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Summary. In this paper we introduce the set of so-called monotone iter-
ation functions (MI-functions) belonging to a given function. We prove nec-
essary and sufficient conditions in order that a given MI-function is (in a
precisely defined sense) at least as fast as a second one.

Regular splittings of a function which were initially introduced for lin-
ear functions by R.S. Varga in 1960 are generating MI-functions in a nat-
ural manner.

For linear functions every MI-function is generated by a regular split-
ting. For nonlinear functions, however, this is generally not the case.

Subject Classifications: AMS (MOS): 65J15, CR: GL.5.

0. Introduction

In his famous book “Matrix Iterative Analysis” Varga [8] has introduced the
concept of a regular splitting of a matrix. See also [7]. Until now regular
splittings of matrices remained a fundamental tool for the investigation and
comparison of iteration methods for linear equations in finite dimensional
spaces.

In 1972 one of the authors [1] generalized the concept of a regular splitting
to nonlinear mappings in partially ordered Banach spaces. A series of results
for iteration methods generated by nonlinear regular splittings could be
proved. Among these results are, for example, convergence theorems for the
nonlinear total step method and single step method, respectively, if these meth-
ods are used to compute zeroes of M-functions. M-functions are important
nonlinear generalizations of M-matrices. They -were introduced by Rheinboldt
in [5]. See also [4].

In the present paper we consider the monotone behaviour of iteration meth-
ods which was discussed several times in the past. See, for example, the mon-
ography by Schroder [6]. It turns out that regular splittings are playing again
a fundamental role.
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The paper is organized as follows:

In Sect. 1-4 we discuss some preliminaries. In Sect. 5 we introduce the
concept of a monotone iteration function (MI-function). Theorems 1 and 2
contain results on the monotone behaviour of sequences produced by MI-func-
tions. Theorem 3 contains a necessary and sufficient condition for the global
convergence of the iteration method belonging to an MI-function.

In Sect. 6 we define in a natural way a relation h>>g for two MI-functions
(“The iteration method belonging to h is at least as fast as the iteration meth-
od belonging to g”). Theorem 4 contains necessary and sufficient conditions for
h>g to hold.

In Sect. 7 the definition of a regular splitting for a nonlinear mapping from
[1] 1s repeated. Theorem 5 shows that given a regular splitting we can define
an MI-function in a natural way.

Section 8 repeats the definition of a regular splitting of a matrix introduced
by Varga [8] and demonstrates that it is covered by the nonlinear definition.

In Theorem 6 of Sect. 9 we prove necessary and sufficient conditions for
h>g if h and g are MI-functions generated by regular splittings.

In Sect. 10 so-called additively composed regular splittings are introduced.
In this case Theorem 7 contains again necessary and sufficient conditions for
h>g. Using results of Woznicki [9] and of Csordas and Varga [2] we can show
that a sufficient condition from [1] for h>>g is not necessary.

In Theorem 8 of Sect. 11 we prove that in the finite dimensional case with
the natural partial ordering every linear MI-function is generated by a regular
splitting of some linear function.

The final example in Sect. 12 shows on the other hand that for nonlinear
MI-functions this is in general not the case.

1. Partial Ordering

Assume that X is a set in which a partial ordering is introduced via a (re-
flexive, antisymmetric and transitive) relation “=”. We assume that X is direct-
ed downwards and upwards. By this we mean that given a,beX there exist
¢,ceX such that

[IA
(1A
[IA
IA

EEASE. ©=hEE
hold.

Assume that a sequence (gq;) in X is monotone increasing, that is
Q= 0,50,5....

Then we write a,1. Analogously we write g, | if the sequence is monotone de-
creasing.
2. Convergence

We assume that in X a convergence definition “—” is given which is in the
following sense compatible with the order relation “>": If (g,) is a sequence in
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X then there 1s at most one ae X such that a,—a. Furthermore the properties
(C1)-(C6) below have to hold. In formulating these properties we use the fol-
lowing notation: If a,—a and q,7 then we write g,7a. Similarly g, |a means
that a,—a and q, .

(C1) If a,=b, k=0,1,2,..., and a,T then there exists some aeX for which

a.Ta.

(C2) If a,=b, k=0,1,2,..., and a,| then there exists some aeX for which
a,la.

(C3) If g,7a then a,<a, k=0,1,2,....

(C4) If a,|a then a,=a, k=0,1,2,

(C5) MaSasa,; k=012 akTa and g, |a then a,—a.

(C6) If q,<bh,, k=0,1,2,..., a,—a, b,—b then a<h.

From our assumptions the following remarks can be concluded.
Remark I. A sequence (a,) for which a, =a, k=0,1,2, ..., holds is convergent to
a. :

Remark 2. Every subsequence of a monotone convergent sequence is conver-
gent (to the same limit as the original sequence).

3. Example

Suppose that X is a real Banach space and that K is a reproducing (i.e. K—K
= X) and (closed) cone. K is assumed to be regular in the sense of Krasnosel-
ski1 [3]. Let “<” be defined as usual via the cone and let “—” denote norm
convergence. Then (C1)-(C6) hold.

4. Special Case

X=R" K=R" ={x=(x")|x"20,v=1,2,...,n}.

5. Monotone Iteration Functions (MI-Functions)

Assume that a set X 1s given which is equipped with a partial ordering and a
convergence definition as described above. Besides X we consider a partially
ordered set Y which is directed downwards and upwards.
Let now a function
f:X->Y
be given. Then a function
g: XxY-X

is called a monotone iteration function ( MI-function) belonging to f if g has the
following properties:

(M1) g is (weakly) monotone increasing with respect to both arguments:
(M2) g(x, f(x))=x for xeX;
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(M3) {x <g(x,y)=f(gx,y)=y
x2g(x,y)=f(gkx, )=y
(M4) If x,Tx or x, | x then for all yeY it follows that g(x,, y)—g(x, y).
The set of all MI-functions belonging to f is denoted by MI(f). The follow-
ing result holds for MI-functions.

} for xeX, yeY;

Theorem 1. Assume that f: X — Y is given and let ge MI(f). Assume that for xe X
and yeY a sequence (a,) in X is defined by the iteration method

Wb
(5.1)
ak+1=g(akay)> k=09 1927”"
Then the following hold:
fR)=y=f@)=sy, k=012, ..,41 (5.2)
fx)zy=f@)zy, k=0,1,2,..., 4l (5.3)

Proof. We prove (5.2). Assume therefore that f(x)= f(a,)<y. Then it suffices to
conclude that (for arbitrary k=0)

G =a, (5.4)
and
fla, )=y (5.5)
follow from
fla)=y. (5.6)

By (5.6) and (M1) we have

a,1=8(a, y)Zg(a. f(a))=a,

where the last =-sign follows from (M2). Hence (5.4) holds. From the last
inequality we have a, <g(qa,,y) and the first part of (M3) yields

fgla, y)=y

which - using the definition of a,, , - states that (5.5) holds. The proof of (5.3)
can be performed similarly. [J

In the next Theorem we consider two elements xeX and XeX for which
for some yeY the left-hand side of (5.2) and (5.3), respectively, hold. In this case
the corresponding sequences (g,) and (a,) are monotonically converging to so-
lutions a and a of f(x)=y, respectively.

Theorem 2. Assume that f: X —Y is given and let ge M1 (f). Furthermore assume
that for x,XxeX and yeY it holds that

x2X, fE=SysfR). (5.7)
Let the sequences (a,) and (a,) in X be defined by

G=%, G, 1=8(4,Y)) (5.8)
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and
ap=X, Gy, 1=8@,Y), (5:9)
respectively. Then
a=a, k=012..., (5.10)
ala, 4,13, a<a (5.11)
and
fl@=f@=y. (5.12)

Proof. By (5.7) the statement (5.10) holds for k=0. Assume that (5.10) is true
for some k=0. Then by (M1) it follows that

a4, 1=8a,y)Sg@, y)=a,, .

Therefore (5.10) is proved by mathematical induction. From Theorem 1 we
have

&4y Ayl (5.13)
From (5.10) and (5.13) it follows that
&2, KI1=0172 ..

Therefore using (C1) and (C2) it follows that the first two parts of (5.11) hold.
The third part follows from (5.10) and (C6).
Using (M4) in (5.8) and (5.9) the equations

a=g(a,y), a=g(a,y)
follow. Applying (M3) we get (5.12). [

We add some remarks to the preceding result:
Assume that (5.7) hold and that instead of the sequences (g,) and (a,) defined
by (5.8) and (5.9) we have two sequences (x,;) and (X,) for which

(58)

Xo=X, X, 1 =8(%4,))
£ (5.9

_ _ E=D.1.2. ...
X5 Xk g1 gg(xk, y)}

Such sequences could, for example, be produced by systematically rounding
downwards and upwards if the iteration methods (5.8) and (5.9) are performed
on a computer using a fixed length floating point number system.
We prove that
X% =4, G 5X%,, k=0,1,2,.... (5.14)

Because of the first parts in (5.8') and (5.9'), respectively, (5.14) is certainly true
for k=0. If (5.14) holds for some k=0 then by (5.8), (M1) and (5.8)

-Xk+ 1 ég(xk’ y)gg{gkay)*:gk_,_;-

Similarly @, ; =X, , follows.
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By (C3) and (C4) we have from (5.11) g, <a, a<a,. Therefore we conclude
that
}kégéagih k)I::O: 1723'“

and we have the

Corollary 1. Assume that for the sequences (x,) and (X,) the inequalities (5.8") and
(5.9') hold. Then there exists at least one solution of the equation f(x)=y between
X, and X, where k and | are arbitrary nonnegative integers. []

The next Theorem delivers a global convergence result for MI-functions.

Theorem 3. Assume that f: X —Y is bijective and let geMI(f). Then f ~': Y- X
is monotone increasing if and only if the sequence (a,) computed by the iteration
method

ay=x

| : (5.16)
ak+1=g(ak>y)3 k:071:27‘“3

is convergent to f~*(y) for arbitrary xeX, yeY:
a—f (). (5.17)

Proof. a) Assume that f ' is monotone increasing. Choose xe X, yeY arbitrari-
ly, but fixed. Since the partial ordering in Y is directed downwards and up-
wards there exist elements y, yeY such that

YSfX)=y (5.18)
and
y<ysy. (5.19)
For x=f"!(y), x=f"1(y) it follows from (5.18) that
XExEx (5.20)

Besides of the sequence (5.16) we consider the two sequences (g;) and (@,) which
are computed by

Qoz_lca gk+ 1:g@ka,v)7 kzo‘) 132> e
and
50:i3'5k+1=g(akay)a k=03172a----

Because of (5.19) it follows that f(x)<y =< f(X) which together with (5.20) means
that (5.7) of Theorem 2 holds. Therefore, by Theorem 2,

ata, aJla (5110
and

fl@=f@=y.
Since f is bijective we have a=a=f~1(y).
We now show that

gkéakéaks k=0, 1329-”9 (521)
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from which because of (5.11) and (CS) the convergence a,—f ~'(y) follows. We
now prove (5.21). (5.21) is certainly true for k=0 because of (520). If (5.21)
holds for some k=0 then, using (M1),

a, 1=8a,y)=2(a,y)<g@.y)=a, .,

and therefore (5.21) holds since a,, , =g(a;, y).

b) Assume now that for arbitrary xeX, yeY we have that a,—f1(y) for
the sequence (a,) computed by (5.16). We have to show that f~1 i monotone
increasing. This is the case iff b, <b, follows from f(b,)=f(b,). In order to
prove that this holds, we choose

a0:b17 y:f(bz)
in (5.16).
Then
=8y, o Fladsy, k=0,12,..

hold. For k=0 this can be seen as follows:
The inequality f(b,)< f(b,) is equivalent to

flag)=fb)=f(by)=y.
Furthermore by (M1) and (M2) it follows that

a,=g(ay,y)=g(b,,f(by))=g(b,,f(by)=b,=a,.

For general k the assertion follows from (5.2).
SlIlCB aka"_l(y)=b2 we have by (C3) that akgbz, k=0, 132, I Therefore
we have b, =a,<b,. O

6. Comparison Results

Suppose that for a given f: X —>Y we have g, heMI(f). For xeX, yeY we con-
sider besides of the sequence (,) computed by (5.1) the sequence (p,) computed
by :

bO:x,

bey1=hbyy) k=0,1,2,.... (6.1)
The analogous statements corresponding to (5.2) and (5.3) read

fx)sy=f(bJ=y, k=0,1,2,..., b1 (6.2)
and

f(x)gy:'f(bk)gya k=0>1!2&"'9 bkl: (63)

respectively.
The statements (5.1), (5.2) and (6.2), (6.3), respectively, justify the following

Definition. The iteration method (6.1) is at least as fast as the iteration method
(5.1) if for arbitrary xe X, yeY the statements
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fx)=y=b=a, k=012 .. (6.4)

fx)zy=b=q, k=0,12,... (6.5)
hold.
If (6.1) is at least as fast as the iteration method (5.1) then we write h>g.

Theorem 4. Suppose that f: X—Y is given and let g, he MI(f). Then h>=g iff for
xeX, yeY
fX)=Sy=h(x,y)2g(x, ), (6.6)

fx)Z2y=h(x,y)=g(x,y). (6.7)

Proof. a) Assume that h>g. If f(x)<y then by (6.4) b, =a, which means that
h(x, y)=g(x, y). Therefore (6.6) holds. Analogously (6.5) implies that (6.7) holds.
b) Assume now that (6.6) holds. We show that (6.4) is true. If

fx)=y (6.8)
then we have to show that

b=a, k=0,1,2.... (6.9)

This is obviously true for k=0.
By Theorem 1, (6.8) implies that

fla)=y, k=0,12,....
Therefore, replacing x by a,, we have from (6.6) that
BNy =000 0 (6.10)
Assume now that (6.9) is true for some k=0. Then by (M1) and (6.10),
by 1 =h(by, )2 h(ay, )2 g(a;, y)=a;, 1

Therefore (6.9) 1s true and the statement (6.4) holds. Analogously we can prove
(6.5) by using (6.7). O

7. Regular Splittings

Assume that a function f: X — Y 1s given. Then a function r: X x X - Y is called
a regular splitting of f if the following properties (R1)-(R5) hold:

(R1) r(x,x)=f(x), xeX.

(R2) r(a,x)=r(b,x)=a<bh.

(R3) The function r(.,x): X—Y is for all xeX bijective.
(R4) asb=r(x,a)=r(x,b).

(R5) If, for the sequences (q,) and (b,) in X, in addition to

r(a,,b)=y, k=0,12,...,
either _
ala, b Tb
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or
ala, b.lb
hold, then r(a, b)=y.

Regular splittings for nonlinear mappings were introduced in [1] as a gen-
eralization of regular splittings of matrices which were introduced by Varga in
[7]. See Sect. 8.

Theorem 5. Assume that r: X x X —Y is a regular splitting of some given function
[ XY If g: X x Y- X is defined via

glx,y)=a if r(a,x)=y (7.1)

then geMI(f).

Proof. We first note that because of (R3) the function g is welldefined by (7.1).
We now have to show that (M1)-(M4) hold. The proof consists of several steps.
a) Using (R1) it follows from (7.1) that

g(x, f(x))=x

holds. Hence (M2) is proved.
b) We show that g is increasing with respect to the second variable. To
prove this, we note that (R2) can be written as

y=r(a,x)=sr(b,x)=y,=a=b.
By (7.1)
azg(x, yl)’ b—_—g(x) }’2)-

Therefore we have shown that y, <y, implies g(x, y,) < g(x, y,).
c) The mapping
gx,.): Y-X

is bijective. This is an easy consequence of (R3).

d) If g(x;,y,)=g(x,,y,) and x, <x, then y,=y,. This can be seen as fol-
lows:

By (7.1) the equation x=g(x,, y,)=g(x,,y,) can be written as

r(x,xl)zyl, r(xaxz):yz-
If x, £x, then by (R4)
ylzr(xaxl)gr(x’xz):yZ‘

e) From x, <x,, yeY it follows that g(x,, y)<g(x,,y). The proof is as fol-
lows:
Given yeY then c) implies that there exists a y,€Y such that

g(xy, y)=2g(x;,¥) (7.2)

By d) y,=y. Applying b) it follows together with (7.2) that

8(x1,y)=8(xy, y1)=8(x2, ¥)
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b) and €) therefore show that (M1) holds for the mapping g defined by (7.1).
f) (M3) holds, that is

x=2g(x,y)=f(glxy)=y

for xeX, yeY.
x=g(x, y)ﬂf(g(x,y))éy} y

To see this, define a=g(x, y). Then by (M2)

gla,f(@)=a=g(x,y).

By assumption x<a. Hence applying d) we conclude that f(a)<y, that is

Jglx, »)=y.
This is the first part of (M3). The second part can be proven similarly.
g) We show that (M4) holds.
Assume first that x, T x.
We define the elements of the sequence (a,) via (7.1):

a,=g(x,,y) 1 r(a,x)=y.
Since x, T we have by (M1)

a4 =8(X, V) S8(X4y 1Y) =0 1-

Hence g, 1. By (C3) we have x, <x and therefore by (M1)

a,=g(x;, y)=g(x, )

Hence a,Ta for some aeX.
We now set b, =x, and b=x. Then (RS) implies that r(a,b)=y, or by (7.1)
that
a=g(b,y).

We have therefore proved that x, Tx implies g(x,, y)—g(x,y) which 1s the first
part of (M4).
The second part follows similarly. [

In view of Theorem 5 it is clear that Theorems 1-3 can be reformulated for
regular splittings. These specializations have essentially been proved in [1].
The linear case deserves particular interest. It will be discussed in the next
Section.

8. Regular Splittings of Linear Mappings in R"

Let X=Y=IR" and assume that both spaces are partially ordered by RR" (see
Sect. 4). Let f be a linear mapping. Then

f(x)=Ax, xeR”, (8.1)
with a real (n,n) matrix 4. If M and N are real (n, n) matrices such that

A=M-N, M 'z0, N20, (8.2)
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where “>” is defined via the elements, then it is easy to see that
r(x,,x,)=Mx,—Nx,, x,,x,€R", (8.3)

is a regular splitting of the mapping (8.1). The corresponding MI-function, de-
fined by Theorem 5, reads

g(x,y)=M"'Nx+M~'y, x,yeR"™ (8.4)

(8.2) is the famous definition of a regular splitting of the matrix A introduced
by Varga in [7]. See also [8].
Under the assumptions of this section Theorem 3 implies the following

Corollary 2. Let A=M — N be a regular splitting. Then A~ =0 iff the iteration

method
Xo 1 =M 'Nx,+M~'y, £k=0,1,2,...

is for all y and for all x, convergent to the solution x=A""'y of the equation Ax

=k

This is essentially the well known result on regular splittings of matrices
proved by Varga. See [8], Theorem 3.13.

9. Comparison of MI-Functions Generated by Regular Splittings

Assume that r,s are two regular splittings of the function f: X - Y. Let g and &,
respectively, be the corresponding MI-functions defined by (7.1). If h>g we
also write

s
and call the regular splitting s at least as fast as the regular splitting r.

Theorem 6. Let r and s be two regular splittings of f: X =Y. Then s>r iff for
a,b,xeX
r(a,x)=s(b,x)2 f(x)=a=b, (-1)
(@, x)=s(b, )< f (x)=ab. 92)

Proof. Let g and h be the MI-functions belonging to r and s, respectively. Then
by (7.1) and part ¢) of the proof of Theorem 5 we have

g(x,y)=a<r(a,x)=y ©.3)
and correspondingly
h(x,y)=b<>s(b,x)=y. (9.4)
Because of Theorem 4 the proof is complete if the statements
(6.6)<>(9.1) and (6.7)<(9.2)

are shown. Using (9.3) and (9.4) this needs no additional ideas. [
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In [1], Satz 2, another condition for s>r was proved:
Assume that r,s: X x X—Y are two regular splittings of f: X— Y. Further-
more suppose that t: X x X x X—Y is a function for which

r(x13x2)=t(xlsx19x2) (95)
and
S(xq, X5)=t(xy,Xx5,X5), X,%X,€X, (9.6)
hold. If the function
S s XY 9.7)

is for all x,, x,€ X monotone increasing then s>r.

In Sect. 10 we will show that already in the finite dimensional and linear
case (9.5)-(9.7) are not necessary for s>r. Hence these conditions are not
equivalent to (9.1), (9.2).

10. Additively Composed Regular Splittings

Theorem 7. Let Y be a Banach space which is partially ordered by a regular and
reproducing (closed) cone (see Sect. 3). Assume that r and s are regular split-
tings of f: X —Y which have the form

r(xy, x;)=®(x,)+U(x,), x,x,€X
and
S5, X)=Px)+V(xs), x4,%6X,

respectively. Then s> r if and only if for xe X, peY

O~ (B(x)+p)S P (F(0)+p), p20, (10.1)
and
- P(x)+p) =¥ (¥(x)+p), p=O. (10.2)

Proof. By (R1) we have
f(X)=2(x)+U(x)=¥Y(x)+V(x), xeX. (10.3)

By (R3) we have that @, ¥: X—Y are bijective. For the MI-functions g and h
belonging to r and s, respectively, it therefore follows by Theorem 5 that

i g(x, y)=¢': y=UKX) (10.4)
hix,y)=% '(y—V(x)), xeX, yeY.
By Theorem 4 we have s>>r if and only if
f)Sy=¥"1(y-V(x)zo ' (y-U(x)
f)zy=¥"y-V(x)<2 '(y—U(x).

Replacing y by p+ f(x) and using (10.3) we immediately get (10.1), (10.2) and
vice versa. [
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In passing we note that Theorem 7 can also be proved by applying Theo-
rem 6. In this case we don’t need (10.4).

Consider now the special case of Theorem 7 in which besides of Y also X is
a real Banach space (partially ordered as described in Sect. 3) and assume that
®,¥: XY are both linear. In this case (10.1) and (10.2) which together are
necessary and sufficient for s>r can be written as a single condition:

' (p)=¥'(p), pey, p20. (10.5)
If X=Y=R", K=R", f(x)=Ax where A4 is a real (n, n) matrix, if furthermore

r(xy,x)=M; x; —N; x,=®(x;)+ U(x,)
and
S(xy,%)=M,x; =N, x,=¥(x,)+ V(x,)

are two regular splittings of f, then (10.5) is equivalent to
M. 2MH (10.6)
and we therefore have the

Corollary 3. Let X=Y=R", K=R", and f(x)=Ax with a real (n,n) matrix A.
If 7

r(ys %) =M, %, —Ny%s < (10.7)
and

s(x;,x3)=M,x,—N, x, (10.8)

are two regular splittings of f then s>r if and only if (10.6) holds. [

It 1s easy to see that under the assumptions of Corollary 3 the conditions
(9.5)-(9.7) are equivalent to

N,<N,. (10.9)

Hence (10.9) is a sufficient condition for s>r where r and s are defined by (10.7)
and (10.8), respectively.

From the work of Woznicki [9] and Csordas and Varga [2] it is known
that for two regular splittings (10.7) and (10.8) the statement

M;'zM['=N,=<N,

is not generally true. The example from [2] is as follows. Let
= ( 2 —1)
2\-1 2
A=M,—N,=M,—N,
1 0 1/0 1
M = ] N == ]
’ (0 1) 12 (1 0)

1 4 -2 1/0 0
Mz_i(—z 5)’ Nl:Z(O 1)'

and let

where



226 G. Alefeld and P. Volkmann

Then

1 0 16 2
=l _1:—
M; = (0 1) and M, 4(2 )

Hence we have two regular splittings of 4 with M;'> M. However, N, and
N, are not comparable. Because of Corollary 3 we therefore have the result
that (10.9) is not necessary for s>r.

11. Linear MI-Functions in R"

In this section we consider X =Y=R", K=R",, again.

Theorem 8. Let g: R"xIR"—=IR" be linear (which means that g can be repre-

sented in the form g(x, y)=Tz with z= (x)-ele“ and T an (n, 2n) matrix). Then
y

g is an MI-function of some function f: IRR"—IR" if and only if (8.1), (8.2) and (8.4)
hold. In other words: Every linear MI-function g: IR" x R"—=IR" is generated by a
regular splitting (8.3).

Proof. a) In Sect. 8 we have shown that (8.1), (8.2) and (8.4) imply that

geMI(f).
b) Assume on the other hand that g is linear and geMI(f) for some f. The

linearity of g implies that
g(x,y)=Rx+Sy, x,yeR", (11.1)
with two real (n, n) matrices R and S. Because of (M1) it follows that

R=0, S=0. (11.2)
By (M2) we have
Rx+Sf(x)=x, xeR" (11.3)

Similarly the first part of (M3) implies the statement
xSRx+Sy=f(Rx+Sy)<y, x,yeR" (11.4)
Consider now a solution u of the equation
Su=A0). (11.5)

Then for every real 4 the vector y=Au is also a solution. Now we choose x=0
and y=Au, A€R, in (11.4). Then it follows that

f0)<Aiu, ZeR.

If u=0, then we can choose A€ such that this last inequality no longer holds.
Hence u=0 and S is nonsingular.
We define
M8 N=S-'R, A=M-N. (11.6)
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Then, by (11.3),
f(x)=S"'(x—Rx)=A4x, xeR", (11.7)

which is (8.1). Similarly (11.1) and (11.6) imply

g(x,9))=Rx+Sy=M"'Nx+M~'y
which is (8.4).
From (11.2) and (11.6) it follows that M~ '=S52>0. Therefore in order that
(8.2) holds we have finally to show that N=S~'R=0. In order to prove this
we define for given x, yeR" the vector peIR" by

Rx+Sy=x+p. (11.8)

Then (11.4) reads

Osp=f(x+p)=y-
Since by (11.7)

f(x+p)=S"'(x+p—R(x+p)

and by (11.8)

y=S"'(x+p—Rx),
this statement can be written as

p=0=S"'Rp=0.

From this it follows that N=S"'R>0. [

12. Example: An Iteration Method for Computing the Square Root

In this section we consider the real compact intervals X=[0,3], Y=[0,%]. X
and Y are assumed to be ordered in the natural way. Let

f:10,41-00,4]
f(x)=x*  xe[0,1].
a) If g: [0,3] x [0,5]—[0,1] is defined by
glx,y)=x—x*+y, xe[0,3], ye[0,3], (12.1)
then geMI(f). We omit the details of a proof. We have
[ 0)=Vy.  yel0.4
f71:00,31-00,3]

is monotone increasing. From Theorem 3 (or in this elementary example by
direct discussion) it follows therefore that the iteration method

be given by

Hence

ak+1=ak—a§+ya k:03132>”'9 aoe[oa%]
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produces for each ye[0,1] a sequence (q,) for which

ak_’]/}
holds.
b) Consider now the function

g(x,.):[0,5]-[0,3], (12.2)

where g(x, y) is given by (12.1). g(x,.) is for no xe[0,5] bijective. Part c) of the
proof of Theorem 5 therefore shows that g(x, y) from (12.1) cannot be defined
by a regular splitting of f via (7.1).

This example shows that the concept of an MI-function is more general than
the concept of a regular splitting. Note, however, that for X=Y=R", K=R",
we have shown in Theorem 8 that a linear MI-function is essentially the same
as a linear regular splitting.
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