.

Proo! Because ofg([z])~[zJ it follows by mathematical induction that [zJ

=[Z]02[Zr=>...[zr2 .,. and hence lim[zr=[z]*.
k~ro

Furthermore, by Theorem 1.1, Z*Eg([Z]O)= [ZJ1 for aIl solutions z* of the
quadratic equation (1.3). By complete induetion we get Z*Eg([Z]k)= [zy+ 1 for
aIl k~O and therefore Z*E[ZJ*. Hence there are no solutions in [zJ\[z]*. 0

We now use a simple example (see Böhm [3J, Ch. 1) to demonstrate that
even the stranger condition g([z] c [z] is not sufficient for the convergence of
the sequence {[zr}~=o to areal vector: Consider the quadratic operator

f(z)= _Z+Z2, zEIR1

in IRland the interval [z] = [0,2J
We choose zO=l and L=1. Then using [z]o=[z] we get

g([z]O)= l-([z]O -1)2 = 1- [0, 1] = [0, 1] = [Z]l,

hence g([z]o) c [z]o. The foIlowing iterates are all equal to [Z]l. Therefore
lim [z]k=[z]*=[zr. 0
k->OCJ

We now discuss the question of which additional assumptions one has to
impose besides of g([z]~[z]in order that lim [z]k=z*, where z* is areal

k~ro

~
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vector. In order to discuss this we now choose Zo= m [zJ and consider the even
stronger assumption g([zJ)c [zJ (which is defined as g([zJ);c [z1, i
=1,2,...,m). It then follows that d[zJ=2ß>O. A similar proof as that of
Corollary 3.1 shows that the assumption g([zJ)c [zJ implies that

8+Kß+!Hßz<ß
from which it follows that

Kß+!H ßZ=(K+!H ß)ß<ß.

Since ß > 0 it follows by Corollary 3 in [29J, p. 18, that the spectral radius of
the matrix

1 1 d[zJ 1 °
Mo = K + 2 H ß = K +2 H - = K + 2 H I[zJ - z I2

is less than one. For the convergence of (V) to areal vector we need, however,
by Theorem 1 the condition p(M) < 1 which because of

Mo=K+! HI[zJ -zol ~K +H l[zJ -zol =M

is a stronger condition than p (M0)< 1.
The discussion is made more precise in the next theorem.

Theorem4. Let [zJ = zO+ [ - ß,ßJ where ß is a solution of the inequality

8+Kß+!H ßZ~ß

and where K, Hand 8 are defined as in Corollary 3.1. 1f besides of this

p(K +H l[zJ -zOI)= p(K + H ß)< 1

then (V) is convergent to the unique solution z* of (1.3) in [z].

Proof By Corollary 3.1 we have g [zJ <;;[zJ and therefore there exists at least
one solution z* of (1.3) in [z]. By Theorem 1 lim [ZJk=Z*. 0

k--00

The following Corollary shows that by choosing in (3.8) the number a
appropriately the spectral radius condition of the preceding theorem holds.
Therefore we have the uniqueness result under the assumptions of Corollary
3.2 which was already announced in Chap. 3.

Corollary1. Assume that the conditions of Corollary 3.2 hold where in (3.6) the
equality sign is excluded. 1f in (3.8) the real number a is chosen to be less than
(al + az)/2, where al and az are defined by (3.7) then

p(K+HI[zJ-zOI)<l

for

[zJ=zo+[ -ß,ßJ,

that is the iteration method (V) is for this [zJ convergent to the unique solution
z* of the quadratic equation (1.3)in [z].
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Proo! For [z] = ZO+ [ - ß,ß] it folIows, using Lemma 1.2, that

K + H I[z] - zOI~K +H ß~K + Hp IIßllq
1 1

where p~l, q>l, -+-=1.
p q

Henee by the Perron Frobenius theory for nonnegative matrices certainly

p(K+HI[z]-z°I)<1 if p(K+Hp IIßllq)<1.
We use the matrix norm 11-11= sup lI.ullq, q~1.

lIull q= 1

We then have IIKlj ~ IIKpllq- Since for a nonnegativevector u we have by
Lemma 1.1 that Hpu~llullqhp it folIows, using that the vector norm 11.11

= (tlIUJq)~ is absolute, that
IIHpl1= sup IIHpullq~ Ilhpllq-

lIullq= 1
Therefore

ilK +HplIßllqll ~ IIKII+ IIßllq !IHpll

~ IIKpllq + IIßllqIlhpliq-

If we now choose
ß =G+aK +l.a2 hp Z P

a1 +az
where a - , then,as was shown in the proof of CorolIary 3.2,2

Therefore

IIßllq~a<al +a2 - 1-IIKpllq
2 IIhpllq-

IIK+H pllßllqll~ IIKpllq+ IIßllq-lIhpllq < 1.

Henee p(K +Hp IIßllq) < land alI statements follow from the preceding
Theorem. 0

6. Numerical Examples

As a simple but very important example to the quadratic equation (1.3) we
consider the algebraic eigenvalue problem

Tx=;{x (I)

where T=(ti) is areal (n,n) matrix. We assurne that the eigenvector X=(Xi) has
Euc1idean length one: n

Ilxll~= L \xJz=L (2)
i= 1

If we set ZT=(Xl'XZ' ...,xn,Je), then (I) and (2) can be written as a system of
nonlinear equations, namely

(
(T -JeI)X

)=0-
f(z}= !(1-lIxll~)

(3)
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It is weIl known that (3) is a quadratic equation of the form (1.2) where m= n
+ 1 and

CEJRm, (4)

A=
} n ,

(5)

} 1
' v--'

n

-1

0 0 01-1010
0 I ..

-110 -1 ~0 10 ... 0 01 } 1' '------

1 n 1

n
1

B=} 0 (6)

0

-1...010
'--v--" ------

n 1

0...0 -1
' v "

n
v

n+1

In passing we note that there exists aseries of papers starting with Unger [28]
in which Newton's method was applied to the nonlinear system (3). See, for
example CoUatz [5], Krawczyk [7], RaU [15], Rokne [17], Rump [18-20],
Symm-Wilkinson [21] and others.

For the mapping (3) we get by using (4, 5) and (6) that

f(z)=c+Az+Bz2, 1'(z)=A +2B z, f"(z) = 2B.

Therefore 1'(z) has the matrix representation

(
T -x

)
}n

1'(z)= _XT 0 }1'-v--" ----
n 1

(7)

and f"(z) is the bilinear operator defined in (6), multiplied by the factor two.
If we choose L= 1'(ZO)-1 then the interval vector g([z]), defined in (2.22)

reads

g([ z]) = ZO - 1'(ZO)-1 f(zO) -1-((f'(ZO)- 1f" (ZO))([z] - zO))([z] - ZO).

For a given zOEJRmwe now use Corollary 3.2 in order to compute an interval
vector [z] = ZO + [ - ß, ß] in which there exists a solution of (3). Wehave in this
case

K=O, H = 11'(zO)- 1 f"(zO)I, t: = 11' (ZO) - 1f (zO)I.

We now choose p= 1, q= 00. Then Corollary 3.2 states that if

1-211h111ro1It:llro>O
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1 - -V1- 2 11 h 111 CX) 11t:11 00 . .

and ß=t:+!ai h1 where a1 = h I ' then there eXIsts a solutIOnz* in 11 zl CX)

[z] =zo + [ - ß,ß]' (8)

Furthermore, by Corollary 5.1, the iteration method (V) introduced in Theo-
rem 5.1 will converge to this solution.

For L=f'(ZO)-1 the iteration method (V) reads

[zJ+ 1= {zO- j'(ZO)-1 f(zO)-!«(f'(ZO)-1 f"(zO»([zr - ZO»([zJk-ZO)} (\ [z]k.

We perform this method in the following manner:
In the k-th step we compute an interval vector [y]k with the following

property: Für each zkE[Zr the solution Zk+1 of the linear system

j'(ZO)(~+ 1-ZO)= - f(zo)-~f"(zO)(~-,-zO)Z

is contained in this interval vector [yr. This can be done by using an inter val
algorithm which computes for the given real matrix f'(zo) and the given right-
hand side

- f(zO) -~(f"(ZO)([Z]k- zO»([zr - ZO)

an interval vector which includes all possible solutions. (Note that this is not
exactly our proposed method (V) since in general A-1. [b]=I=IGA(A,[b]) where
IGA(A, [b]) denotes the result which is delivered if the Gaussian algorithm is
applied to the real matrix A and the right hand side [b]. See, for example, [2],
Lemma 1, . for details. This is not very important in ourcase because the
inclusion of the zero is also guaranteed if (V) is modified as described. Further-
more for an interval vector [b] with d [b] small compared with the nullvector
the difference between A -1. [h] and IGA(A, [h]) is negligible).

Because of the special structure of f"(zo) the term

-!(f"(ZO)([z r - zO»([zr - ZO)

simplifies to the interval vector

([Z]~+1 -Z~+1)([Z]~-z~)

([z]~+ ~-z~+ 1)([Z]~ -i~)

n

~ I ([z]t-z?)Z
i= 1

(9)
([zJ~+ 1- Z~+1)([ZJ~ - Z~)

The residual f(zO) can be written in the form

f(zO)~ (~ (:~Oitl~::')).

Taking into account the special form (9) of

-!(f"(ZO)([Z]k- zO»([zr - ZO)
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the right-hand side interval vector

- J(ZO)-}(f"(zO)([zr - zO))([ZJk- zo) (10)

can thereJore be computed by using only scalar products.
Using the so-called exact scalar product, introduced by Kulisch (see [8-12J)

the individual components of the right-hand side can be computed with maxi-
mal available precision.

After having computed [yr (this is actually done by using the subroutine
LGLSI which is available in the PASCAL SC language, see [8-12J far details),
we form the intersection with [zr getting [ZJk+l.

All computation was done on an APPLE HE using the programming
language PASCAL SC (see [8-12J). This system uses a decimal number system
which has 12 digits in the mantissa of a floating point number. Note that all
rounding errors are taken into account using this system. Therefore the bounds
computed in the following examples are absolutely safe.

Example 1. The first matrix is taken from [24J, p. 196. Let

(

1 1 0.5

)
T = 1 1 0.25

0.5 0.25 2
and

(

-0.721 207 180

)
XO = 0.686 349 340 ,

0.093 727 970
..10= -0.016647302.

Then we get for .he interval vector [zJ defined in (8);

(

[-0.721 207 3J ;

[ 0.686 349 2J ;

[ 0.093 727 96J;

[-0.016 647 33J;

-0.721 207 1J

)
0.686 349 4J

0.093 727 98J

-0.016 647 28J .

After two iteration steps of (V) we have the final result

(

[-0.721207129831 ;

[ 0.686 349 287 710 ;

[ 0.093 727 963 498 7;

[ -0.016 647 283 606 4;

-0.721 207 129 830 J

)
0.686 349 287 711 J
0.093 727 963 498 8J

-0.016 647 283 606 3J

Example 2. As a second example we consider the matrix

T=

14 9

-9 -4

-2 -2

3 3

-9 -9

6 4 2,

-3 -2 -1

0 -1 -1

353

-9 -9 -4'
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introduced in [24], p. 197, which has A=5 as a simple eigenvalue. The corre-
1

sponding normalized eigenveetor is XT= ]12(1,-1,0,0,0).
We choose

xo=

0.707 106 58

-0.707 107 30

-0.387 205 54 E-6

0.332 787 40 E - 6

0.508 088 97 E - 6

and

Ao=4.999 9957.

Then, for the interval veetor [z] defined in (8) we get

[ 0.707 106 3;

[-0.707 108;

[ -0.78E -6;

[ -0.9E-ll;

[ -O.4E-lO;

[0.499 999 lE + 1;

0.707 106 8 ]

-0.707 106 ]

0.12E -10 ]

0.67E-6 ]

O.l1E -5 ]

0.500 000 lE + 1]

After three iteration steps of (V) we have the final result:

[ 0.707 106 781 186;

[-0.707 106 781 187;

[ - 0.9E - 17;

[ - 0.5E -17 ;

[ -0.25E -16;

[ 0.499 999 999 999E + 1;

-0.707 106 781 187 ]

-0.707 106 781 186 ]

0.14E-16 ]

0.9E -17 ]

0.28E -16 ]

0.500 000 000 001E + 1]

Example 3. As a final example we consider asymmetrie (14,14) matrix T which
was introduced in a paper by Brooker and Sumner [4] and whieh was
reconsidered by Wilkinson [22,23]. Because of lack of space we do not list the
matrix elements. lnstead we refer to [4], [22, 23] or to Example 4.12 in the
book by R.T. Gregory and D.L. Karney [30].

We choose

AO= 1.33403483700
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and

9.168 195 046 95E - 2

1.945 051 119 20E-1

3.189 487 364 33E-1

3.407 954 910 35E-1

1.457 661 093 15E-1

1.918 835 439 20E-1

1.826 099 068 19E-1

3.382 100 423 35E-1

2.884 013 952 30E-1

2.701 082 857 28E-1

3.233 984 439 34E-l

2.955 518 490 31E-l

3.210 872 399 33E-l

2.809 351 151 29E-1

xO=

Then für the interval vectür [z] defined in (8) we get:

[9.168 195 044E-2; 9.168 195 050E-2J

[1.945 051 119E-l; 1.945 051 120E-IJ

[3.189 487 363E-l; 3.189 487 366E-1]

[3.407 954 910E-1; 3.407 954 911E-IJ

[1.457 661 092E -1; 1.457 661 094E -IJ

[1.918 835 438E-1; 1.918 835 440E-IJ

[1.826 099 067E - 1; 1.826 099 069E - 1J
[3.382 100 420E -1; 3.382 100 427E -IJ

[2.884 013 950E -1; 2.884 013 954E -1]

[2.701 082 857E-1; 2.701 082 858E-IJ

[3.233 984 439 E - 1; 3.233 984 440 E -1 J
[2.955 518 489E-l; 2.955 518 492E-IJ

[3.210 872 396E -1; 3.210 872 402E -IJ

[2.809 351 150E -1; 2.809 351 153E -lJ

[1.334 034 836 ; 1.334 034 838J

G. Alefeld
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After two iteration steps of (V) we have the final result:

[9.168 195 049 16E-2;

[1.945 051 119 31 E -1;

[3.189 487 365 32E -1;

[3.407 954 910 38E-l;

[1.457 661 092 71E -1;

[1.918 835 438 95E -1;

[1.826 099 068 59E -1;

[3.382 100 420 34E-1;

[2.884 013 953 95E-1;

[2.701 082 857 18E -1;

[3.233 984 439 50E -1;

[2.955 510 489 32E -1;

[3.210 872 401 74E-1;

[2.809 351 150 22E~I;

[1.334 034 836 95;

9.168 195 049 17E-2]

1.945 051 119 32E -1]

3.189 487 365 33E -1]

3.407 954 910 39E-l]

1.457 661 092 72E -1]

1.918 835 438 96E -1]

1.826 099 068 60E -1 ]

3.382 100 420 35E -1]

2.884013 953 96E-1]

2.701 082 857 19E -1]

3.233 984 439 51E-l]

2.955 518 489 33E -1]

3.210 872 401 75E-l]

2.809 351 150 23E -IJ

1.334 034 836 96 J

413

In [30J also the elements of the tridiagonal matrix t are given which one gets
if the Givens method is applied to T using a floating point system with 9 digits
in the mantissa. In order to compare the influence of the rounding errors
which are introduced by the Givens method we now repeat the computation
for the matrix t.

In this case we choose

and

),0 = 1.334034

9.168 1E-2

6.467 91E-2

7.52687E-2

8.177 6E-2

5.504E-3

1.68E-4

0

0

0

0

0

0

0

0

xo=
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Then we get for the interval vector [z] defined by (8):

[ 9.168 0 E - 2; 9.168 2 E - 2]

[ 6.467 90 E - 1; 6.467 92 E - 1]

[ 7.526 869E- 1; 7.526 871E- 1]

[ 8.177 5 E- 2; 8.177 7 E- 2]

[5.503 E - 3; 5.505 E - 3]

[1.67 E- 4; 1.69 E- 4]

[ 3 E - 6; 5 E - 6]

[ - 2 E - 7; 2 E - 7]

[ -4 E - 9; 4 E - 9]

[-2 E-10; 2 E-lO]

[-9 E-12; 9" E-12]

[-7 E-12; 7 E-12]

[-8 E-12; 8 E-12]

[ -7 E -12; 7 E -12]

[ 1.334 033 ; 1.334 035 J

After three iteration steps of (V) we have the final result:

[9.168 194 970 23E - 2; 9.168 194 970 24E - 2J
[6.367 912 624 97E- 1; 6.467 912 624 98E- 1J

[7.526 870 271 30E- 1; 7.526 870 271 31E- 1J

[8.177 651 873 31E- 2; 8.177 651 873 32E- 2J

[5.504 061 256 42E- 3; 5.504 061 256 43E- 3J

[1.682 681 402 21E- 4; 1.6.82681 402 22E- 4J

[4.990 525 332 24E- 6; 4.990 525 332 43E- 6J

[1.440 899 836 98E- 7; 1.440 899 837 01E- 7J

[3.474 596 896 67E - 9; 3.474 596 896 74E - 9J

[1.079 736 219 22E -10; 1.079 736 219 26E -lOJ

[1.417 336 691 21E -12; 1.417 336 691 27E -12J

[2.822 952 968 84E -14; 2.822 952 968 97E -14J

[6.955 927 655 65E -16; 6.955 927 656 02E -16J

[4.323 372 212 31E-18; 4.323 372 212 58E-18J

[1.334 034 842 45 ; 1.334 034 842 46 J

The largest eigenvalue of T - rounded to 17 digits - is

Al = 1.334034836956507 O.

G. Alefeld
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If one compares this value with the last component of the preceding interval
vector (which is an inclusion for the largest eigenvalue of T) then we conclude
that the largest eigenvalues of T and t, respectively, differ in the 9-th digit of
the mantissa. This is not surprising since - a$ was mentioned above - T was
transformed to T by using 9 digits in the floating point mantissa.

We dose this paper with two final comments:
a) The incIuding sets for the eigen pairs computed in the numerical exam-

pIes are very dose in the sense that in most cases the individual components
are inc1uded by two neighbouring machine numbers. A theoretical foundation
for this will be given in a future paper in which - using the so-called exact
scalar product - the influence of rounding errors on the method (V) is studied
~de~il. .

b) Method (V) will not work for a multiple eigenvalue of the matrix T since
in this case the (n+l,n+l) matrix j'(z*) is necessarily singular. If multiple
eigenvalues exist we are in the position to formulate a method which takes into
account the multiplicity of an eigenvalue. The investigation of this method will
be performed in another paper.

References

1. Alefeld, G., Herzberger, l.: Introduction to Interval Computations. New York: Academic Press
1983

2. Alefeld, G., Platzöder, L.: A quadratically convergent Krawczyk-like algorithm. SIAM l.
Numer. Anal. 20, 210-219 (1983)

3. Böhm, H.: Berechnung von PolynomnuHstellen und Auswertung arithmetischer Ausdrücke mit
garantierter maximaler Genauigkeit. Thesis, Universität Karlsruhe, 1983

4. Brooker, R.A., Sumner, EH.: The method of Lanczos for ca1culating the characteristic roots
and vectors of areal symmetric matrix. Proc. I.E.E. 103, Part B, Suppl. (1), 114 (1956)

5. Collatz, L.: Functional analysis and numerical mathematics. New York: Academic Press 1966
6. Hoffmann, R.: Fehlerschranken für Näherungen von Eigenwerten und zugehörigen Eigenvek-

toren. Diplomarbeit. Karlsruhe, 1983. (Not available)
7. Krawczyk, R.: Verbesserungen von Schranken für Eigenwerte und Eigenvektoren von Mat-

rizen. Computing 5, 100-206 (1970)
8. Kulisch, U, Ullrich, C.:Wissenschaftliches Rechnen und Programmiersprachen. Stuttgart:

Teubner 1981
9. Kulisch, U.: Grundlagen des numerischen Rechnens. Reihe Informatik 19. Mannheim: Biblio-

graphische Institut 1976
10. Kulisch, u., Miranker, W.L.: Computer Arithmetic in Theory and Practice. New York:

Academic Press 1981

11. Kulisch, U, Wippermann, H.-W.: PASCAL SC, Pascal SC für wissenschaftliches Rechnen.
Gemeinschaftsentwicklung von Inst. f. Angew. Mathematik Universität Karlsruhe (Prof. Dr. U.
Kulisch) und Fachbereich Informatik, Universität Kaiserslautern (Prof. Dr. H.-W. Wipper-
mann)

12. Kulisch, U, Miranker, W.L.: A New Approach to Scientific Computation. Notes and Reports
in Computer Science and Applied Mathematics 7. New York: Academic Press 1983

13. Platzöder, L.: Einige Beiträge über die Existenz von Lösungen nichtlinearer G!eichungssysteme
und Verfahren zu ihrer Berechnung. Thesis, Technische Universität Berlin 1981

14. Prenter, P.M.: On Polynomial Operators and Equations. In: Nonlinear Functional Analysis
and Applications. (L.B. RaH, ed.), pp. 361-398. New York: Academic Press 1971

15. Rall, L.B.: Computational Solution of Nonlinear Operator Equations. New York: lohn Wiley
1969



416 G. Alefeld

16. RaH, L.B.: Quadratic equations in Banach spaces. Rend. Circ. Mat. Palermo 10, 314-332 (1961)
17. Rokne, J.: Fehlererfassung bei Eigenwertproblemen von Matrizen. Computing 7, 145-152

(1971)
18. Rump, S.: Solving algebraic problems with high accuracy. Habilitationsschrift, Karlsruhe 1982
19. Rump, S.: Computer Demonstration Packages Standard Problems of Numerical Mathematics.

In [12], pp. 28-49
20. Rump, S.: Solving Algebraic Problems with high Accuracy. In [12], pp. 53-120
21. Symm, HJ., Wilkinson, lH.: Realistic error bounds for a simple eigenvalue and its associated

eigenvector. Numer. Math. 35, 113-126 (1980)
22. Wilkinson, J.H.: The calculation of the Eigenvectors of Codiagonal Matrices. Comput. 1,90-96

(1958)
23. Wilkinson, J.H.: The evaluation of the zeros of iH-conditioned polynomials. Part II. Num.

Math. 1, 167-180 (1959)
24. Yamamoto, T: Componentwise error estimates for approximate solutions of systems of equa-

tions. Lect. Notes Numer. Appl. Anal. 3, 1-22 (1981)
25. Yamamoto, T: Error bounds for computed eigenvalues and eigenvectors. Numer. Math. 34,

189-199 (1980)
26. Yamamoto, T: Error bounds for computed eigenvalues and eigenvectors II. Numer. Math. 40,

201-206 (1981)
27. Yamamoto, T: Error bounds for approximate solutions of systems of equations (Manuscript

1983)
28. Unger, H.: Nichtlineare Behandlung von Eigenwertaufgaben. Z. Angew. Math. Mech. 80, 281-

282 (1950)
29. Varga, R.S.: Matrix Iterative Analysis. New Jersey: Englewood Cliffs 1962
30. Gregory, R.T., Karney, D.L.: A collection of Matrices for testing computational algorithms.

New York: Wiley 1969

Received April 13, 1984 j September 28,1984


