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Abstract — Zusammenfassung

On Higher Order Centered Forms. If the real-valued mapping f has a representation of the form
f(x)=f(c)+ (x—¢)"h(x), x € X, then we introduce an interval expression which approximates the range
of values of f over the compact interval X with order n+ 1. The well known centered form is the special
case n=1 of this result.
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Uber zentrierte Formen hoherer Ordnung. Fir den Fall, daB f eine Darstellung der Form
F(X)=f(€)+(x—)"h(x), x€ X, besitzt, geben wir eine intervallmiBige Auswertung an, die den
Wertebereich iiber dem kompakten Intervall X mit der Ordnung n+ 1 approximiert. Fiir n=1 erhélt
man die bekannten Aussagen iiber die zentrierte Form.

1. Introduction

A fundamental property of interval arithmetic is the fact that it allows to include the
range of values of (rational) functions. It is well known that the distance of such a
result to the exact range is strongly dependent on the representation of the function.
For details see, for example, the discussion in Chapter 3 of [1]. In this paper we
discuss a generalization of the following well known facts:

Let the real valued function f be defined on the real compact interval X € R. Assume
that for some ce X the function f can be represented as

fX)=f(c)+(x—c)-h(x), xe X =[x{,Xx,], (1)
where h is a continuous real function defined on X. Let d(X)=x, — x, be the width
(or diameter) of the interval X and denote by q(A, B) the Hausdorff distance of two
compact intervals 4=[a,,qa,] and B=[b,,b,]:

q(A,B)mmax{!a1~bl|, |az_bzl)- (2)
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Assume furthermore that h (X) denotes a real compact interval with the properties
that h(x)eh(X), xe X, and that

d(h(X) <o - d(X) (3)

where o is a real nonnegative constant.

Then 1t 1s well known (see [ 1], [3], [ 5], [6], [ 7], for example) that the real compact
interval f(X) defined by

fX):=f()+(X—0)- h(X) 4
has the so-called quadratic approximation property which means the following:
Let

W, X)={f(x)| xe X} )

be the range of values of f over X. W(f, X) is a compact real interval. It then holds
that

a(W(,X), f(X)<x-(d(X))* (6)

where k is a real nonnegative constant. Furthermore W (f, X)< f(X). The
representation (1) of f(x) is usually called a centered form of f. See, for example, [1],
[31,[5], [6], [7]. In this note we show that (6)is only a special case of a more general
result. We first consider a simple example.

2. Example
Let
2 x—1 2
J)=x* ——=f()+(x—c)* - h(x),
x+1
X=[—-a,a],a<l
where
x—1
¢=0 and h(x)= :
x+1

A simple discussion yields for the range of f over X =[—u«, ] the interval

W(f,X)= [_M, 0]_

1—a
Defining
[_ o, a]?.‘ L= W(xz’ [_ a, GC]) = [0, aZ]

[—a,a]—1 _[—az(lJro:) 0:'
[—aa]+l | 1-a )

yields
fs(X):=[—a,a]?.
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where the index S stands for square. On the other hand defining [—«, a]? as the
product of the two factors [~a,«] and [—a,«] we get

[—o,a]—1 _[-a2(1+a) o (1 +ac)]
[—a,a]+1 1—a '’ ;

Je(X):=[—o,0] - [—a,a]-

l—a
where the index P stands for product.
Obviously it holds that

?(1+a)

a(W (1, X), fp(X))= =0 (d(X)))

|
whereas (in this example even

g(W(f, X), f5(X))=0
from which it follows, of course, that)

(W, X), f(X))=0((d(X)}*).

3. Results

The result of the example from the preceding chapter is covered by the following
main result of this paper.

Theorem: Let the real valued function f be defined on a compact interval X < R.
Assume that for some c € X and for some integer n>1 the function f can be represented
as

FE)=f()+(x—c) - h(x) (™)

where h is a continuous function defined on X. Assume that h(X) is a real compact
interval for which

h(x)eh(X), xe X (8)
and
d(h(X))<o-d(X) ©)
hold. Deﬁning the compact interval f(X) by _
FX):=f(c)+ W((x—c), X)- h(X) (10)
then it follows that
f(x)ef(X), xeX (11)
and
a(W (LX), fX))<x - (dX)* (12)
where k is a nonnegative constant. O

The special case n=1 of this theorem is the quadratic approximation property
discussed in Chapter 1.
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Before we go into the details of a proof of this theorem we include some remarks.

a) Because of (12) we call (7) a centered form of order n+ 1. (Note that so-called
standard centered forms of higher order were also introduced in Chapter 2.4 of [7].
These forms, however, do not exhibit higher than second order of convergence.)
Methods which include the range of values with arbitrarily high order were already
introduced in [2]. See also [4].

b) Because of ce X =[x,, x,] we have 0 X —c and therefore

[0, max {(x; —¢)",(x,—¢)'}], n=2,4, }
[, — ¢, (52—, n=1,3,5,....
Hence the interval W((x—c)", X) which is needed in (10) can easily be computed.

W ((x—cy, X):{ (13)

c) The inequality (9) holds, for example, if h(x) is a rational function and if the
interval h(X) is computed by replacing the variable x by the interval X and by
performing all operations following the rules of interval arithmetic.

d) The example from Chapter 2 shows that in general (12) does not hold if instead of
(10) one uses the interval

Je(X)=f()+(X —c)- h(X)
where (X —c¢)” 1s computed as the product of n intervals X —c.

e) If f is a polynomial whose derivative has a zero ¢ of order n>1 (with
n<m=degree of f) then

J&)=f)+(x—c)'- h(x)

O fe) £ 0)
=" T et

where

h(x fx e ",

Of course such a ¢ is not known in general (if it exists at all) and therefore even for
polynomials it is not an easy task to find a representation (7) of f(x) with n> 1.
(Therefore it must be stressed that the theorem is only of limited practical value.) If
on the other hand the derivative of f has no zero in X then computing the exact range
is trivial. O
For the proof of the theorem we need the following result whose proofiis given in the
appendix of this paper.

Lemma: Let the assumptions of the rheorém_hofd. If
| h(w)] =min| h(x)]

then
flo)+ W((x—c)",X)-h(w)Ef(c)-}-{(x—c)"-h(x)lxeX} =W({,X). (14

]
Proof of the Theorem:

A) It holds that
fE)=f)+x—c)'- h(x)ef(c)+ W((x—c), X)- h(X)=f(X)



On Higher Order Centered Forms 181

which is (11). It follows that W (f, X)< f(X) and therefore that
q(W (. X), f(X)<d(f (X)) - d(W(f, X)- (15)
See [1], Chapter 2, Theorem 11.
B) From the inclusion relation (14) of the Lemma it follows that
d(W(f, X))=|h(w)| - d(W((x—c): X))
See [1], Chapter 2, (9) and (14).
C) From the definition of f(X) by (10) we get that
d(f(X)<d(h(X))- | W((x—c)s X)|+d (W ((x—c), X)) - | h(X)]

where the absolute value |-| of an interval A=[a,,a,] is defined to be
| A]:=4(4,[0,0]).
See [1], Chapter 2, Definition 8, (10) and (12).

D) It holds that W ((x —c¢)", X) =(X — c)" where on the right hand side the product of
n factors, all equal to X —c, has to be performed. Therefore, since d(X)=|X — X |,

] [P (= X <X —cy|<|X-X[|"=(d (X))
an
d(W((x—cy, X)) <d((X —cf) <(d (X))

See the remarks at the end of Chapter2 in [1] for the last <-sign.

E) From the triangle inequality for the Hausdorff distance it follows that

| (X)| =q(h(X),[0,0])
<q(h(X),h(w))+q(h(w).[0,0])
=q(h(X), h(W))+ | h(w)]

and therefore that
|h(X)] = [h(w)] <q(h(X), h(w)).
Since h(w)e h(X) it follows that
g (h(X),h(w)<d(h(X))
(see [1], Chapter 2, Theorem 11) and therefore that
[R(X)] = h(w)] <d(h(X)).
F) Using B)—E) and (12) from Theorem 9 in Chapter 2 of [1] we get from (15) that

a(W (£, X), f(X))<d (h(X)) - | W((x =), X)I +
+d(W((x—c) X)) - 1h(X)]—
—|h(w)] - d(W((x—c), X))<
<2.d(h(X))-(d(X))".

Using the assumption (9) we get the assertion (12) of the theorem with k=2¢.]
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4. Remark

It is interesting to note that the proof of the theorem could also be performed by
using the concept of a remainder form of f on X introduced by Cornelius and Lohner
in [2]. Let therefore f(X) again be defined by (10) and assume that h,e h(X) and
define the compact real interval F(X) by

FX):=W(f(c)+(x—c)- ho, X)+(X —c)"- (h(X)—hy)
where (X —¢)" is computed as the product of n intervals all equal to X —c. Set
g(x):=f()+(x—c)'hy, R(X):=(X—c)"-(h(X)—hy).

Then F(X) is a remainder form of f on X in the sense of Cornelius-Lohner [2],
Theorem4. See also [7], Chapter6.7. Therefore, since hyeh(X) we have by
Theorem 4 in [2] that
a(W (. X), F(X))<2|R(X)| 2| X —c|"- | h(X)—ho|
<2(d(X)) - d (h(X))
<2¢(dX)*'.
On the other hand it holds that

fX)=f(c)+ W((x—0c), X)- h(X)
=f(c)+ ﬂ’{(x—c]",X)-(h0+h(X)-—hg)
SW(f(O)+{(x—0)- ho, X)+ W((x—c). X) - (R(X)—hy)
SW(f(c)+(x—c)- ho, X)+(X —c)"(h(X)—ho)
—F(X).
Therefore
g(W(. X).f(X)<q(W(f, X),F(X))<2a(d(X))""".

5. Appendix: Proof of the Lemma

We consider first the case that h(w)>0 and that n is an even integer. We then have

S+ W((x—0), X) - h(w) =L/ (). £(c)+max (x, — " (x, — )) - h(w)]
and
W, X)=Lf(c).f()+(v—c) - h(v)]
with some ve X for which
(v—cY'h(w)=(x—c)"h(x) for all xe X.
We only have to show that

(v—c)" h(v)=max ((x; — ), (x;—¢)") - h(w).
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The validity of this inequality can be seen as follows.
By the definition of v it holds that

(v—c)" h(v)>max ((x; — or'h (xy), (x2 — )" h(xy))-
By the definition of h(w) and since n is even the inequalities

(x; =)' - h(xy)=(x;—¢)" - h(w)
and
(2 —0)" - h(x2)=(x, —c)" - h(w)

hold. Therefore
max ((x, — c)" h(x,), (x, — ¢)" h(x;)) = max ((x; — )" - h(w),(x; —c)" - h(w))=
=max ((x; — ), (x; —c)) - h(w)
and the assertion is provc'd‘

Consider now the case that h(w) >0 and that n is an odd integer. In this case we have
fEO+W(x—c),X)-h(w)=
=[f(c)+(x; —c)"h(w), f(c) +(x; — )" h(W)]

W X)=Lf () +u—c)f"h(u), flc)+(w—c)'- h(v)]

and

where u,ve X.
We first show that
F(©)+(x; = h(W) = £(0) +(u— )" h(w).
By definition of u it holds that
(u—c)" h(u)<(x; —c)"h(x,)-
Since h(w)<h(x;) and (x; —c)" <0 it follows that
(xy =) h(w)=(x; —¢)"h(x;)
and therefore the assertion holds.
To complete the proof of (14) under our present assumption we have to show that
)+ (x;— )" k(W) < fc)+ (v —c) h(v).
By definition of v it holds that
(v—c)"h(v)=(x;—0)" h(x,).
Since h(w)<h(x,) and (x, —¢)">0 it follows that
(x, — )" B (W) < (x, — ' (x;)
and therefore the assertion holds.

The final part of the proof consists in considering the case h(w)<0. Under this
assumption the proof can again be performed by considering the subcases in which n
is an even and odd integer, respectively. The details proceed similarly as in the case
h(w)>0. We omit the details. O
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